• University of Edinburgh Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
University of Bradford Featured Masters Courses
University of Birmingham Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
"quantum" AND "optics"×
0 miles

Masters Degrees (Quantum Optics)

  • "quantum" AND "optics" ×
  • clear all
Showing 1 to 15 of 32
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Cold Atoms and Quantum Optics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Cold Atoms and Quantum Optics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Cold Atoms and Quantum Optics enables students to pursue a one year individual programme of research. The Cold Atoms and Quantum Optics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Cold Atoms and Quantum Optics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate Cold Atoms and Quantum Optics student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

Degree information

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research project with a dissertation/report (60 credits).

Core modules
-Advanced Quantum Theory
-Atom and Photon Physics
-Quantum Communication and Computation
-Research Case Studies for Quantum Technologies
-Transferable Skills in Research Case Studies for Quantum Technologies

Optional modules - students choose three of the following optional modules:
-Advanced Photonic Devices
-Introduction to Cryptography
-Nanoelectronic Devices
-Nanoscale Processing for Advanced Devices
-Optical Transmission and Networks
-Order and Excitations in Condensed Matter
-Physics and Optics of Nano-Structures
-Research Computing with C++
-Research Software Engineering with Python

Dissertation/report
All students undertake an independent research project (experimental or theoretical) related to quantum technologies, which culminates in a presentation and a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability
Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.

Read less
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. You can choose classes relevant to your career interests from a wide range of topics including. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:
- high-power microwave technology
- laser-based particle acceleration and enabled applications
- physics and the life sciences
- materials and solid state physics
- photonics
- quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:
- cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to - the X-ray region, and biomedical applications
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high-performance and parallel computer facilities
- state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs
- several labs researching optical spectroscopy and sensing

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

- Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application. Read more

Why this course?

The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application.

Our four divisions – Nanoscience, Optics, Plasmas and the Institute of Photonics – all contribute research-based teaching expertise to the course. You can choose taught elements relevant to your career interests from a wide range of topics, including:
- theoretical & computational physics
- quantum optics and quantum information
- complexity science
- physics and the life sciences
- solid-state physics
- plasma physics

The knowledge you gain in the taught components is then put to use in a cutting-edge research project, which can be theoretical, computational or experimental.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

- Facilities
This course is run by the Department of Physics. The department’s facilities include:
- cutting-edge high-power laser research with SCAPA, researching the future of particle accelerators via laser-based acceleration
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- access to the top-of-the-range high performance and parallel computer facilities of ARCHIE-WeSt
- a scanning electron microscopy suite for analysis of hard and soft matter
- new high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs

English language

IELTS 6.0 is required for all non-English speakers.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral examination.

Careers

A Masters degree in physics prepares you for a wide and versatile range of careers in science and engineering as well as all areas of management, financial services, etc. Many graduates proceed to a PhD.

Strathclyde physics graduates are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorneys
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century. Read more

Why this course?

The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century.

The course is based on the strong record of optical technologies across research divisions in the department of physics and the collaborating institutions:
- Optics Division (Physics)
- Plasma Division (Physics)
- Nanoscience Division (Physics)
- Institute of Photonics
- Centre for Biophotonics
- Department of Electronic & Electrical Engineering

You can choose classes relevant to your career interests from a wide range of topics including:
- photonics and photonic materials
- nanosciences
- optics at the physics-life sciences interface
- laser-based plasma physics
- quantum optics and quantum information technology

You’ll put the knowledge gained in the taught components to use in a cutting-edge research project.

The course gives you the opportunity of exploring and mastering a large range of optical technologies. It enables you to put devices in the context of an optical system and/or application.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/opticaltechnologies/

Who’s the course suitable for?

It’s suitable for those with a science or engineering background wanting to gain a vocational degree or to obtain a solid foundation for an optics-related PhD programme.

It’s also appropriate for those who’ve worked in industry and want to consolidate their future career by further academic studies.

You’ll study

The course consists of two semesters of taught classes followed by a three- month research project.

Facilities

This course is run by the Department of Physics. The department’s facilities include:
- well-equipped optical labs for semiconductor photonics, semiconductor spectroscopy and fluorescence lifetime analysis.
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- cutting edge high power laser research with SCAPA, the highest power laser in a UK university
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high performance computer facilities
- industry standard cleanroom in the Institute of Photonics

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The assessment includes written examinations, coursework, presentations and a talk, oral examination and report presenting and defending the research project.

Careers

The course gives you a thorough basis for a successful job in the photonics, optical and life sciences industries. It provides the basis to excel in more interesting and challenging posts.
The course can also be an entry route into an optics-related PhD programme.
Over the years, many of Strathclyde’s optics and photonics graduates have found successful employment at the large variety of local laser and optics companies as well as with national and international corporations.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
High-level training in statistics and the modelling of random processes for applications in science, business or health care. Read more
High-level training in statistics and the modelling of random processes for applications in science, business or health care.

For many complex systems in nature and society, stochastics can be used to efficiently describe the randomness present in all these systems, thereby giving the data greater explanatory and predictive power. Examples include statistical mechanics, financial markets, mobile phone networks, and operations research problems. The Master’s specialisation in Applied Stochastics will train you to become a mathematician that can help both scientists and businessmen make better decisions, conclusions and predictions. You’ll be able to bring clarity to the accumulating information overload they receive.

The members of the Applied Stochastics group have ample experience with the pure mathematical side of stochastics. This area provides powerful techniques in functional analysis, partial differential equations, geometry of metric spaces and number theory, for example. The group also often gives advice to both their academic colleagues, and organisations outside of academia. They will therefore not only be able to teach you the theoretical basis you need to solve real world stochastics problems, but also to help you develop the communications skills and professional expertise to cooperate with people from outside of mathematics.

See the website http://www.ru.nl/masters/mathematics/stochastics

Why study Applied Stochastics at Radboud University?

- This specialisation focuses both on theoretical and applied topics. It’s your choice whether you want to specialise in pure theoretical research or perform an internship in a company setting.
- Mathematicians at Radboud University are expanding their knowledge of random graphs and networks, which can be applied in the ever-growing fields of distribution systems, mobile phone networks and social networks.
- In a unique and interesting collaboration with Radboudumc, stochastics students can help researchers at the hospital with very challenging statistical questions.
- Because the Netherlands is known for its expertise in the field of stochastics, it offers a great atmosphere to study this field. And with the existence of the Mastermath programme, you can follow the best mathematics courses in the country, regardless of the university that offers them.
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that you’ll get plenty of one-on-one time with your thesis supervisor at Radboud University .
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating.

Career prospects

Master's programme in Mathematics

Mathematicians are needed in all industries, including the banking, technology and service industries, to name a few. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad and is the reason why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Applied Stochastics Department, focuses on combinatorics, (quantum) probability and mathematical statistics. Below, a small sample of the research our members pursue.

Eric Cator’s research has two main themes, probability and statistics.
1. In probability, he works on interacting particles systems, random polymers and last passage percolation. He has also recently begun working on epidemic models on finite graphs.
2. In statistics, he works on problems arising in mathematical statistics, for example in deconvolution problems, the CAR assumption and more recently on the local minimax property of least squares estimators.

Cator also works on more applied problems, usually in collaboration with people from outside statistics, for example on case reserving for insurance companies or airplane maintenance. He has a history of changing subjects: “I like to work on any problem that takes my fancy, so this description might be outdated very quickly!”

Hans Maassen researches quantum probability or non-commutative probability, which concerns a generalisation of probability theory that is broad enough to contain quantum mechanics. He takes part in the Geometry and Quantum Theory (GQT) research cluster of connected universities in the Netherlands. In collaboration with Burkhard Kümmerer he is also developing the theory of quantum Markov chains, their asymptotic completeness and ergodic theory, with applications to quantum optics. Their focal point is shifting towards quantum information and control theory, an area which is rapidly becoming relevant to experimental physicists.

Ross Kang conducts research in probabilistic and extremal combinatorics, with emphasis on graphs (which abstractly represent networks). He works in random graph theory (the study of stochastic models of networks) and often uses the probabilistic method. This involves applying probabilistic tools to shed light on extremes of large-scale behaviour in graphs and other combinatorial structures. He has focused a lot on graph colouring, an old and popular subject made famous by the Four Colour Theorem (erstwhile Conjecture).

See the website http://www.ru.nl/masters/mathematics/stochastics

Read less
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. Read more
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. The OEPE program has both theoretical and experimental research activities. The graduates of the OEPE program will work at frontiers of technology with a broad spectrum of application areas: from automotive and home lighting to information and communications, from life sciences and health to displays, from remote sensing to nondestructive diagnostics, and from material processing to photovoltaics. Individuals with B.S. degrees in electrical and electronic engineering, optics, optoelectronics, physics, and related science and engineering disciplines should apply for graduate study in the OEPE Program.

Current faculty projects and research interests:

• 2D/3D Displays and Imaging Systems
• Advanced Signal Processing
• Femtosecond Lasers
• Metamaterials
• Microwaves
• Nano-optics
• Optical Communication
• Optical MEMS
• Plasma Physics
• Plasmonics
• Quantum Communication
• Quantum Optics
• Remote Sensing
• Silicon Photonics
• Solid State Lasers

Read less
Physics has always remained and still is at the center of science and technology. The laws of physics that are reached through observations and careful experimentation find applications from the subatomic particles to the astronomic formations such as stars and galaxies. Read more
Physics has always remained and still is at the center of science and technology. The laws of physics that are reached through observations and careful experimentation find applications from the subatomic particles to the astronomic formations such as stars and galaxies. On the other hand, design of advanced technology materials, fabrication of semiconductor devices, the development of optical communication systems have all evolved as applications of physics. Our department has both theoretical and experimental research activites. Quantum information theory, gravitation and condensed matter physics are among our theoretical research interests. On the experimental research side, we have three advanced laboratories where we focus on solid state lasers, optoelectronic and nano-photonic materials and devices. Our M. S. Program aims at teaching fundamental physics at a high level and coupling this knowledge with a research experience in either theoretical or applied physics depending on the interests of the student.

Current faculty projects and research interests:

• Photonic and Laser Materials
• Microphotonics
• Nanophotonics
• Gravitation, Cosmology, and Numerical Relativity
• Mathematical Physics
• Quantum Mechanics and Quantum Information Theory
• Theoretical High Energy Physics
• Quantum Optics, atomic, molecular and optical physics
• Statistical mechanics of biophysical systems

Read less
The Department of Physics offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees. The department carries out research in experimental and theoretical physics in the following fields. Read more
The Department of Physics offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees. The department carries out research in experimental and theoretical physics in the following fields: atmospheric physics, geophysics, quantum optics, condensed matter physics, subatomic physics and astrophysics, and biological physics. The department has close ties with the Canadian Institute for Theoretical Astrophysics (CITA). This association enables our students to work and consult with leading theorists who are appointed to, or who are visiting, CITA.

Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more
Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.
- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.
- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.
- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:
1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.
2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Read less
This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
-research and grant writing skills, which are valuable in both academic and commercial settings
-project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
-topics in photonics, covering laser physics, laser optics and non-linear optics
-optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
-photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
-advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
-system engineering and electronic control which forms a key part of modern optical systems
-photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities:
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:
-the Department of Physics here at Strathclyde
-the Institute of Photonics
-the Fraunhofer Centre for Applied Photonics

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Guest lectures

You'll attend the seminar series of the Institute of Photonics and Fraunhofer Centre of Applied Photonics with distinguished guest speakers giving a first-hand overview of the rapid development in applied photonics research.

Learning & teaching

In semesters one and two, the course involves:
-lectures
-tutorials
-various assignments including a literature review
-workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:
-written examinations
-marked homework consisting of problems and/or essay assignments
-presentations

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

How can I fund my course?

Financial support for Scottish and EU students may be available on a case-by-case basis which will be supported by the industrial partners. Selection will be based on an excellent academic record and/or industrial experience and the promise of a successful career in Industrial Photonics.

Please indicate that you apply for such a scholarship in the "Funding" section of the application form. You'll also need to provide a CV and a statement explaining your interests and motivation with your application. This will inform the decision on a possible scholarship.

For more information, just get in touch with the Department of Physics.

Available scholarships:
We currently have a scholarship available for this course.

You must be able to demonstrate academic excellence based on your previous study along with the promise of a successful career in Industrial Photonics. Relevant previous industrial experience will be considered.

Deadline:
The first round of applications closes on 20th May 2016, and a second one will close on the 30th June 2016.

How to apply:
Apply for this scholarship via our scholarship search: https://www.strath.ac.uk/studywithus/scholarships/sciencescholarships/physicsscholarships/physicsindustrialphotonicsscholarships/

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key:
Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study:
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles:
Our Physics graduates from photonics related courses have found employment in a number of different roles including:

-Medical Physicist
-Optical engineer
-Laser engineer
-Optical and laser production engineer
-Research and production engineer
-Senior Engineer
-Systems Engineer
-Software Engineer
-Spacecraft Project Manager
-Defence Scientist
-Oscar winner

Read less
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist. Read more
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist.

Why this programme

-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
-The School plays a leading role in the exploitation of data from the Large Hadron Collider, the world’s largest particle accelerator at CERN.
-With a 93% overall student satisfaction in the National Student Survey 2014, the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-You will gain the theoretical and computational skills necessary to analyse and solve a range of advanced physics problems, providing an excellent foundation for a career of scientific leadership in academia or industry.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc in Theoretical Physics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the area of theoretical physics.

Core courses include
-Advanced data analysis
-Quantum information
-Quantum theory
-Research skills
-Extended project

Optional courses include
-Advanced electromagnetic theory
-Advanced mathematical methods
-Applied optics
-Dynamics, electrodynamics and relativity
-General relativity and gravitation (alternate years, offered 2016-17)
-Plasma theory and diagnostics (alternate years, offered 2015-16)
-Relativistic quantum fields
-Statistical mechanics

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-grad-dip.aspx

Course detail

- Description -

Students will undertake a total of 120 credits, from the following modules:

- Mathematical Methods in Physics III
- Statistical Mechanics
- Spectroscopy and Quantum Mechanics
- Particle Physics
- Optics
- Solid State Physics
- General Relatvity and Cosmology
- Fundamentals of Biophysics and Nanotechnology
- Introduction to Medical Imaging
- Laboratory Physics II
- Computational Lab
- Nuclear Physics
- Quantum Mechanics for Physics I
- Mathematical methods in Physics
- Symmetry in Physics
- Electromagnetism
- Astrophysics

- Course purpose -

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

- Course format and assessment -

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career prospects

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X