• Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Ulster University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"quantitative" AND "genet…×
0 miles

Masters Degrees (Quantitative Genetics)

  • "quantitative" AND "genetics" ×
  • clear all
Showing 1 to 15 of 41
Order by 
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Animal Breeding and Genetics
Evolutionary Genetics
Human Complex Trait Genetics

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Statistics and Data Analysis
Linkage and Association in Genome Analysis
Research Proposal
Either Bioinformatics or Molecular Phylogenetics

Option courses (selected according to degree specialisation):

Quantitative Genetic Models
Molecular Evolution
Genetics of Human Complex Traits
Animal Genetic Improvement
Evolution and Climate Change
Functional Genomic Technologies

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Research Proposal
Dissertation

Option courses:

Statistics and Data Analysis Molecular Phylogenetics Bioinformatics Molecular Evolution Genetics of Human Complex Traits Quantitative Genetic Models Functional Genomic Technologies Evolution and Climate Change Animal Genetic Improvement Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

A thorough understanding of general concepts in population and quantitative genetics and genomics
In-depth knowledge of evolutionary genetics
A solid grounding in the statistical methods required for quantitative biology
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which include Animal Breeding & Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Genetics of Human Complex Traits
Dissertation.

Option courses:

Statistics and Data Analysis
Molecular Phylogenetics
Bioinformatics
Molecular Evolution
Quantitative Genetic Models
Functional Genomic Technologies
Evolution and Climate Change
Animal Genetic Improvement
Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to practical problems in the biomedical industry, and to undertake research in quantitative and population genetics and genome analysis.

A thorough understanding of general concepts in population and quantitative genetics and genomics
In-depth knowledge of complex trait genetics in humans
A solid grounding in the statistical methods required for quantitative biology
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Genomics and Experimental Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics. This programme forms part of the quantitative genetics and genome analysis suite of programmes offering three specialist routes, which also include Human Complex Trait Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Animal Genetic Improvement
Research Proposal
Dissertation

Option courses:

Statistics and Data Analysis
Molecular Phylogenetics
Bioinformatics
Molecular Evolution
Genetics of Human Complex Traits
Quantitative
Genetic Models
Functional Genomic Technologies
Evolution and
Climate Change; Animal Genetic Improvement
Evolutionary Quantitative Genetics

Learning outcomes

An understanding of general concepts in population and quantitative genetics and genomics
A solid grounding in the statistical methods required
In-depth knowledge of animal improvement and complex trait analysis
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents. Read more
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.

Degree Information

The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).

A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.

A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.

Core Modules
- Advanced Human Genetics: Research Principles
- Human Genetics in Context
- Core Skills
- Basic Statistics for Medical Sciences

Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
- Applications in Human Genetics (A)
- Either Genetics of Cardiovascular Disease or Genetics of Neurological Disease (A)
- Clinical Applications of Pharmacogenetic Tests (B)
- Anti-Cancer Personalised Medicine or Pharmacogenomics, Adverse Drug Reactions and Biomarkers (B)
- Applications in Human Genetics (C)
- Statistics for Interpreting Genetic Data (C)

Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.

Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.

Careers

Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.

Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.

Why study this degree at UCL?

UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.

Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.

Read less
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within… Read more
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within the Medical Science Building, the Best Institute, the Donnelly Centre for Cellular and Biomolecular Research, the FitzGerald Building, the Hospital for Sick Children, Mount Sinai Hospital, the Ontario Institute for Cancer Research, and Princess Margaret Hospital.

The Master of Science and Doctor of Philosophy programs in Molecular Genetics offer research training in a broad range of genetic systems from bacteria and viruses to humans. Research projects include DNA repair, recombination and segregation, transcription, RNA splicing and catalysis, regulation of gene expression, signal transduction, interactions of host cells with bacteria and viruses, developmental genetics of simple organisms (worms and fruit flies) as well as complex organisms (mice), molecular neurobiology, molecular immunology, cancer biology and virology, structural biology, and human genetics and gene therapy.

Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models… Read more

Research profile

Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models through the application of numerical and computational approaches in the analysis, interpretation, modelling and prediction of complex animal systems from the level of the DNA and other molecules, through cellular and gene networks, tissues and organs to whole organisms and interacting populations of organisms.

The biology and traits of interest include: growth and development, body composition, feed efficiency, reproductive performance, responses to infectious disease and inherited diseases.

Research encompasses basic research in bioscience and mathematical biology and strategic research to address grand challenges, e.g. food security.

Research is focussed on, but not restricted to, target species of agricultural importance including cattle, pigs, poultry, sheep; farmed fish such as salmon; and companion animals. The availability of genome sequences and the associated genomics toolkits enable genetics research in these species.

Expertise includes genetics (molecular, quantitative), physiology (neuroendocrinology, immunology), ‘omics (genomics, functional genomics) with particular strengths in mathematical biology (quantitative genetics, epidemiology, bioinformatics, modelling).

The Division has 18 Group Leaders and 4 career track fellows who supervise over 30 postgraduate students.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

The University's genomics facility Edinburgh Genomics is closely associated with the Division of Genetics and Genomics and provides access to the latest genomics technologies, including next-generation sequencing, SNP genotyping and microarray platforms (genomics.ed.ac.uk).

In addition to the Edinburgh Compute and Data Facility’s high performance computing resources, The Roslin Institute has two compute farms, including one with 256 GB of RAM, which enable the analysis of complex ‘omics data sets.

Read less
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. Read more
The MSc in Genetic and Genomic Counselling is designed to give students a working knowledge of the principles and practice of Genetic Counselling which will qualify them to practice as Genetic and Genomic Counsellors. The programme will be delivered by University of Glasgow staff in collaboration with NHS staff from the West of Scotland Genetics Service, so that a current perspective on both laboratory diagnostics and clinical services will be obtained. This programme is accredited by the UK Genetic Counsellor Registration Board.

Why this programme

-◾Teaching is based at the Queen Elizabeth University Hospital (QEUH), which includes adult services, children’s services and maternity services, as well as one of the largest diagnostic laboratories in Europe, and a new, purpose-built teaching and learning facility. The close collaboration between University and NHS staff ensures that the MSc in Genetic and Genomic Counselling provides a completely up-to-date representation of genetic services.
◾Counselling and psychology theoretical and research-focused courses are delivered by University staff trained in psychology, providing a firm foundation for the subsequent acquisition of knowledge and skills in genetic counselling facilitated by GCRB-registered Genetic Counsellors.
◾The University of Glasgow Medical Genetics Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering), to recognise and reward excellence and good practice; they were also finalists in the 2013 awards and are finalists in the category of "Outstanding support for students" in The Herald Higher Education Awards for Scotland in association with UWS 2016.
◾You will develop your skills in problem solving, evaluation and interpretation of diagnostic data, communication of the results of genome testing to patients, literature searches, scientific writing, oral presentations, poster presentations and team working.
◾The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.

Programme structure

Component courses are as follows:

Genetic Disease in Clinical Practice

This course is designed in collaboration with the West of Scotland Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease, and explore the links between genotype and phenotype.

Case Investigations in Medical Genetics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Distress or disorder: reactions to a medical diagnosis

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient empowerment: supporting decisions relating to new diagnoses

Note: this 10 credit course may be taken by visiting students, for example as professional development.

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

Note: this 10 credit course may be taken by visiting students, for example as professional development.

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Genetic counselling in clinical practice

This course is designed in collaboration with the West of Scotland Clinical Service, and will be delivered by NHS staff, to provide students with in depth understanding of the practical skills required in genetic counselling. The course will facilitate development of appropriate critical understanding, reflective practice and skills in relation to genetic counselling for providing accurate complex genetic information for patients and their families.

Social science research methods

The research methods course will focus on developing students’ research skills primarily in questionnaire-based qualitative and quantitative observational research methods and students will be introduced to ethics procedures for the college of MVLS.

Community placements 1 & 2

These placements, for 16 days and 20 days respectively, will each take place in one or more care settings for individuals with complex needs (adults or children or both) to enable students to gain insight into effects of complex needs on affected individuals and on their family.

Genetic counselling placement 1 & 2

These placements, for eight weeks and six weeks respectively, in different genetics centres will allow students to observe clinical practice in a variety of contexts, and to undertake relevant tasks under supervision within a clinical team that is delivering a genetic service, to enable the student to develop their own skills as a future genetic counsellor. Following each placement students will discuss and share experiences, facilitated by one of the NHS lead team and a counselling supervisor, to further develop their ability to deal with practical and emotional challenges in genetic counselling.

Clinical genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussing the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Career prospects

The programme aims to provide students with skills to work as Genetic Counsellors. This programme is accredited by the Genetic Counsellor Registration Board (GCRB) producing graduates who are eligible for entry as a ‘trainee genetic counsellor’.

Read less
Animal welfare science and ethics is an expanding topic of international concern, which is why the University of Glasgow offer an Animal Welfare MSc programme. Read more
Animal welfare science and ethics is an expanding topic of international concern, which is why the University of Glasgow offer an Animal Welfare MSc programme. It aims to improve our knowledge and understanding of animals’ needs, which is required to provide a high standard of care to the whole range of animals kept in captivity.

Why this programme

◾Top 100 University
◾This Animal Welfare Degree programme is offered by the Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM); a grouping of top researchers who focus on combining ecology and evolution with more applied problems in animal health
◾When studying Animal Welfare you will be taught by research-active staff using the latest approaches in understanding and responding to animal welfare-related issues, legislation related to use of animals, and both theoretical and applied ethics.
◾In addition, you will have opportunities to develop skills in quantitative methods, sequence analysis, conservation biology, epidemiology and practical approaches to assessing biodiversity.
◾A unique strength of the Animal Welfare MSc at the University of Glasgow for many years has been the strong ties between veterinarians and ecologists, which has now been formalised in the formation of the IBAHCM. This direct linking is rare but offers unique opportunities to provide training that spans both fundamental and applied research.
◾The IBAHCM also offers an MSc in Quantitative Methods in Biodiversity, Conservation and Epidemiology. This degree is more focused on ecology and evolutionary biology and provides the opportunity for you to gain key quantitative skills that are not often a focus of welfare-based programmes.
◾You will have the opportunity to base your independent research projects at the University field station on Loch Lomond (for freshwater or terrestrial-based projects); Millport field station on the Isle of Cumbria (for marine projects); or Cochno farm in Glasgow (for research based on farm animals). We will also assist you to gain research project placements in zoos or research laboratories, whenever possible.
◾You will gain core skills and knowledge across a wide range of subjects that will enhance your selection chances for competitive PhD programmes. In addition to academic options, career opportunities include roles in zoos, government agencies, officers of animal welfare, protection, or wildlife crime, veterinary nursing and aquaculture
◾We have many links with animal welfare-related organisations through them coming to us to teach their expertise to our Animal Welfare degree and the class going to visit their organisation to obtain a first-hand view of what working is like at these organisations. Many of them also provide the students with opportunities to carry out their independent research project within their company. Students will also be able to capitalise on the strong ties between the veterinarians and ecologists at the IBAHCM. This allows us to directly link fundamental and applied research and offers unique opportunities to provide training that spans both theory and praxis.
◾We have currently the following partners involved in this programme: ◾Scottish Society for the Prevention of Cruelty to Animals (Scottish SPCA)
◾Highland Wildlife Park, Kingussie
◾BlairDrummondSafari Park
◾ChesterZoo
◾The Aspinall Foundation (Howletts & Port Lympne)
◾National Museum Scotland

Programme structure

The programme provides a strong grounding in scientific writing and communication, statistical analysis, and experimental design. It is designed for flexibility, to enable you to customise a portfolio of courses suited to your particular interests.

You can choose from a range of specialised options that encompass key skills in:
◾Ethics, legislative policy and welfare science – critical for promoting humane treatment of both captive and wild animals.
◾Monitoring and assessing biodiversity – critical for understanding the impacts of environmental change
◾Quantitative analyses of ecological and epidemiological data – critical for animal health and conservation.

Core courses
◾Key research skills: Scientific communication; Introduction to R; Advanced linear models; Experimental design and power analysis
◾Animal ethics
◾Animal welfare science
◾Legislation related to animal welfare
◾Independent research project.

Optional courses
◾Enrichment of animals in captive environments
◾Care of captive animals
◾Biology of suffering
◾Assessment of physiological state
◾Freshwater sampling techniques
◾Marine sampling techniques
◾Invertebrate identification
◾Vertebrate identification
◾Molecular analyses for DNA barcoding and biodiversity measurement
◾Phyloinformatics
◾Conservation genetics and phylodynamics
◾Infectious disease ecology and the dynamics of emerging disease
◾Single-species population models
◾Multi-species models
◾Spatial processes
◾Introduction to Bayesian statistics.

Animal Welfare is a very broad and applied field and the programme aims to provide coverage of all the different aspects of the topic which are often treated separately. Science is an essential skill in order to have a good understanding of welfare but we appreciate that applicants may come from diverse backgrounds and therefore the course includes a rigorous training in science communication, experimental design, data analysis and interpretation. The programme also includes teaching by practitioners and visits to organisations with first-hand experience of applied welfare problems. The programme also attempts to cover the entire spectrum of animal welfare, including zoos, farms, laboratory animals and wildlife.

Career prospects

Students are exposed to potential work places and can make valuable contacts with professionals in the welfare community. Where possible this is a two-way exchange in which communities are offered help with any issues they have and for which assistance may be provided in finding a solution (e.g. through independent research projects, supervised by university staff). This is also an option open to other courses and could benefit the students in the long-term as well as give the university valuable connections with the wider community.

Read less
The MPhil in Applied Biological Anthropology is a full-time interdisciplinary course, taken over a period of ten months, with core teaching in human nutritional ecology, growth and development, epidemiology and disease, reproductive ecology, conservation and molecular genetics. Read more
The MPhil in Applied Biological Anthropology is a full-time interdisciplinary course, taken over a period of ten months, with core teaching in human nutritional ecology, growth and development, epidemiology and disease, reproductive ecology, conservation and molecular genetics. There are strong biostatistical and laboratory elements to the course as well as a focus on field studies.

The lecturers are primarily involved in research and teaching within the Division of Biological Anthropology, in the Department of Archaeology and Anthropology. This taught MPhil recruits students who are prepared for graduate work and wish to receive interdisciplinary training, but who do not have sufficient background in Applied Biological Anthropology to be considered for the research MPhil or doctoral work. This is a demanding course that enables students to obtain specialist training and knowledge in an area of Applied Biological Anthropology over a relatively short time frame. Subject to performance in the examination, the course prepares students to undertake an advanced degree.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/hsbampaba

Format

The MPhil in Applied Biological Anthropology is a full-time one year interdisciplinary course, taken over a period of ten months, with core teaching in human nutritional ecology, growth and development, epidemiology and disease, reproductive ecology, conservation and molecular genetics. There are strong biostatistical and laboratory elements to the course as well as a focus on field studies.

This taught MPhil recruits students who are prepared for graduate work and wish to receive interdisciplinary training, but who do not have sufficient background in Applied Biological Anthropology to be considered for the research MPhil or doctoral work. This is a demanding course that enables students to obtain specialist training and knowledge in an area of Applied Biological Anthropology over a relatively short time frame. Subject to performance in the examination, the course prepares students to undertake an advanced degree.

Assessment

- All students will write a thesis of not more than 20,000 words in length, excluding tables, appendices, and references, on a subject approved by the Degree Committee for the Faculty of Human, Social, and Political Science. This is worth 50% of the final mark.
- All students will undertake a quantitative exercise on statistical analysis and interpretation, worth 10% of the final mark.
- All students will write two essays of each not more than 2,500 words in length, excluding tables and references, based upon material from the core courses. These are worth 10% each of the final mark.
- All students will undertake two written assignments (either two essays or one essay and one lab report) based on material from the option courses. These are worth 10% each of the final mark.
- Lab report based on one of the two lab practicals that will be carried out. The lab practicals will be based on hormones and genetics. This will contribute towards 10% of the final mark.

Continuing

MPhil students are registered for one year only. Those who hope to read for a PhD at Cambridge immediately after the MPhil wil need to obtain support from a potential supervisor. This need not be the same person who supervises your MPhil thesis. But you will need to work hard to let the potential PhD supervisor see substantive work that you have written, in addition to your draft thesis proposal, at an early stage in the academic year. Once you have applied for the PhD a definite decision will be taken after your performance in the MPhil can be fully assessed; the Committee wil set conditions for your related to the entry requirements of the PhD. If you do not achieve these targets it is unlikely you wil be able to continue to reads towards a PhD.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Students have the opportunity to apply for relevant funding during the application process. General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This MSc provides an ideal foundation for students wishing to advance their mathematical modelling skills. The programme teaches students the basic concepts which arise in a broad range of technical and scientific problems and illustrates how these may be applied in a research context to provide powerful solutions. Read more
This MSc provides an ideal foundation for students wishing to advance their mathematical modelling skills. The programme teaches students the basic concepts which arise in a broad range of technical and scientific problems and illustrates how these may be applied in a research context to provide powerful solutions.

Degree information

Students develop an understanding of the processes undertaken to arrive at a suitable mathematical model and are taught the fundamental analytical techniques and computational methods used to develop insight into system behaviour. The programme introduces a range of problems - industrial, biological and environmental - and associated conceptual models and solutions.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits), and a research dissertation (60 credits). The part-time option normally spans two years. The eight taught modules are spread over the two years. The research dissertation is taken in the summer of the second year.

Core modules
-Advanced Modelling Mathematical Techniques
-Nonlinear Systems
-Operational Research
-Computational and Simulation Methods
-Frontiers in Mathematical Modelling and its Applications

Optional modules
-Asymptotic Methods & Boundary Layer Theory
-Biomathematics
-Cosmology
-Evolutionary Game Theory and Population Genetics
-Financial Mathematics
-Geophysical Fluid Dynamics
-Mathematical Ecology
-Quantitative and Computational Finance
-Real Fluids
-Traffic Flow
-Waves and Wave Scattering

Dissertation/report
All MSc students undertake an independent research project, which culminates in a dissertation of approximately 15,000-words and a project presentation.

Teaching and learning
The programme is delivered through seminar-style lectures and problem and computer-based classes. Student performance is assessed through a combination of unseen examination and coursework. For the majority of courses, the examination makes up between 90–100% of the assessment. The project is assessed through the dissertation and an oral presentation.

Careers

Our graduates have found employment in a wide variety of organisations such as Hillier-Parker, IBM, Swissbank, Commerzbank Global Equities, British Gas, Harrow Public School, Building Research Establishment and the European Centre for Medium-Range Weather-Forecasting. First destinations of recent graduates include:
-R.T.E: Engineer
-Tower Perrins: Actuarist
-Deloitte: Quantitative Analyst
-UCL: Research Associate
-C-View: Quantitative Trader
-One-to-One: Maths Tutor
-UCL Research Degree - Mathematics
-Duff & Phelps Ltd: Financial Engineer
-Bank of Tokyo Mitsubishi: Assistant Compliance Officer

Employability
The finance, actuarial and accountancy professionals are constantly in demand for high-level mathematical skills and recent graduates have taken positions in leading finance-related companies such as UBS, Royal Bank of Scotland, Societe Generale, PricewaterhouseCoopers, Deloitte, and KPMG.

In the engineering sector, recent graduates from the MSc include a mathematical modeller at Steet Davies Gleave, a leading Transportation Planning Consultancy; and a graduate trainee at WesternGreco, a business segment of Schlumberger that provides reservoir imaging, monitoring, and development services. In addition, a number of graduates have remained in education either progressing to a PhD or entering the teaching profession.

Why study this degree at UCL?

UCL Mathematics is internationally renowned for its excellent individual and group research that involves applying modelling techniques to problems in industrial, biological and environmental areas.

The department hosts a stream of distinguished international visitors. In recent years four staff members have been elected fellows of the Royal Society, and the department publishes the highly regarded research journal Mathematika.

This MSc enables students to consolidate their mathematical knowledge and formulate basic concepts of modelling before moving on to case studies in which models have been developed for issues motivated by industrial, biological or environmental considerations.

Read less
Biodiversity, evolution and conservation are of growing importance due to climate change, extinction, and habitat destruction. Read more
Biodiversity, evolution and conservation are of growing importance due to climate change, extinction, and habitat destruction. This new research-led programme is run in collaboration with the Institute of Zoology and the Natural History Museum, providing a rigorous training and unparalleled opportunities across the full breadth of pure and applied research in evolutionary, ecological, and conservation science.

Degree information

Taught modules will focus on cutting-edge quantitative tools in ecology, evolutionary biology, genetics, bioinformatics, systematics, palaeobiology, conservation, biogeography and environmental biology. Seminars, journal clubs and the two research projects will provide students with diverse opportunities for experience at UCL Genetics, Evolution and Environment & Centre for Biodiversity and Environment Research, the Natural History Museum and the Institute of Zoology, Zoological Society of London.

Students undertake modules to the value of 180 credits. There are no optional modules for this programme. The programme consists of three core taught modules (60 credits) and two 16-week research projects (120 credits).

Core modules
-Research Skills (15 credits)
-Current Topics in Biodiversity, Evolution & Conservation Research (15 credits)
-Analytical Tools in Biodiversity, Evolutionary and Conservation Research (30 credits)

Dissertation/report
All students undertake two 16-week research projects, which each culminate in a written dissertation, and poster or oral presentation.

Teaching and learning
The programme is delivered through a combination of seminars, presentations, assigned papers, as well as data analysis and interpretation. The seminar series includes mandatory seminars at UCL, the Natural History Museum and the Institute of Zoology (Zoological Society of London). Assessment is through essays, project reports, presentations and practicals. The two research projects are assessed by dissertation, and poster or oral presentation.

Careers

This programme offers students a strong foundation with which to pursue careers in academic research, environmental policy and management, applied conservation, public health, or scientific journalism.

Top career destinations for this degree
-Intern, ZSL Institute of Zoology
-PhD in Evolutionary Biology, Queen Mary University of London (QMUL)
-PhD Researcher (Evolutionary Biology), University of Edinburgh a

Employability
This programme provides students with a strong foundation to pursue careers in academic research, environmental policy and management, applied conservation, public health, or scientific journalism.

Why study this degree at UCL?

This programme is an innovative collaboration between three globally renowned organisations: UCL Genetics, Evolution and Environment & Centre for Biodiversity and Environment Research, the Natural History Museum and the Institute of Zoology, Zoological Society of London.

By consolidating research expertise across these three organisations, students will gain a unique and exceptionally broad understanding of ties among different fields of research relating to the generation and conservation of biodiversity.

The MRes offers diverse research opportunities; these include the possibility of engaging actively in fundamental and applied research and participating in the Global Biodiversity Information Facility (based at the Natural History Museum) or the EDGE of Existence programme (based at the Zoological Society of London).

Read less
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. Read more
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. The MSc in Biological and Biomolecular Science by Negotiated Learning will afford students the flexibility to broaden their understanding of biological and biomolecular science against a backdrop of learning core technical, methodological and innovation skills relevant to the industry and academia.
Several innovative specialisations are available from a carefully chosen range of modules from the relevant disciplines within the UCD School of Biomolecular & Biomedical Science and the UCD School of Biology and Environmental Science. These provide students with an exciting prospect of studying and researching in the interdisciplinary fields of genetics, cell biology, biochemistry, molecular biology, microbiology and biodata analysis. This diverse offering aims to enhance and develop a student’s current knowledge and skill base using a wide range of taught components and applied research skills. Guidance from expert faculty is provided to tailor a programme that will meet the anticipated requirements of the student’s objectives and career goals.

Key Fact

This MSc in Biological and Biomolecular Science is the first of its kind offered in Ireland by Negotiated Learning. This offers students a unique opportunity to combine skills and learning from several related disciplines with guidance from expert faculty staff, and to deepen their knowledge in one of our specialisations.

Course Content and Structure

The course is divided into the following:
•Core Laboratory Research Skills (30 credits) – including techniques such as RT-PCR, western blotting and imaging studies.
•Core Professional Taught Skills Modules (20 credits) – including career development, quantitative tools, science writing and communication skills.
•Optional Taught modules (40 credits) – involves selecting one of the following specialisations and selecting specific modules within
these that meet the student’s learning objectives.

The Specialisations Available:
• Genetics and Cell Biology: investigates cellular signalling, architecture, imaging, trafficking and transport, genetic basis of disease, model organisms, epigenetics, etc.
• Microbiology and Infection Biology: investigates mechanisms of pathogenic micro-organisms, host response to infection, immunopathologies, host-pathogen interactions, development of diagnostics, applied microbiology, etc.
• Biochemistry and Synthetic Biology: investigates metabolism and disease, protein-protein interactions, cell signalling, protein structure and analysis.

Career Opportunities

This programme will enable you to choose from a wide range of careers and areas of postgraduate study. This multi-disciplinary course provides a solid grounding for careers in industry, health and research, such as Quality Assurance, Quality Control, Microbiology, Process control, Technical Transfer, Research and Development, and Regulatory Affairs, Scientific Editor or Writer, Lab Technician or Analyst roles.

An academic staff member will advise you on a specialisation and module choices based on the opportunities you hope to unlock.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O'Brien Centre for Science.

Read less
This MSc is taught by the Centre for Ecology and Conservation (CEC http://biosciences.exeter.ac.uk/cec/), whose evolutionary and behaviour research groups are amongst the most dynamic in the UK. Read more
This MSc is taught by the Centre for Ecology and Conservation (CEC http://biosciences.exeter.ac.uk/cec/), whose evolutionary and behaviour research groups are amongst the most dynamic in the UK. As an MSc student you will be integrated into these groups and conduct cutting-edge research projects that aim to make genuine contributions to the field of evolutionary and behavioural ecology. The goal is to prepare you for a future research career.

The Centre is the fastest growing institute of its kind in the UK and an integral part of the School of Biosciences at the Penryn Campus. Research is almost exclusively organismal, with particular emphasis on social mammals, birds, turtles and insects. We also specialise in modelling animal behaviour and species interactions and see this as essential and complementary to our whole approach. The other area of emphasis which underpins much of our work is quantitative and molecular genetics; fundamental to the evolutionary process and to conservation biology and policy issues.

Programme overview

- Delivered by leading international researchers in the Centre for Ecology and Conservation, who regularly publish in peer-reviewed journals;
- Designed to prepare you for a future research career with excellent graduate employment opportunities. In the first year of operation, 78 per cent of our students had secured a PhD position before finishing the programme;
- Provides extensive training in current research techniques;
- Develops knowledge and critical awareness of current problems and new insights in evolutionary and behavioural ecology, much of which is at, or informed by, study at the forefront of the field;
- Offers access to excellent facilities including state-of-the-art molecular and genetics labs with a full range of microscopy equipment, greenhouses, aviary and controlled environment rooms. (http://biosciences.exeter.ac.uk/facilities/cornwall/)

Fieldwork

The census research projects will see you spending a considerable amount of time in the field collecting data at several key research sites in West Cornwall and interacting with local NGOs (Cornwall Wildlife Trust, South West Lakes Trust).

This programme includes a two week field course in Kenya and will include visits to some of Africa’s largest and most important game reserves, as well as an introduction to some of the day-to-day problems faced by conservation biologists in developing nations. You will study the behaviour of animals in a natural ecological setting with a focus on large mammals, birds and insects.

Find out more about our field course modules at http://www.exeter.ac.uk/postgraduate/taught/biosciences/fieldwork/. You can also keep up to date and share the experiences of our students in the field on our Field Course Fortnight website at http://blogs.exeter.ac.uk/fieldcourses/ .

Learning and teaching

The taught component of this programme is delivered in the first five months, during which time you will be encouraged to develop your census research projects. The rest of the academic year is dedicated to these projects.

Teaching and learning methods

All material is designed for Masters level and will involve fieldwork, seminars and group discussion. Within modules there is considerable scope for you to direct your learning towards fields of particular interest, especially through your choice of research project. Students are located in the Centre for Ecology and Conservation laboratories, where close working relationships are fostered. Every student has the personal and academic support of the programme director, as well as their academic tutor, module leaders and project supervisors. Because of the layout of our research laboratory, postdoctoral researchers and PhD students interact closely with postgraduates to provide more personal support during the research phase of the programme.

Programme structure

The programme is made up of compulsory modules. Constituent modules may be updated, deleted or replaced as a consequence of the annual programme review of this programme.

Compulsory modules

The compulsory modules can include; Research Project; Evolutionary and Behavioural Ecology; Approaches in Evolutionary and Behavioural Ecology; African Behavioural Ecology Field Course; Statistical Modelling and Key Skills

Read less

Show 10 15 30 per page



Cookie Policy    X