• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
"quantum" AND "physics"×
0 miles

Masters Degrees (Quantum Physics)

We have 111 Masters Degrees (Quantum Physics)

  • "quantum" AND "physics" ×
  • clear all
Showing 1 to 15 of 111
Order by 
The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Applied Physics and Materials, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Applied Physics and Materials

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Applied Physics and Materials Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Applied Physics and Materials degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Applied Physics and Materials programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Experimental Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Experimental Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Experimental Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Experimental Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Theoretical Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Theoretical Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Theoretical Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Theoretical Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The Theoretical Physics track introduces the student to the intriguing diversity of physical theories and gives means to understand the world. Read more

The Theoretical Physics track introduces the student to the intriguing diversity of physical theories and gives means to understand the world. Topics from quantum physics to the theories of gravity are incorporated into the track. Problems of fundamental quantum physics, quantum information, quantum field theory and theoretical cosmology are at the heart of the studies in Theoretical Physics.

Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including theoretical and numerical techniques to produce and analyse new physical projects.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation.

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as a part of a group.

In the University of Turku the research in Theoretical physics has the emphasis on various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Our MSc graduates have been employed to wide range of professions, in addition to academic career, such that finance sector, medical imagining, quantum technology, game development, and data mining.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown. Read more

The Physics master’s programme offers you a research intensive tailor-made study path on current topics in experimental and theoretical physics at an institute of international renown.

What does this master’s programme entail?

The Physics master’s programme is intimately related to the scientific research carried out at the Leiden Institute of Physics. You will spend approximately 50% of your programme on research, as a member of one of our top-level international research groups. We offer five research specialisations, with emphasis on either experimental or theoretical physics, which train you as an independent researcher. We also offer three specialisations that put Physics in broader societal contexts and train you for careers where a Physics background is an asset. Each of these specialisations aims at providing a combination of research independence and content proficiency that fully prepares you for a successful professional development for your professional development.

Learn more about the Physics programme.

Why study Physics at Leiden University?

  • The programme offers a wide choice of individual study paths that take into account individual needs and interests. You can either build a purely academic profile, or you may combine physics research with education, business studies or science communication.
  • You will carry out at least one research project with one of the research groups of the Leiden Institute of Physics. Research at the department is at the forefront of fundamental modern Physics at an internationally competitive level.
  • At the Leiden Institute of Physics you experience an open, inclusive, and collegial atmosphere. Your weekly routine includes attending colloquia of international speakers, partaking in symposia and participating in lively scientific discussions.

Find more reasons to choose Physics at Leiden University.

Physics: the right master’s programme for you?

Are you looking into furthering your education in fundamental questions in physics? Then our Physics master’s programme is the right choice. Whether you are interested in experimental or theoretical research, or cosmology, we offer it all. You will be trained for a career in research within or outside academia. You can also choose for a more practical-oriented specialisation where you combine one year of Physics research with one year of training in business, communication or education.

Read more about the entry requirements for Physics.

Specialisations



Read less
Program highlights. The recent progress in several fields of theoretical physics (such as high energy physics, astrophysics, quantum and nonlinear optics or condensed matter physics) required numerous very sophisticated mathematical tools. Read more

Program highlights

The recent progress in several fields of theoretical physics (such as high energy physics, astrophysics, quantum and nonlinear optics or condensed matter physics) required numerous very sophisticated mathematical tools. In these frontline research fields, it became clear that a new understanding of physical systems going from cold atom gases to black holes is impossible without a new insight into underlying mathematical structures. This kind of problems requires a new interdisciplinary approach and specialists with double competence: in Physics and in different fields of modern Mathematics.

The main aim of the Master Program In Mathematical Physics (Math4Phys) is to provide advanced lectures on the mathematical methods of modern theoretical physics in the framework of a mathematical curriculum. Such an offer exists in France only in Dijon as the Mathematical Physics group of the IMB (Burgundy Mathematical Institute) provides a unique environment for a program requiring a double competence in Mathematics and Physics. The Mathematical Physics group of the IMB laboratory in Dijon is a unique research team in France with a capacity to provide advanced lectures in mathematical problems of modern physics. It permits to create a scientific environment for a master program focused on the most important problems of modern Physics from the mathematical perspective.

We offer lecture courses for the students with background in mathematics or mathematical physics giving an introduction to the mathematical methods used for such branches of theoretical physics as quantum field theory, statistical mechanics, general relativity, gauge theories, string theory, etc. The coursework covers different fields of mathematics (algebra, geometry, analysis) and highlights their applications to the problems of modern theoretical physics. The students are integrated from the very beginning into the mathematical physics group of the IMB and have to prepare by the end of each year a master dissertation.

The first year (M1) of the program is designed to provide the necessary background courses (mostly in mathematics but also in physics) to comply with the coursework of the more advanced second year. In particular, the M1 program includes the following subjects:

1.  Differential geometry

2.  Fourier analysis

3.  Functional analysis

4.  Groups and representations

5.  Mathematical methods of classical mechanics

6.  Partial differential equations

7.  Quantum physics

8.  Numerical methods

The second year lecture coursework includes the following lecture courses:

1.  Mathematical methods of quantum physics

2.  Riemann geometry and integrable systems

3.  Lie groups and Lie algebras

4.  Cohomological field theories

5.  Quantum groups

6.  Geometry and physics of blackhole spacetimes

We will also provide several mini courses by the research visitors of IMB. More detailed program of the second year courses can be found on the program webpage

Graduate destinations

The main aim of the master program is to provide sufficient training to start a PhD preparation.

Application

Maximum enrolment 20 in M1 and 15 in M2

To apply for the Master program in Mathematical Physics students should send a CV, a short description of their previous coursework (in Mathematics and Physics) and eventually a motivation letter to the program coordinator:

For M1: Giuseppe Dito ()

For M2: Nikolai Kitanine ()

Accepted students should proceed with the formal application procedure available here.

Requirements

The students applying for the M1 have to complete their undergraduate studies with major in Mathematics or Physics. The students can apply directly for the second year (M2) if they have completed at least one year of graduate courses in Mathematics or Mathematical Physics.

To follow the program the students should have a sufficient proficiency in English (we don’t require TOEFFL or an equivalent certificate but we can suggest an online interview to candidates). 

Grants

Several fellowship grants (600 € per month, during up to 9 months) will be awarded each year to high quality foreign students,



Read less
The Department of Philosophy has exceptional research strength in philosophy of physics, and very strong links with the School of Physics. Read more
The Department of Philosophy has exceptional research strength in philosophy of physics, and very strong links with the School of Physics. Our MA draws on these strengths. It is intended both for students who wish to specialise in philosophy of physics at a higher level, and for individuals with a background in physics or mathematics who wish to make a transition to philosophy and foundations of physics. The course consists of five taught units in philosophy, two taught master's units in physics, and a 15,000-word dissertation.

As a postgraduate student, you will be an active member of the department’s flourishing research culture. You will be encouraged to attend and participate in both the weekly departmental research seminar and in the Philosophy and History of Science seminars, which often feature well-known scholars in the field, from Bristol and beyond. There is also a weekly postgraduate seminar, where you may present your own work before your peers and learn to develop your argumentative strategies in a supportive environment.

Programme structure

The MA consists of taught components in philosophy and physics, as well as a dissertation.

Core units
- Philosophical Writing and Research Methods (Philosophy, 20-credit unit)
- A mandatory, two-hour weekly seminar developing ideas, bibliographical and writing skills necessary for philosophical research. The unit is assessed by seminar contributions and presentations.
- Scientific Methodology and Epistemology (Philosophy, 20-credit unit)
This unit concerns core topics in scientific epistemology and metaphysics. The unit is examined on the basis of an essay of 5,000-6,000 words. As with all assessed essays, you may meet with a supervisor to discuss your work and to receive feedback on a draft essay.
- Philosophy of Physics (Philosophy, 20-credit unit)
This unit covers philosophical issues related to basic physical theories, focusing on conceptual issues in the foundations of quantum theory and special relativity. We will cover topics such as the relativity of simultaneity; geometry and the causal structure of relativity physics; the conceptual structure of quantum mechanics, the Einstein-Podolsky-Rosen argument; the measurement problem and Schrödinger’s cat paradox of; locality and action-at-a-distance.
- Advanced Philosophy of Physics (Philosophy, 20-credit unit)
This unit will examine a selection of conceptual issues in the foundations of physical theory with particular focus on the physics of the mid-to-late 20th century. We cover topics such as: the arrow of time in thermal physics; the interpretation of quantum field theory; emergence and universality in condensed matter physics; fine tuning problems and inflationary cosmology; spontaneous symmetry breaking and the Higgs mechanism; and time in quantum gravity.
- Foundations of Modern Physics (Physics, 10-credit unit)
Emphasis is placed on students developing an appreciation of the foundations of different areas of physics, and the unit assessment involves students writing an essay whose detailed subject is partly decided by the student. The lectures are divided into Classical, Spacetime and Quantum Physics.
- Relativistic Field Theory (Physics, 10-credit unit)
This course will give an account of the modern approach to special relativity and Lagrangian field theory, and their role in the covariant description of the classical electromagnetic field, and the relativistic quantum Klein-Gordon and Dirac equations. Formative assessment is through problem sheets discussed in problems classes. Summative assessment is through a 2 hour written examination

Optional units (all Philosophy 20-credit units)
- History of Science
- Logic
- Philosophy and History of Mathematics
- Philosophy and History of Medicine
- Philosophy of Biology
- Philosophy of Psychology
- An individual, supervised research project

Please be aware that optional units may vary from year to year.

Careers

The MA in Philosophy of Physics is an ideal platform for further studies in Philosophy or Foundations of Physics. This course will also provide students with Maths and Physics backgrounds with an opportunity to develop verbal, written and argumentative skills that are highly valued by employers.

Read less
Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. Read more

Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. The first phase of the UK National Quantum Technology initiative has received £350 million of government funding to create a flourishing industry in this area in the UK.

Four Quantum Technology Hubs have been established as flagship projects in this program. This postgraduate training programme is aligned with the UK National Quantum Technology Hub in Sensors and Metrology, an £80 million collaborative effort led by the University of Birmingham in partnership with the Universities of Glasgow, Nottingham, Southampton, Strathclyde and Sussex, the National Physical Laboratory and over 70 companies.

Course details

The MRes programme offers a unique opportunity for students to undertake a research-based Masters degree in a multi-disciplinary environment between science, engineering and industry. Students benefit from participating in both the technology translation and applied research activities carried out within the UK National Quantum Technology Hub in Sensors and Metrology, and from the educational programmes offered by the College of Engineering and Physical Sciences. The programme comprises classroom taught quantum physics-oriented modules for students with engineering backgrounds; technology-orientated modules for students with physics backgrounds; and an independent research project that is documented in a substantial thesis.

The research project consists of a team element; all students will organise themselves to present a technical demonstration at a national or international conference. There is also an individual research element, which takes place in industry or in relation to a participating company.

It will include 70 credits of classroom taught modules and a research project worth 110 credits, consisting of team and individual elements.

The team element of the research project teaches technical, team working, project management, communication and presentation skills with an emphasis on responsible research and innovation. The individual element of the research project focuses on problems relevant to industry and will be carried out in close collaboration with industry partners.

Related links

Learning and teaching

The Birmingham led UK National Quantum Technology Hub in Sensors and Metrology is a cross-disciplinary centre, involving staff from the Schools of Physics, Civil, Electrical and Materials Engineering, as well as staff from a number of other Schools across the University. It will translate fundamental science and applied research in quantum sensors and metrology based on atomic probe particles, providing high level educational opportunities in these fields.

The Hub’s research activities include research in the development of sensors for gravity, magnetic fields, rotation, electromagnetic fields and time. It also researches their applications in a diverse range of sectors including aviation, communication, construction, defense, energy, finance, healthcare, oil and mineral exploration, transport and space.

The Translational Quantum Technology programme aims at preparing students for the challenges in translating quantum sensors and metrology devices based on atoms as probe particles into real-world applications. After the programme, students should understand the underpinning science and technology; the needs of end-user applicants; and the impact of these quantum technology devices on society. They should be able to move seamlessly between academia and industry, and translate scientific outcomes into technology.

The programme will create a strongly networked cohort of students with practical experience in academia and industry. It aims:

  • to develop students' research and technological skills, and their knowledge of research methods applicable to the specific issues arising in quantum technology-related research;
  • to ensure that students are aware of state-of-the-art developments in quantum technology in specific technical and operational topic areas;
  • to allow students to develop the understanding necessary to identify new and emerging research needs in the emerging quantum technology industry;
  • to enable students to develop the knowledge and skills required to independently undertake a significant research project of relevance to the quantum technology industry including users of quantum technology.

Employability

This programme is a unique opportunity to acquire translational skills, including specific skills of relevance to the emerging quantum technology industry. The UK National Quantum Technology Hub in Sensors is actively engaged with a growing number of industry partners, currently standing at 70 companies from various sectors of the economy. Industry secondments to our partners will foster career prospects.



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics



Read less
This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more

This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise linked with world-leading research.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing. 

The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

With access to some of the leading physics departments in the world, there is a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

  • The course offers an incomparably wide range of options.
  • Royal Holloway's Physics Department has strong links with leading international facilities, including Rutherford Appleton and National Physical Laboratory, Oxford Instruments, CERN, ISIS and Diamond. 
  • We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Course structure

Year 1

All modules are optional

Year 2

  • Major Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

You will take six from the following:

  • Lie Groups and Lie Algebras
  • Quantum Theory
  • Statistical Mechanics
  • Phase Transitions
  • Advanced Quantum Theory
  • Advanced Topics in Statistical Mechanics
  • Relativistic Waves and Quantum Fields
  • Advanced Quantum Field Theory
  • Functional Methods in Quantum Field Theory
  • Advanced Topics in Classical Field Theory
  • Formation and Evolution of Stellar Clusters
  • Advanced Physical Cosmology
  • Atom and Photon Physics
  • Advanced Photonics
  • Quantum Computation and Communication
  • Quantum Electronics of Nanostructures
  • Molecular Physics
  • Particle Physics
  • Particle Accelerator Physics
  • Modelling Quantum Many-Body Systems
  • Order and Excitations in Condensed Matter
  • Theoretical Treatments of Nano-Systems
  • Physics at the Nanoscale
  • Electronic Structure Methods
  • Computer Simulation in Condensed Matter
  • Superfluids, Condensates and Superconductors
  • Advanced Condensed Matter
  • Standard Model Physics and Beyond
  • Nuclear Magnetic Resonance
  • Statistical Data Analysis
  • String Theory and Branes
  • Supersymmetry
  • Stellar Structure and Evolution
  • Cosmology
  • Relativity and Gravitation
  • Astroparticle Cosmology
  • Electromagnetic Radiation in Astrophysics
  • Planetary Atmospheres
  • Solar Physics
  • Solar System
  • The Galaxy
  • Astrophysical Plasmas
  • Space Plasma and Magnetospheric Physics
  • Extrasolar Planets and Astrophysical Discs
  • Environmental Remote Sensing
  • Molecular Biophysics
  • Cellular Biophysics
  • Theory of Complex Networks
  • Equilibrium Analysis of Complex Systems
  • Dynamical Analysis of Complex Systems
  • Mathematical Biology
  • Elements of Statistical Learning

Year 2

Only core modules are taken.

Teaching & assessment

This high quality European Masters programme follows the European method of study and involves a year of research working on pioneering projects.

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Your future career

This course equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD. 

On completion of the course graduates will have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline a comprehensive understanding of techniques applicable to their own research or advanced scholarship originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance.



Read less
The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques. Read more

The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation. 

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as part of a group.

The Astronomy and Space Physics track includes a solid grounding in theoretical aspects as well as providing opportunities for observational studies (e.g. of supernovae or accreting black holes); the space physics group performs experimental, theoretical and computational research on high-energy phenomena in near-Earth space.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Competence description

The Master of Science degree provides the skills to work in many different kinds of positions within areas such as research and development, education and management, and industry. The specialisations of Astronomy and Space Physics provide very good data analysis and programming skills, and thus many graduates have gone on to successful careers in the big data and finance sectors

During the master’s program in astronomy and space physics, you will study plasma physics and hydrodynamics, radiative processes, high-energy astrophysics and solar physics, galaxies and cosmology, astrophysical spectroscopy, radio astronomy and X-ray and gamma-ray astronomy, numerical techniques and programming, statistical methods and particle and photons detectors. You will carry-out hands-on exercises in observational techniques, space instrumentation, and analysis of large data sets. You will also be able to remotely use modern observational facilities and to participate in building space-qualified instruments. You may choose among three lines: space physics, observational astrophysics and theoretical astrophysics. These studies will prepare you for a career in research and development in industry or can often lead into PhD studies.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Many of our graduates choose to continue their education by pursuing PhD studies in Finland or other European countries (e.g., Belgium, Estonia, Germany and Norway). Others have obtained employment in the software and high-tech industries, for example.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
The new Master in Engineering Physics of the Technical University of Barcelona- BarcelonaTech offers a one year intensive program in Engineering Physics. Read more

The new Master in Engineering Physics of the Technical University of Barcelona- BarcelonaTech offers a one year intensive program in Engineering Physics. We cover topics of Physics at the forefront of new technologies ranging from the nanotechnology to the emerging field of quantum technologies. To this end, the Master includes advanced courses on Statistical and Quantum Physics, Physics and Engineering of large facilities such as the synchrotron, and pathways to the physics of complexity in different areas. The Master is addressed to an international audience and thus it is conducted in English. 

Professional opportunities

At the beginning of the XXI century a new kind of engineering is emerging, as the Key Enabling Technologies of the European Union put forward recently. A new kind of professionals starts now to be needed for working in cutting-edge engineering. Our Master in Engineering Physics is intended to provide new generations with enough knowledge on Physics to capacitate them for working in wide areas, ranging from nanoengineering and nanoelectronics to quantum technologies.

Career prospects may include the following:

  • Achieving a doctoral degree in applied physics, materials, quantum many-body systems, numerical simulation, astrophysics, etc.
  • Participating in doctoral programs, R&D and innovation programs in companies, basic or applied research centers and universities.
  • Joining a company as a consultant or engineer on advanced topics which require advanced knowledge of Physics.
  • Working in highly specialized technical positions for controlling services such as the synchrotron, neutron sources, specialized instrumentation, etc.
  • Participating in (and promoting) spin-offs and other small technology-based companies.
  • Joining the education system for high-level training in the field of applied and fundamental physics.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

  • Ability for solving problems in Physics and Engineering using advanced numerical tools, with a proper analysis of stability, accuracy and computational cost.
  • Knowledge of the properties of matter at the nanoscale, the optimal methods for synthesis of nanomaterials and their applications in nanotechnology.
  • To be able of determining the structure of matter and its properties at atomic and molecular level.
  • Knowledge of the main functional and structural applications of materials. Influence of the dimensionality. Ability of selecting the best materials for specific applications in Engineering.
  • Knowledge of complexity in different physical phenomena and at different scales.
  • Knowledge of large facilities in physics such as the synchrotron and neutron sources and their possible ranges of applicability to measure properties of materials.
  • Ability of managing with big sets of data using advance technologies such as machine learning.
  • Capacity of proposing new projects in science/technology and assuming their leadership. 


Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
Materials Physics is one of the four specialisation tracks of the Master’s Degree Programme in Physical and Chemical Sciences. Read more

Materials Physics is one of the four specialisation tracks of the Master’s Degree Programme in Physical and Chemical Sciences. The other tracks of the programme are Astronomy and Space Physics, Materials Chemistry, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including experimental, theoretical and numerical techniques to produce and analyse new physical projects.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation. 

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as part of a group.

In the University of Turku, the research and teaching of materials physics has as two focal areas bio- and electronic materials. In biomaterials, you can study e.g. pharmaceutical vectors, nanoporous materials in pharmaceutics and dissociation of DNA-molecules under radiation. In electronics materials, possible topics include semiconducting, magnetic and superconducting materials, spintronics and nanocontacts. You will study the physical basis of current and future electronics.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Recent examples of thesis titles in materials physics have been:

  • Self-organised artificial pinning structure in small-scale YBCO films grown on an advanced IBAD-MgO based template
  • Fabrication and characterisation of resistive memories based on Pr6Ca0.4MnO3
  • Photoluminescence of thermally carbonized and wet-oxidized porous silicon
  • Physical and chemical characterisation methods for metal powders used for additive manufacturing process
  • Surface properties of GaN- and AlGaN-semiconductors and their modification
  • Geometric corrections in computer tomography images
  • Mass spectroscopy investigation of fragmentation of uridine and cytidine molecules

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Our recent MSc’s work e.g. as quality managers in large companies, R&D engineers in biotech and materials companies, security engineers at nuclear power plants.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less

Show 10 15 30 per page



Cookie Policy    X