• University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Durham University Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"quantum" AND "mechanics"…×
0 miles

Masters Degrees (Quantum Mechanics)

We have 50 Masters Degrees (Quantum Mechanics)

  • "quantum" AND "mechanics" ×
  • clear all
Showing 1 to 15 of 50
Order by 
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Master's specialisation in Physics of Molecules and Materials. Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies. Read more

Master's specialisation in Physics of Molecules and Materials

Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies.

As a scientist, you’re a problem solver. But how do you tackle a problem when there are no adequate theories and calculations become far too complicated? In the specialisation in Physics of Molecules and Materials you’ll be trained to take up this challenge in a field of physics that is still largely undiscovered: the interface between quantum and classical physics.

We focus on systems from two atoms to complete nanostructures, with time scales in the order of femtoseconds, picoseconds or nanoseconds. One of our challenges is to understand the origin of phenomena like superconductivity and magnetism. As theory and experiment reinforce each other, you’ll learn about both ‘research languages’. In this way, you’ll be able to understand complex problems by dividing them into manageable parts.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Why study Physics of Molecules and Materials at Radboud University?

- At Radboud University there’s a strong connection between theory and experiment. Theoretical and experimental physicists will teach you to become acquainted with both methods.

- In your internship(s), you’ll have the opportunity to work with unique research equipment, like free electron lasers and high magnetic fields, and with internationally known scientists.

- We collaborate with several industrial partners, such as Philips and NXP. This extensive network can help you find an internship or job that meets your interests.

If you’re successful in your internship, you have a good chance of obtaining a PhD position at the Institute for Molecules and Materials (IMM).

Admission requirements for international students

1. A completed Bachelor's degree in Physics

2. A proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of ≥575 (paper based) or ≥90 (internet based

- An IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university or at a company. However, many of our students end up in business as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

- Solve complex problems

- Make accurate approximations

- Combine theory and experiments

- Work with numerical methods

Graduates have found jobs as for example:

- Consultant Billing at KPN

- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)

- Systems analysis engineer at Thales

- Technical consultant at UL Transaction Security

- Business analyst at Capgemini

PhD positions

At Radboud University, we’re capable of offering many successful students in the field of Physics of Molecules and Materials a PhD position. Many of our students have already attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In this specialisation, you’ll discover the interface between quantum mechanics and the classical world, which is still a ‘terra incognita’. We focus on two-atom systems, multi-atom systems, molecules and nanostructures. This is pioneering work, because these systems are often too complex for quantum calculations and too small for the application of classical theories.

- Theory and experiment

At Radboud University, we believe that the combination of theory and experiments is the best way to push the frontiers of our knowledge. Experiments provide new knowledge and data and sometimes also suggest a model for theoretical studies. The theoretical work leads to new theories, and creative ideas for further experiments. That’s why our leading theoretical physicists collaborate intensively with experimental material physicists at the Institute for Molecules and Materials (IMM). Together, they form the teaching staff of the Master’s specialisation in Physics of Molecules and Materials.

- Themes

This specialisation is focused on two main topics:

- Advanced spectroscopy

Spectroscopy is a technique to look at matter in many different ways. Here you’ll learn the physics behind several spectroscopic techniques, and learn how to design spectroscopic experiments. At Radboud University, you also have access to large experimental infrastructure, such as the High Magnetic field Laboratory (HFML), the FELIX facility for free electron lasers and the NMR laboratory.

- Condensed matter and molecular physics

You’ll dive into material science at the molecular level as well as the macroscopic level, on length scales from a single atom up to nanostructure and crystal. In several courses, you’ll get a solid background in both quantum mechanical and classical theories.

- Revolution

We’re not aiming at mere evolution of current techniques, we want to revolutionize them by developing fundamentally new concepts. Take data storage. The current data elements are near the limits of speed and data capacity. That’s why in the IMM we’re exploring a completely new way to store and process data, using light instead of electrical current. And this is but one example of how our research inspires future technology. As a Master’s student you can participate in this research or make breakthroughs in a field your interested in.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Radboud University Master's Open Day 10 March 2018



Read less
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. Read more
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. The department emphasizes both pure and applied mathematics. Research in the department covers algebra, number theory, combinatorics, differential equations, functional analysis, abstract harmonic analysis, mathematical physics, stochastic analysis, biomathematics and topology.

Current faculty projects and research interests:

• Ring Theory and Module Theory, especially Krull dimension, torsion theories, and localization

• Algebraic Theory of Lattices, especially their dimensions (Krull, Goldie, Gabriel, etc.) with applications to Grothendieck categories and module categories equipped with torsion theories

• Field Theory, especially Galois Theory, Cogalois Theory, and Galois cohomology

• Algebraic Number Theory, especially rings of algebraic integers

• Iwasawa Theory of Galois representations and their deformations Euler and Kolyvagin systems, Equivariant Tamagawa Number
Conjecture

• Combinatorial design theory, in particular metamorphosis of designs, perfect hexagon triple systems

• Graph theory, in particular number of cycles in 2-factorizations of complete graphs

• Coding theory, especially relation of designs to codes

• Random graphs, in particular, random proximity catch graphs and digraphs

• Partial Differential Equations

• Nonlinear Problems of Mathematical Physics

• Dissipative Dynamical Systems

• Scattering of classical and quantum waves

• Wavelet analysis

• Molecular dynamics

• Banach algebras, especially the structure of the second Arens duals of Banach algebras

• Abstract Harmonic Analysis, especially the Fourier and Fourier-Stieltjes algebras associated to a locally compact group

• Geometry of Banach spaces, especially vector measures, spaces of vector valued continuous functions, fixed point theory, isomorphic properties of Banach spaces

• Differential geometric, topologic, and algebraic methods used in quantum mechanics

• Geometric phases and dynamical invariants

• Supersymmetry and its generalizations

• Pseudo-Hermitian quantum mechanics

• Quantum cosmology

• Numerical Linear Algebra

• Numerical Optimization

• Perturbation Theory of Eigenvalues

• Eigenvalue Optimization

• Mathematical finance

• Stochastic optimal control and dynamic programming

• Stochastic flows and random velocity fields

• Lyapunov exponents of flows

• Unicast and multicast data traffic in telecommunications

• Probabilistic Inference

• Inference on Random Graphs (with emphasis on modeling email and internet traffic and clustering analysis)

• Graph Theory (probabilistic investigation of graphs emerging from computational geometry)

• Statistics (analysis of spatial data and spatial point patterns with applications in epidemiology and ecology and statistical methods for medical data and image analysis)

• Classification and Pattern Recognition (with applications in mine field and face detection)

• Arithmetical Algebraic Geometry, Arakelov geometry, Mixed Tate motives

• p-adic methods in arithmetical algebraic geometry, Ramification theory of arithmetic varieties

• Topology of low-dimensional manifolds, in particular Lefschetz fibrations, symplectic and contact structures, Stein fillings

• Symplectic topology and geometry, Seiberg-Witten theory, Floer homology

• Foliation and Lamination Theory, Minimal Surfaces, and Hyperbolic Geometry

Read less
This masters course reflects the University of Sheffield's exceptional expertise in particle physics. Our researchers were part of the Higgs boson discovery and they continue to work on projects at the Large Hadron Collider at CERN, which some of our students get the chance to visit. Read more
This masters course reflects the University of Sheffield's exceptional expertise in particle physics. Our researchers were part of the Higgs boson discovery and they continue to work on projects at the Large Hadron Collider at CERN, which some of our students get the chance to visit. Sheffield is also home to researchers who are leading the way in, for example:

neutrino detection as part of the T2K collaboration
gravitational waves detection as part of the Advanced LIGO collaboration
dark matter experiments as part of the LUK-Zeplin experiment at Sanford Underground Research Facility and the DRIFT programme at Boulby Underground Laboratory
Our staff are supported by the UK Science and Technology Facility Council, the European Research Council, the Royal Society and Innovate-UK.

This one-year research degree is your chance to join us in unravelling some of the greatest mysteries in modern physics.

Core modules

Further Quantum Mechanics
Advanced Electromagnetism
Dark Matter and the Universe
The Development of Particle Physics
Research Skills in Physics
Research Project in Physics – this accounts for half of your final grade

Examples of optional modules

Advanced Particle Physics
Introduction to General Relativity
Particle Astrophysics
Advanced Quantum Mechanics
Physics in an Enterprise Culture
Semiconductor Physics and Technology
Statistical Physics

Teaching

Teaching is through lectures, research seminars, small group tutorials and oral presentation.

Your supervisor will help you develop your research skills and support you as you work on your research project.

Assessment

Assessment includes: a project report, literature review, oral presentations, including a viva, formal examinations and short reports and essays.

Read less
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing. Read more
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing.

This course brings together our expertise in quantum photonics and nanomaterials. There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Our staff are at the forefront of technological advances. We work with support from the UK Engineering and Physical Sciences Research Council, European Research Council and the Horizon 2020 programme, the Royal Society, the Leverhulme Trust and the British Council as well as CONACyT, the National Council of Science and Technology in Mexico.

Our department attracts postgraduate students from around the world.

Core modules

Optical Properties of Solids
Semiconductor Physics and Technology
Advanced Electromagnetism
Solid State Physics
Research Skills in Physics
Research Project in Physics

Examples of optional modules

Magnetic Resonance: Principles and Applications
Physics in an Enterprise Culture
The Physics of Soft Condensed Matter
Statistical Physics
Advanced Quantum Mechanics
Further Quantum Mechanics
Biological Physics

Teaching

Teaching is through lectures, research seminars, small group tutorials and oral presentation.

Your supervisor will help you develop your research skills and support you as you work on your research project.

Assessment

Assessment includes: a project report, literature review, oral presentations, including a viva, formal examinations and short reports and essays.

Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
A LONG-TERM PERSPECTIVE ON SCIENCE AND SOCIETY. The Master’s programme in the. History and Philosophy of Science. (HPS) offers a unique opportunity to study the foundations, practices, and culture of the sciences and humanities from a historical and philosophical perspective. Read more

A LONG-TERM PERSPECTIVE ON SCIENCE AND SOCIETY

The Master’s programme in the History and Philosophy of Science (HPS) offers a unique opportunity to study the foundations, practices, and culture of the sciences and humanities from a historical and philosophical perspective. Our two-year research programme addresses the historical development of scientific thought and practice with a broad approach that investigates the interplay of science or the humanitites with cultural, social, and institutional factors. Students will also learn to analyse the structure and concepts of theories such as relativity, quantum mechanics, evolution, and modern genetics.

HPS has twice been judged ´best in category´ by the national Master guide (Keuzegids Masters): in the category ‘Science and Policy’ (Bèta en Beleid, 2012) and in the category ‘Philosophy’ (Wijsbegeerte, 2013).

CURRICULUM

The curriculum covers courses on selected subjects in:

  • History of Science or the Humanities
  • Philosophy of Science or the Humanities
  • Foundations of Physics
  • Foundations of Mathematics and Logic

PROGRAMME OBJECTIVE

The general aim of the Master’s programme HPS is to offer you a thorough training in the history and/or philosophy or foundations of the sciences and humanities. You'll learn to develop and research historical or philosophical research questions. You will be educated in developing a professional attitude which enables you to enroll in a PhD programme in the HPS field, or start (on the job training) for a career in science education and communication, in museums, in science policy or science management.



Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more

The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

About this degree

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules

All students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.

  • Literature Project

Optional modules

Students choose four optional modules from the following:

  • Advanced Topics in Energy Science and Materials
  • Advanced Topics in Physical Chemistry
  • Biological Chemistry
  • Concepts in Computational and Experimental Chemistry
  • Frontiers in Experimental Physical Chemistry
  • Inorganic Rings, Chains and Clusters
  • Intense Radiation Sources in Modern Chemistry
  • Microstructural Control in Materials Science
  • Numerical Methods in Chemistry
  • Pathways, Intermediates and Function in Organic Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Simulation Methods in Materials Chemistry
  • Stereochemical Control in Asymmetric Total Synthesis
  • Structural Methods in Modern Chemistry
  • Synthesis and Biosynthesis of Natural Products
  • Topics in Quantum Mechanics
  • Transferable Skills for Scientists

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Further information on modules and degree structure is available on the department website: Chemical Research MSc

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Recent career destinations for this degree

  • Project Manager, Jiang Clinic
  • Secondary School Teacher (Chemistry), Loyang Secondary School
  • PhD in Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Degree. Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics. Teaching language. Read more

Degree: Master of Science (two years) with a major in Applied Physics or Master of Science (two years) with a major in Physics

Teaching language: English

The Material Physics and Nanotechnology master's programme provides students with specialist knowledge in the area of new materials. Huge advances in modern technology and products in recent decades have to a large extent relied on developments in this field.

The importance of advanced materials in today’s technology is best exemplified by the highly purified semiconductor crystals that are the basis of the electronic age. Future implementations and applications of materials in electronics and photonics involve such subjects as nano-scale physics, molecular electronics and non-linear optics.

With support from internationally competitive research activities in materials physics at Linköping University, the programme has been established with distinct features that offer students high‑level interdisciplinary education and training in fundamental solid state physics and materials science within the following areas:

  • Electronic materials and devices
  • Surface and nano-sciences
  • Theory and modelling of materials
  • Organic/molecular electronics and sensors.

Advanced equipment training

The programme emphasises the comprehension of scientific principles and the development of personal and professional skills in solving practical engineering problems. Studies begin with mandatory courses, including nanotechnology, quantum mechanics, surface physics and the physics of condensed matter, in order to provide students with a solid knowledge foundation for modern materials science and nanotechnology. Moreover, through courses in experimental physics and analytical methods in materials science, students gain extensive training in operating the advanced instruments and equipment currently used in the research and development of new materials.

In-depth CDIO courses

A variety of elective courses is offered from the second term onwards, many of them involving the use of cutting-edge technology. These courses give students a broad perspective of today’s materials science research and links to applications in semiconductor technology, optoelectronics, bioengineering (biocompatibility), chemical sensors and biosensors, and mechanical applications for high hardness and elasticity. Students will also be instructed through in-depth CDIO (Conceive – Design – Implement – Operate) project courses, to develop abilities in creative thinking and problem solving.

Students complete a thesis project in the area of materials science and nanotechnology, either with an in-house research group or the industry.



Read less
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. Read more
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure
The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules
- Introductory Field Theory
- Group Theory
- Standard Model
- General Relativity
- Quantum Electrodynamics
- Quantum Field Theory
- Conformal Field Theory
- Supersymmetry
- Anomalies
- Strong Interaction Physics
- Cosmology
- Superstrings and D-branes
- Non-Perturbative Physics
- Euclidean Field Theory
- Flavour Physics and Effective Field Theory
- Neutrinos and Astroparticle Physics
- 2d Quantum Field Theory
- Optional Modules
- Differential Geometry for Physicists
- Boundaries and Defects in Integrable Field Theory
- Computing for Physicists.

For further information on this course, please visit the Centre for Particle Theory website (http://www.cpt.dur.ac.uk/GraduateStudies)

Read less
This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. Read more

This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure

The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of four weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either eight lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules

  • Introductory Field Theory
  • Group Theory
  • Standard Model
  • General Relativity
  • Quantum Electrodynamics
  • Quantum Field Theory
  • Conformal Field Theory
  • Supersymmetry
  • Anomalies
  • Strong Interaction Physics
  • Cosmology
  • Superstrings and D-branes
  • Non-Perturbative Physics
  • Euclidean Field Theory
  • Flavour Physics and Effective Field Theory
  • Neutrinos and Astroparticle Physics
  • 2d Quantum Field Theory.

Optional Modules available in previous years included:

  • Differential Geometry for Physicists
  • Boundaries and Defects in Integrable Field Theory
  • Computing for Physicists.

Course Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to bring students to the frontier of research in elementary particle theory.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The lectures begin with a general survey of particle physics and introductory courses on quantum field theory and group theory. These lead on to more specialised topics, amongst others in string theory, cosmology, supersymmetry and more detailed aspects of the standard model.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term they are supported by weekly tutorials. In addition lecturers also set a number of homework assignments which give the student a chance to test his or her understanding of the material.

There are additional optional lectures in the third term. These introduce advanced topics and are intended as preparation for research in these areas.

The dissertation must be submitted by mid-September, the end of the twelve month course period.



Read less
This course aims to bring you, in 12 months, to a position where you can embark with confidence on a wide range of careers, including taking a PhD in Mathematics or related disciplines. Read more

This course aims to bring you, in 12 months, to a position where you can embark with confidence on a wide range of careers, including taking a PhD in Mathematics or related disciplines. There is a wide range of taught modules on offer, and you will also produce a dissertation on a topic of current research interest taken from your choice of a wide range of subjects offered.

Course structure and overview

  • Six taught modules in October-May
  • A dissertation in June-September.

Modules: Six of available options

In previous years, optional modules available included:

Modules in Pure Mathematics:

  •  Algebraic Topology IV
  •  Analysis III and IV
  •  Codes and Cryptography III
  •  Differential Geometry III
  •  Galois Theory III
  •  Representation Theory III and IV
  •  Riemannian Geometry IV
  •  Topology III
  •  Topics in Algebra and Geometry IV

Modules in Probability and Statistics:

  •  Bayesian Statistics III and IV 
  •  Mathematical Finance III and IV
  •  Decision Theory III
  •  Operations Research III
  •  Statistical Methods III
  • Stochastic Processes III and IV

Modules in Applications of Mathematics:

  •  Advanced Quantum Theory IV
  •  Continuum Mechanics III and IV
  •  Dynamical Systems III
  •  General Relativity IV
  •  Mathematical Biology III 
  •  Partial Differential Equations III and IV
  •  Quantum Information III
  •  Quantum Mechanics III
  •  Solitons III and IV

Course Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to give the students a wide mathematical background allowing them to either proceed to PhD or to apply the gained knowledge in industry.

The course consists of three modules: the first two are the Michaelmas and Epiphany lecture courses covering variety of topics in pure and applied mathematics and statistics. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany), there are also two revision lectures in the third term (Easter). This part of the course is assessed by examinations. Students choose 6 modules, each module has 2 lectures per week and one fortnightly problems class. There are 10 teaching weeks in the Michaelmas term and 9 teaching weeks in Epiphany term. In addition lecturers also set a number of homework assignments which give the student a chance to test their understanding of the material.

The dissertation must be submitted by mid-September, the end of the twelve month course period 



Read less
This programme reflects and benefits from the strong research activities of the Department of Mathematics. The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups. Read more

This programme reflects and benefits from the strong research activities of the Department of Mathematics.

The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups:

  • Mathematics of Life and Social Sciences
  • Dynamical Systems and Partial Differential Equations
  • Fields, Strings and Geometry
  • Fluids, Meteorology and Symmetry

During the first two semesters you will take a range of taught modules from an extensive list of options, followed by an extended research project conducted over the summer under the supervision of a member of the department, culminating in the writing of a dissertation.

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Careers

Mathematics is not only central to science, technology and finance-related fields, but the logical insight, analytical skills and intellectual discipline gained from a mathematical education are highly sought after in a broad range of other areas such as law, business and management.

There is also a strong demand for new mathematics teachers to meet the ongoing shortage in schools. 

As well as being designed to meet the needs of future employers, our MSc programme also provides a solid foundation from which to pursue further research in mathematics or one of the many areas to which mathematical ideas and techniques are applied.

Educational aims of the programme

  • To provide graduates with a strong background in advanced mathematical theory and its applications to the solution of real problems
  • To develop students understanding of core areas in advanced mathematics including standard tools for the solution of real life applied mathematical problems
  • To develop the skill of formulating a mathematical problem from a purely verbal description
  • To develop the skill of writing a sophisticated mathematical report and, additionally, in presenting the results in the form of an oral presentation
  • To lay a foundation for carrying out mathematical research leading to a research degree and/or a career as a professional mathematician in an academic or non-academic setting

Programme learning outcomes

Knowledge and understanding

  • Knowledge of the core theory and methods of advanced pure and applied mathematics and how to apply that theory to real life problems
  • An in-depth study of a specific problem arising in a research context

Intellectual / cognitive skills

  • Ability to demonstrate knowledge of key techniques in advanced mathematics and to apply those techniques in problem solving
  • Ability to formulate a mathematical description of a problem that may be described only verbally
  • An understanding of possible shortcomings of mathematical descriptions of reality
  • An ability to use software such as MATLAB and IT facilities more generally including research databases such as MathSciNet and Web of Knowledge

Professional practical skills

  • Fluency in advanced mathematical theory
  • The ability to interpret the results of the application of that theory
  • An awareness of any weaknesses in the assumptions being made and of possible shortcomings with model predictions
  • The skill of writing an extended and sophisticated mathematical report and of verbally summarising its content to specialist and/or non-specialist audiences

Key / transferable skills

  • Ability to reason logically and creatively
  • Effective oral presentation skills
  • Written report writing skills
  • Skills in independent learning
  • Time management
  • Use of information and technology

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Television has helped revitalise the public interest in science and, as a secondary school teacher, you can also play your part in bringing physics to life for a new generation. Read more
Television has helped revitalise the public interest in science and, as a secondary school teacher, you can also play your part in bringing physics to life for a new generation. Your teaching, lessons and experiments can help to engage young minds and transform their understanding of the subject. Your inspirational teaching could also help break down barriers and tackle the gender bias in physics.

Developing your teaching ability will be our key aim. You will be encouraged to think creatively in order to spark your pupils' interest in gravity, astronomy and quantum mechanics. You will learn how to teach the story of physics to your students in a way that will fire their interest and shape their understanding of the world, focusing on key figures such as Newton, Einstein and Feynman.

A key part of your training will be learning how to take a constructivist approach to your teaching, whereby active learning is promoted and your pupils are encouraged to learn through problem solving and self-discovery.

You will learn how to maximise the potential of all your pupils by 'scaffolding' their learning and devising lesson plans for different abilities in your classroom.

This course is offered through our University.

You will develop your theoretical knowledge at our Headingley Campus, which offers a superb learning environment, modern facilities and excellent resources. Your learning will be informed by the very latest research and the expertise of our supportive teaching staff. We will organise your extensive school placements so you can apply your knowledge in a classroom setting and your placements will be timetabled to fit with your taught seminars on campus.

To view our full range of PGCEs, and for more information, please visit our teacher training pages (http://leedsbeckett.ac.uk/teach).

Visit the website http://courses.leedsbeckett.ac.uk/PGCE_physics

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

We're committed to helping you realise your career ambitions, which is why we place employability at the centre of your learning. Our fantastic links with industry enable us to design courses knowing exactly what employers are looking for, so you'll be well prepared for the world of work.

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

We have more than 100 years' experience of teacher training and you'll find an experienced course team ready to nurture your potential as a physics teacher. You will become part of a supportive teaching community, learning from fellow students and sharing ideas on lesson plans, classroom experiences and teaching tips.

Helping you develop your confidence, identity and teaching style through a critically reflective approach to your practice will be a fundamental element of your course.

To prepare you for your course, you will have the opportunity to attend a residential, where you will meet your tutors and fellow trainees, start to build your support networks and discover how the outdoors can be used to inspire your teaching.

You will gain substantial training in a school environment. Many of the partnership schools are located in and around Leeds, so your travelling will be limited and you will have more time to prepare your lessons. You will complete three teaching placements in at least two contrasting environments, receiving intensive support from your school mentor and University tutors.

You will benefit from the practical experience and theoretical knowledge of your lecturers. Many were school teachers and are now active in educational research.

We will provide on-going training for all newly qualified teachers. On successful completion of your course, you will be able to enrol on our Newly Qualified Teacher module, designed to support your development as you start your teaching career.

There's lots of support available to help you fund your teaching training. Depending on your degree class, the subject you want to teach and the training programme you follow, you could be eligible for a bursary, a scholarship or even a salary.

For more information, visit the National College for Teaching & Leadership website (https://getintoteaching.education.gov.uk/bursaries-and-funding).

Dr Tom Dobson

Senior Lecturer

"Training to teach at Leeds Beckett University gives you the best of both worlds. On campus, you will benefit from the expertise of our published academics; in schools and settings, you will learn from outstanding partner teachers."

Having taught English in secondary schools as well as undertaking writing projects in local primary schools, Tom completed his PhD which focused on boys’ writing during the transition stage from primary to secondary school. His thesis was recently published by Sense Academic Publishers.

Facilities

- School Practice Collection
Our School Practice Collection offers a wide range of journals, electronic resources and equipment selected specifically to help you prepare for your teaching practice.

- Library
Our Library is open 24/7, every day of the year. However you like to work, our Library has got you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Headingley Campus
Our historic Headingley Campus is set in nearly 100 acres of parkland and offers easy access to Leeds city centre.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X