• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
King’s College London Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Leeds Featured Masters Courses
Southampton Solent University Featured Masters Courses
University College London Featured Masters Courses
"proteomics"×
0 miles

Masters Degrees (Proteomics)

  • "proteomics" ×
  • clear all
Showing 1 to 15 of 75
Order by 
This course is designed for scientists who wish to develop their skills in DNA Analysis, Proteomics and Metabolomics. The involvement of industry in the design of the course and an industry-based project (limited number and subject to availability), maximise employment prospects. Read more
This course is designed for scientists who wish to develop their skills in DNA Analysis, Proteomics and Metabolomics.

The involvement of industry in the design of the course and an industry-based project (limited number and subject to availability), maximise employment prospects. Students on the MSc Instrumental Analytical Sciences DNA Analysis, Proteomics and Metabolomics course will benefit from the use of modern analytical equipment, study visits, guest lecturers and workshops. Research activities within the University underpin the coursework.

Visit the website https://www.rgu.ac.uk/sports-biomedical-and-laboratory-sciences/study-options/postgraduate-taught-full-time/dna-analysis-proteomics-and-metabolomics

Semester 1

•Professional Skills & Techniques
•Separation, Electroanalysis and Microscopy
•Spectroscopy
•Laboratory Work

Semester 2

•DNA Analysis, Proteomics and Metabolomics
•Contemporary Techniques/Analytical Problem Solving
•Project Preparation

Semester 3

•MSc Research Project

Award: MSc Instrumental Analytical Science DNA Analysis, Proteomics & Metabolomics

Assessment

The course is assessed by a number of different module specific methods, ranging from exams, coursework, presentation, Thesis compilation and oral defence.

Placements and accreditation

The MSc was designed in liaison with Industry and as such there is a strong emphasis on the applied analytical techniques used within the analytical sector.

A limited number of our MSc research projects are undertaken externally.

Careers

Industrial demand for graduates from the course is consistently high. The MSc project also allows you to make invaluable links with our industrial partners. You may also want to consider a research post or other training opportunities in universities. Previous posts taken up by graduates include: analytical chemist; bioanalyst; development chemist; production chemist; environmental officer; research scientist; scientific officer; applications chemist; and drug development analyst.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. ‘Polyomics’ is a new term used to describe the modern integrated approach to biological analysis involving genomics, transcriptomics, proteomics, metabolomics and systems-level datasets. The MSc Bioinformatics programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

-Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
-You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
-Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
-Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
-The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
-You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
-The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
-In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
-You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
-Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
-Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
-Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

Core courses include:
-Programming (Java)
-Database Theory and Application
-Foundations of Bioinformatics
-Omics and Systems Approaches in Biology
-These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
-60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world

Optional courses include:
-RNA-seq and next generation transcriptomics
-Metagenomics
-Pathogen Polyomics
-Cancer Genomics - NGS and functional analysis methods
-Disease Pathway Analysis - Systems Approaches and De Novo Pathway Mapping
-Using Chemical Structure Databases in Drug Discovery for Protein Targets
-Identification of disease-causing genetic variants
-A range of more general biology and computing biology courses are also available in semester 2

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas, develop your specialisms and focus your study into a practical clinical research project.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Focus your specific interests under the guidance of your personal project advisor and develop an individual final project within the Centre for Biomedical Research and the Systems Biology Centre.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.

Choose from our modules to follow a path of study resulting in one of following MSc awards:
-Biomedical Science (Cellular Pathology)
-Biomedical Science (Clinical Biochemistry)
-Biomedical Science (Haematology and Transfusion)
-Biomedical Science (Immunology)
-Biomedical Science (Medical Genetics)
-Biomedical Science (Medical Microbiology)
-Begin your career with the confidence that the MSc Biomedical Science suite of awards are accredited by the Institute of Biomedical Science.
-Take the course as a full-time intercalated degree programme for those wishing to interrupt their studies as a medical or dental student.

For more information about the part-time version of this course, view this web-page: https://www.plymouth.ac.uk/courses/postgraduate/msc-biomedical-science-2

Course details

You’ll take five modules: three core modules, one diagnostic research applications module, plus one discipline-specific module to determine your final award. You'll design and execute a research project, supported by your project advisor. Other core modules include molecular biology (genomics, transcriptomics and proteomics) and project design and development, where you’ll also critically review scientific literature. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Core modules
-BIOM5005 Project Design and Development
-BIOM5001 Molecular Biology: Genomics, Transcriptomics and Proteomics
-BIOM5006 Research Project

Optional modules
-BIOM5008 Clinical Microbiology
-BIOM5002 Contemporary Applications of Cell Biology
-BIOM5003 Contemporary Science of Infection and Immunity
-BIOM5014 Bioinformatics
-BIOM5007 Cellular Basis of Clinical Immunology
-BIOM5009 Haematology and Transfusion
-BIOM5010 Medical Genomics and Personalised Medicine
-BIOM5011 Molecular and Cellular Pathology
-BIOM5012 Clinical Biochemistry

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
- check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Instructions in English. http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento2011&keyIF0362. Read more

Admission Notice now available

- check at
http://www.unipd.it/en/biotecnologie-alimentazione
http://www.unipd.it/en/how-apply

Instructions in English:
http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362
.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.
The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.
The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.
Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.
Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.
Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

During the two-years MSc course students attend the following 12 course units

Applied genomics for animal and crop improvement
Applied Bionformatics
Food Microbiology and Food Microbial Biotechnology
Molecular basis of disease, immunology, and transmissible diseases
Laboratory of advanced DNA, RNA, and protein analysis
Biotechnology for crop production
Epidemiology and risk analysis
Traceability tools for species authentication  
Advanced technologies for the agrifood sector (nanotechnologies, proteomics, metabolomics)
Biotechnology for plant protection
Food toxicology and food regulation
Foreign language (English)

First year
During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year
In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.
link to the Campus descriptions:
http://youtu.be/gR4qcWUXvGg

Read less
This course provides strong training in many issues at the forefront of biotechnology. It integrates bioscience, biochemistry and biomedical science. Read more
This course provides strong training in many issues at the forefront of biotechnology. It integrates bioscience, biochemistry and biomedical science.

Key benefits:

• Excellent career prospects in biotechnology and related fields
• Multidisciplinary course
• Biotechnology is a priority growth area in the North West

Visit the website: http://www.salford.ac.uk/pgt-courses/biotechnology

Suitable for

This course is for UK and international graduates who wish to gain knowledge in the emerging fields of biotechnology, and acquire the skills necessary for entering employment in the growing biotechnology industries such as food production, biomedicine and pharmaceuticals.

Programme details

This course has a good balance of biology, analytical biochemistry, and molecular biology and covers areas such as plant and medical biotechnology, bioinformatics, microbiology and proteomics. It is taught by specialists in medical bioscience, molecular biology, microbiology and plant science.

Module titles

• Research Methods
• Molecular Biology and Proteomics
• Genomics
• Novel Therapeutics
• Green Biotechnology
• Medical Biotechnology
• Bioscience Enterprise
• Analytical Methods
• Research Project

Assessment

Assessment is by a combination of written examinations, oral presentations, coursework, laboratory reports and submission of the dissertation.

Career potential

This course is particularly suited to those who wish to pursue a career in biotechnological or pharmaceutical industries, which are priority areas in both the UK and abroad. However, this course will also equip you to pursue careers in hospital laboratories and research institutes, or to continue to a PhD programme.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
Our Masters of Research (MRes) in Translational Medicine provides high-quality research and training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more
Our Masters of Research (MRes) in Translational Medicine provides high-quality research and training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

With advances in technology, graduates are now faced with heightened expectations to conduct effective bioscience research.
Employers demand skillsets comprising biological, medical, physical and computational characteristics and this Masters is designed to provide this breadth of training.

The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit.

Our MRes in Translational Medicine (Interdisciplinary Molecular Medicine) provides intense training in 'omics' skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics.

The training in metabolomic techniques is novel for a UK course, and teaching on the integration of different omic platforms and data in a systems medicine strategy is unique.

With its extended 35-week research project and broad training in biotechnology for medical healthcare, this MRes provides an excellent platform to progress into PhD research, or for a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

The MRes has substantial interdisciplinary focus; training comprises four taught modules before you undertake an extended 35-week research project within The University of Manchester, Waters or one of the Greater Manchester teaching hospitals.

A wide choice of projects are available (view the list of example projects), allowing individuals to focus on areas of interest such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

The MRes lasts for one year full-time, so it provides the ideal opportunity to experience the challenges of multidisciplinary research first-hand before committing to further training.

Over 85% of our graduates secure further research (PhD), pharmaceutical or biotechnology industry, or medical training posts upon completion.

Read less
The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.
Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.
- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.
- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.
- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.
When you enter the job market, you’ll have:
- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development
- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;
- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;
- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:
- University or research institute;
- Pharmaceutical company, such as Synthon or Johnson & Johnson;
- Food company, like Danone or Unilever;
- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:
- Biological or medical consultant;
- Biology teacher;
- Policy coordinator, regarding genetic or medical issues;
- Patent attorney;
- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology
In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches
Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples
Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:
- Autoimmune diseases, like rheumatoid arthritis and lupus
- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer
- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas and develop your specialisms.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.
-Part of the Institute of Biomedical Science (IBMS) accredited suite of MSc Biomedical Science awards.

Course details

You’ll take five modules: the core module (molecular biology: genomics, transcriptomics and proteomics), at least one diagnostic research applications module and one discipline-specific module to determine your final award. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.
You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you:
-Up-to-date knowledge of cellular and molecular pathology of various human diseases.
-The basis of therapeutic rationales for treating diseases and their development.
-An advanced understanding of recombinant DNA technology and how it is used to produce drugs.
-Experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry.
-The transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-pharmacology-and-biotechnology

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The certificate and diploma are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Fundamentals of pharmacology (15 credits)
-Molecular biology (15 credits)
-Biotechnology (15 credits)
-Professional development (15 credits)
-New approaches to pharmacology (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Optional modules (one from)
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Pharmaceutical drug development (15 credits)
-Human genomics and proteomics (15 credits)

Assessment
Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Read less
Biotechnology is a key international growth area and this course is driven by the latest commercial and research advances in the field. Read more
Biotechnology is a key international growth area and this course is driven by the latest commercial and research advances in the field. Students have the opportunity to learn from experienced academic researchers with the possibility of undertaking a research project in industry.

This exciting course is designed to give you the theoretical and practical skills needed for a career in Biotechnology within companies and research organisations.

This course is ideal if you:

-Are a recently qualified undergraduate and are looking for the professional skills needed to obtain a job in a Biotechnology company
-Are working in an organisation and want a masters-level qualification to give you a competitive edge
-Require the skills and experience needed to study for a research degree
-Are an international student who would like to study abroad
-Would like a course delivered by experienced research academics, with the possibility of completing a research project in industry.

Modules

-Research Methods and IT
-Practical Techniques in Genomics and Proteomics
-Research Project; Molecular Biology and DNA Technology
-Cell Culture and Antibody Technology
-Enzyme Technology and Biocatalysis
-Microbial Physiology and Genomics

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less
This Masters programme in Biomedical Sciences offers research training for students intending to proceed to PhD. It is largely based on individual research projects rather than coursework, and allows you to specialise in a particular area of study. Read more
This Masters programme in Biomedical Sciences offers research training for students intending to proceed to PhD. It is largely based on individual research projects rather than coursework, and allows you to specialise in a particular area of study.

Why this programme

-The programme provides training in a wide range of modern molecular biology techniques required to pursue a research career.
-You will gain valuable practical research experience by using the skills and techniques acquired during the programme to complete two extensive research projects.
-The programme is distinctive in that students complete two different extensive research projects of their choice, allowing them to acquire a wide range of knowledge and skills directly relevant to the study of human disease.
-If you are aiming to study for a higher degree, this programme is designed for you.
-If you want to enter the pharmaceutical and biotechnology industries, this programme provides excellent training; and is an ideal introduction for overseas students who may wish to proceed to PhD studies in the UK.
-You can choose to specialise within a particular discipline or area, which can be important for career development, see programme structure below for more information.

Programme structure

The overall aims of the programme are:
-To provide students with the knowledge, skills and confidence needed to pursue a career in laboratory research.
-To provide students with a theoretical and practical understanding of advanced techniques used in modern biomedical sciences research.
-To provide students with the opportunity to practice research skills in the laboratory by completing two extensive research projects.
MRes students have the opportunity to specialise in a particular discipline or area, which can be important for their career development. The specialisations are:
-Biotechnology
-Cancer Studies
-Cardiovascular Studies
-Cell Engineering
-Integrative Mammalian Biology Fee Waiver
-Integrative Mammalian Biology Scholarship
-Medical Biochemistry and Molecular Biology
-Molecular Genetics
-Neuroscience
-Proteomics

To qualify for a specialisation, students must select two research projects in a cognate research area.

Research projects

The central and most important part of the MRes is the two research projects that students undertake. Students choose both projects themselves in the subject areas that interest them and that will allow them to follow the career path they wish follow. The MRes programme has a huge number of projects which students can choose from, across a wide spectrum of biomedical science.

The following are examples of the types of projects offered, to illustrate the range of subject areas.

-Making blood from human embryonic stem cells
-A gene-microarray based approach to the detection of recombinant human erythropoietin doping in endurance athletes
-Neuropathology of trypanosomiasis
-Development of a new technique for stem cell transfection
-Cloning and analysis of an inflammatory factor in cancer and autoimmune disease
-Analysis of viral induced cancer

Each year students have about 100 different projects to choose from and all students find research topics that interest them.

Read less
This course develops the theoretical and practical skills needed for a career in pharmacology by familiarising students with the latest advances in commercial pharmacological science. Read more
This course develops the theoretical and practical skills needed for a career in pharmacology by familiarising students with the latest advances in commercial pharmacological science.

This course is ideal if you:

-Are a recently qualified undergraduate and are looking for the professional skills needed to obtain a job in a pharmaceutical company
-Are working in an organisation and want a masters-level qualification to give you a competitive edge
-Require the skills and experience needed to study for a research degree
-Are an international student who would like to study abroad
- Would like a course delivered by experienced research academics, with the possibility of completing a research project in industry.

Modules

-Research Methods and IT
-Business and Bioethics
-Practical Techniques in Genomics and Proteomics
-Research Project
-Molecular Biology and DNA Technology
-Cell Culture and Antibody Technology
-Enzyme Technology and Biocatalysis
-Pharmacology

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less
This course covers a wide range of up-to-date and industry relevant technologies and will enable students to become familiar with the latest advances and commercial techniques. Read more
This course covers a wide range of up-to-date and industry relevant technologies and will enable students to become familiar with the latest advances and commercial techniques.

This exciting course is designed to give you the theoretical and practical skills needed for a career in molecular bioscience within companies and research organisations.

This course is ideal if you:

-Are a recently qualified undergraduate and are looking for the professional skills needed to obtain a job in a bioscience company
-Are working in an organisation and want a masters-level qualification to give you a competitive edge
-Require the skills and experience needed to study for a research degree
-Are an international student who would like to study abroad
-Would like a course delivered by experienced research academics, with the possibility of completing a research project in industry.

Modules

-Research Methods and IT
-Business and Bioethics
-Practical Techniques in Genomics and Proteomics
-Research Project
-Molecular Biology and DNA Technology
-Cell Culture and Antibody Technology
-Enzyme Technology and Biocatalysis
-Biology of Disease

COME VISIT US ON OUR NEXT OPEN DAY!

Register here: https://www.ntu.ac.uk/university-life-and-nottingham/open-days/find-your-open-day/science-and-technology-postgraduate-and-professional-open-event2

The course is a part of the School of Science and Technology (http://www.ntu.ac.uk/sat) which has first-class facilities (http://www.ntu.ac.uk/sat/facilities).

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X