• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
EURECOM Featured Masters Courses
Swansea University Featured Masters Courses
"quantum"×
0 miles

Masters Degrees (Quantum)

We have 145 Masters Degrees (Quantum)

  • "quantum" ×
  • clear all
Showing 1 to 15 of 145
Order by 
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. Read more

Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. The first phase of the UK National Quantum Technology initiative has received £350 million of government funding to create a flourishing industry in this area in the UK.

Four Quantum Technology Hubs have been established as flagship projects in this program. This postgraduate training programme is aligned with the UK National Quantum Technology Hub in Sensors and Metrology, an £80 million collaborative effort led by the University of Birmingham in partnership with the Universities of Glasgow, Nottingham, Southampton, Strathclyde and Sussex, the National Physical Laboratory and over 70 companies.

Course details

The MRes programme offers a unique opportunity for students to undertake a research-based Masters degree in a multi-disciplinary environment between science, engineering and industry. Students benefit from participating in both the technology translation and applied research activities carried out within the UK National Quantum Technology Hub in Sensors and Metrology, and from the educational programmes offered by the College of Engineering and Physical Sciences. The programme comprises classroom taught quantum physics-oriented modules for students with engineering backgrounds; technology-orientated modules for students with physics backgrounds; and an independent research project that is documented in a substantial thesis.

The research project consists of a team element; all students will organise themselves to present a technical demonstration at a national or international conference. There is also an individual research element, which takes place in industry or in relation to a participating company.

It will include 70 credits of classroom taught modules and a research project worth 110 credits, consisting of team and individual elements.

The team element of the research project teaches technical, team working, project management, communication and presentation skills with an emphasis on responsible research and innovation. The individual element of the research project focuses on problems relevant to industry and will be carried out in close collaboration with industry partners.

Related links

Learning and teaching

The Birmingham led UK National Quantum Technology Hub in Sensors and Metrology is a cross-disciplinary centre, involving staff from the Schools of Physics, Civil, Electrical and Materials Engineering, as well as staff from a number of other Schools across the University. It will translate fundamental science and applied research in quantum sensors and metrology based on atomic probe particles, providing high level educational opportunities in these fields.

The Hub’s research activities include research in the development of sensors for gravity, magnetic fields, rotation, electromagnetic fields and time. It also researches their applications in a diverse range of sectors including aviation, communication, construction, defense, energy, finance, healthcare, oil and mineral exploration, transport and space.

The Translational Quantum Technology programme aims at preparing students for the challenges in translating quantum sensors and metrology devices based on atoms as probe particles into real-world applications. After the programme, students should understand the underpinning science and technology; the needs of end-user applicants; and the impact of these quantum technology devices on society. They should be able to move seamlessly between academia and industry, and translate scientific outcomes into technology.

The programme will create a strongly networked cohort of students with practical experience in academia and industry. It aims:

  • to develop students' research and technological skills, and their knowledge of research methods applicable to the specific issues arising in quantum technology-related research;
  • to ensure that students are aware of state-of-the-art developments in quantum technology in specific technical and operational topic areas;
  • to allow students to develop the understanding necessary to identify new and emerging research needs in the emerging quantum technology industry;
  • to enable students to develop the knowledge and skills required to independently undertake a significant research project of relevance to the quantum technology industry including users of quantum technology.

Employability

This programme is a unique opportunity to acquire translational skills, including specific skills of relevance to the emerging quantum technology industry. The UK National Quantum Technology Hub in Sensors is actively engaged with a growing number of industry partners, currently standing at 70 companies from various sectors of the economy. Industry secondments to our partners will foster career prospects.



Read less
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more

Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power.

We cover:

  • ion-trap quantum processors
  • ion-photon interfaces for the projected quantum internet
  • quantum simulators
  • superconducting quantum circuits
  • devices for quantum-enhanced metrology.

How will I study?

You’ll study in a Physics department ranked amongst the top 15 in the UK (Guardian University Guide 2018) where researchers are leading the way on the development of the world’s first quantum computer. We’re also a founder member of SEPnet, the South East Physics Network which supports vital research, teaching and development.

The course is split between taught modules and your individual project and you can choose to study full time or part time.

The taught part of the course comprises core modules plus a choice of options, allowing you to tailor the course towards your own particular interests. You’ll also attend research seminars and contribute to your group’s discussions of the latest journal papers.

Your project can take the form of a placement in industry, but is usually supervised by our faculty. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. Often the projects form the basis of research papers that are later published in journals.

Assessment is split equally between the project and modules. Modules are assessed with either open-notes tests or unseen examinations. Your project culminates in a dissertation (with a contribution from a research talk).

Careers

This course may be attractive to you if you aim to:

  • go on to doctoral study (theory or experiment)
  • work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
  • work in business/data analysis, research, computer programming, software development, or teaching


Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Cold Atoms and Quantum Optics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Cold Atoms and Quantum Optics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Cold Atoms and Quantum Optics enables students to pursue a one year individual programme of research. The Cold Atoms and Quantum Optics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Cold Atoms and Quantum Optics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate Cold Atoms and Quantum Optics student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Quantum Fields & String at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Quantum Fields & String at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Quantum Fields and String enables students to pursue a one year individual programme of research. The Quantum Fields & String programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the MSc by Research in Quantum Fields and String you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Quantum Fields and String programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
This course provides a thorough grounding in this exciting field and is aimed at students with interests in experiment, theory, or both. Read more

This course provides a thorough grounding in this exciting field and is aimed at students with interests in experiment, theory, or both. It draws upon the research strengths at the College in a wide range of topics in controlled quantum dynamics.

Recent theoretical and experimental advances mean that we are now able to apply an extraordinary degree of control over individual quantum systems and to prepare and manipulate groups of interacting quantum systems deterministically.

Bringing these techniques to bear upon both fundamental physics and a new swathe of technologies dependent on strange quantum phenomena defines the emerging field of controlled quantum dynamics.

The Department of Physics is leading an interdisciplinary Centre for Doctoral Training (CDT) on Controlled Quantum Dynamics offering a four-year PhD, the first year of which leads to an MRes. Self-funded students may take the MRes by itself as a 12-month full-time course.

A feature of the course is its focus on both theory and experiment, equipping you to enter either avenue of research.

Careers

With strong links to industry, other leading academic institutions, and government labs in the UK and overseas, there are plenty of opportunities to engage with external organisations, including collaborative research projects.

Funding

Fully funded four-year studentships are available for UK and EU students ordinarily residents in the UK for at least three years prior to the start of the grant. This funding is for students intending to stay on for the four-year PhD only.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/physics/controlled-quantum-dynamics/

If you have any enquiries you can contact our team at:



Read less
Course description. This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials. Read more

Course description

This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials.

There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Core modules

  • Optical Properties of Solids
  • Advanced Electromagnetism
  • Semiconductor Physics and Technology
  • Research Skills in Physics
  • Solid State Physics
  • Research Project in Physics

Examples of optional modules

Choose from a range including:

  • Biological Physics
  • Magnetic Resonance: Principles and Applications
  • Physics in an Enterprise Culture
  • Further Quantum Mechanics
  • Advanced Quantum Mechanics
  • The Physics of Soft Condensed Matter
  • Statistical Physics

Teaching and assessment

One-year individual programme of research.

Taught material is complemented by a 12-month research project in one of our world-leading research groups.

Your training will cover optical experiments and fabrication of devices in our state-of-the-art laboratories as well as numerical methods and more.



Read less
This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more

This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise linked with world-leading research.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing. 

The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

With access to some of the leading physics departments in the world, there is a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

  • The course offers an incomparably wide range of options.
  • Royal Holloway's Physics Department has strong links with leading international facilities, including Rutherford Appleton and National Physical Laboratory, Oxford Instruments, CERN, ISIS and Diamond. 
  • We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Course structure

Year 1

All modules are optional

Year 2

  • Major Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

You will take six from the following:

  • Lie Groups and Lie Algebras
  • Quantum Theory
  • Statistical Mechanics
  • Phase Transitions
  • Advanced Quantum Theory
  • Advanced Topics in Statistical Mechanics
  • Relativistic Waves and Quantum Fields
  • Advanced Quantum Field Theory
  • Functional Methods in Quantum Field Theory
  • Advanced Topics in Classical Field Theory
  • Formation and Evolution of Stellar Clusters
  • Advanced Physical Cosmology
  • Atom and Photon Physics
  • Advanced Photonics
  • Quantum Computation and Communication
  • Quantum Electronics of Nanostructures
  • Molecular Physics
  • Particle Physics
  • Particle Accelerator Physics
  • Modelling Quantum Many-Body Systems
  • Order and Excitations in Condensed Matter
  • Theoretical Treatments of Nano-Systems
  • Physics at the Nanoscale
  • Electronic Structure Methods
  • Computer Simulation in Condensed Matter
  • Superfluids, Condensates and Superconductors
  • Advanced Condensed Matter
  • Standard Model Physics and Beyond
  • Nuclear Magnetic Resonance
  • Statistical Data Analysis
  • String Theory and Branes
  • Supersymmetry
  • Stellar Structure and Evolution
  • Cosmology
  • Relativity and Gravitation
  • Astroparticle Cosmology
  • Electromagnetic Radiation in Astrophysics
  • Planetary Atmospheres
  • Solar Physics
  • Solar System
  • The Galaxy
  • Astrophysical Plasmas
  • Space Plasma and Magnetospheric Physics
  • Extrasolar Planets and Astrophysical Discs
  • Environmental Remote Sensing
  • Molecular Biophysics
  • Cellular Biophysics
  • Theory of Complex Networks
  • Equilibrium Analysis of Complex Systems
  • Dynamical Analysis of Complex Systems
  • Mathematical Biology
  • Elements of Statistical Learning

Year 2

Only core modules are taken.

Teaching & assessment

This high quality European Masters programme follows the European method of study and involves a year of research working on pioneering projects.

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Your future career

This course equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD. 

On completion of the course graduates will have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline a comprehensive understanding of techniques applicable to their own research or advanced scholarship originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance.



Read less
This renowned course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course and the research frontier. Read more

This renowned course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course and the research frontier.

The Theoretical Physics Group is internationally recognised for its contribution to our understanding of the unification of fundamental forces, the early universe, quantum gravity, supersymmetry, string theory, and quantum field theory.

The origins of the programme date back to the founding of the Theoretical Physics Group by Abdus Salam, one of Imperial’s Nobel Laureates.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/physics/quantum-fields-fundamental-forces/

If you have any enquiries you can contact our team at:



Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics



Read less
Overview. The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe. Read more

Overview

The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe.

The programme of study includes a taught component of closely-related modules in this popular area of mathematical physics. The course also includes a substantial project that will allow students to develop their interest and expertise in a specific topic at the frontier of current research, and develop their skills in writing a full scientific report.

The course will provide training in advanced methods in mathematics and physics which have applications in a wide variety of scientific careers and provide students with enhanced employability compared with undergraduate Bachelors degrees. In particular, it will provide training appropriate for students preparing to study for a PhD in the research areas listed above. For those currently in employment, the course will provide a route back to academic study.

Key facts:

- The course is taught jointly by the School of Mathematical Sciences and the School of Physics and Astronomy.

- Dissertation topics are chosen from among active research themes of the Particle Theory group, the Quantum Gravity group and the Quantum Information group.

- In addition to the lectures there are several related series of research-level seminars to which masters students are welcomed.

Module details

Advanced Gravity

Black Holes

Differential Geometry

Gravity

Gravity, Particles and Fields Dissertation

Introduction to Quantum Information Science

Modern Cosmology

Quantum Field Theory

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
High-level training in statistics and the modelling of random processes for applications in science, business or health care. Read more

High-level training in statistics and the modelling of random processes for applications in science, business or health care.

For many complex systems in nature and society, stochastics can be used to efficiently describe the randomness present in all these systems, thereby giving the data greater explanatory and predictive power. Examples include statistical mechanics, financial markets, mobile phone networks, and operations research problems. The Master’s specialisation in Applied Stochastics will train you to become a mathematician that can help both scientists and businessmen make better decisions, conclusions and predictions. You’ll be able to bring clarity to the accumulating information overload they receive.

The members of the Applied Stochastics group have ample experience with the pure mathematical side of stochastics. This area provides powerful techniques in functional analysis, partial differential equations, geometry of metric spaces and number theory, for example. The group also often gives advice to both their academic colleagues, and organisations outside of academia. They will therefore not only be able to teach you the theoretical basis you need to solve real world stochastics problems, but also to help you develop the communications skills and professional expertise to cooperate with people from outside of mathematics.

See the website http://www.ru.nl/masters/mathematics/stochastics

Why study Applied Stochastics at Radboud University?

- This specialisation focuses both on theoretical and applied topics. It’s your choice whether you want to specialise in pure theoretical research or perform an internship in a company setting.

- Mathematicians at Radboud University are expanding their knowledge of random graphs and networks, which can be applied in the ever-growing fields of distribution systems, mobile phone networks and social networks.

- In a unique and interesting collaboration with Radboudumc, stochastics students can help researchers at the hospital with very challenging statistical questions.

- Because the Netherlands is known for its expertise in the field of stochastics, it offers a great atmosphere to study this field. And with the existence of the Mastermath programme, you can follow the best mathematics courses in the country, regardless of the university that offers them.

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that you’ll get plenty of one-on-one time with your thesis supervisor at Radboud University .

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating.

Career prospects

Master's programme in Mathematics

Mathematicians are needed in all industries, including the banking, technology and service industries, to name a few. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad and is the reason why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Applied Stochastics Department, focuses on combinatorics, (quantum) probability and mathematical statistics. Below, a small sample of the research our members pursue.

Eric Cator’s research has two main themes, probability and statistics.

1. In probability, he works on interacting particles systems, random polymers and last passage percolation. He has also recently begun working on epidemic models on finite graphs.

2. In statistics, he works on problems arising in mathematical statistics, for example in deconvolution problems, the CAR assumption and more recently on the local minimax property of least squares estimators.

Cator also works on more applied problems, usually in collaboration with people from outside statistics, for example on case reserving for insurance companies or airplane maintenance. He has a history of changing subjects: “I like to work on any problem that takes my fancy, so this description might be outdated very quickly!”

Hans Maassen researches quantum probability or non-commutative probability, which concerns a generalisation of probability theory that is broad enough to contain quantum mechanics. He takes part in the Geometry and Quantum Theory (GQT) research cluster of connected universities in the Netherlands. In collaboration with Burkhard Kümmerer he is also developing the theory of quantum Markov chains, their asymptotic completeness and ergodic theory, with applications to quantum optics. Their focal point is shifting towards quantum information and control theory, an area which is rapidly becoming relevant to experimental physicists.

Ross Kang conducts research in probabilistic and extremal combinatorics, with emphasis on graphs (which abstractly represent networks). He works in random graph theory (the study of stochastic models of networks) and often uses the probabilistic method. This involves applying probabilistic tools to shed light on extremes of large-scale behaviour in graphs and other combinatorial structures. He has focused a lot on graph colouring, an old and popular subject made famous by the Four Colour Theorem (erstwhile Conjecture).

See the website http://www.ru.nl/masters/mathematics/stochastics



Read less
Why this course?. This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:

  • high-power microwave technology
  • laser-based particle acceleration and enabled applications
  • physics and the life sciences
  • materials and solid state physics
  • photonics
  • quantum optics and quantum information technology

On the programme you'll acquire:

  • in-depth knowledge of current and emerging theories, techniques and practices within the field of physics and the life sciences and the ability to apply these theories in a professional setting
  • problem-solving and high numeracy skills that are widely sought-after across the commercial sector skills required to use high-power microwave technology in an industrial environment
  • professional abilities in applying laser-based particle acceleration and enabled applications
  • in-depth knowledge of materials and solid state physics, photonics & quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:

  • cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to the X-ray region, and biomedical applications
  • the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
  • a scanning electron microscopy suite for analysis of hard and soft matter
  • access to top-of-the-range high-performance and parallel computer facilities
  • state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
  • advanced quantum optics and quantum information labs
  • several labs researching optical spectroscopy and sensing

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

Careers

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:

  • Medical Physicist
  • Senior Engineer
  • Professor
  • Systems Engineer
  • Treasury Analyst
  • Patent Attorney
  • Software Engineer
  • Teacher
  • Spacecraft Project Manager
  • Defence Scientist
  • Procurement Manager
  • Oscar winner

Success story: Iain Neil

Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.



Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less

Show 10 15 30 per page



Cookie Policy    X