• Loughborough University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Arden University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Worcester Featured Masters Courses
Northumbria University Featured Masters Courses
"prosthetics" AND "orthot…×
0 miles

Masters Degrees (Prosthetics And Orthotics)

  • "prosthetics" AND "orthotics" ×
  • clear all
Showing 1 to 10 of 10
Order by 
This MSc programme combines knowledge of the engineering and medical sciences with advances in technology and practice to generate applications and solutions to clinically relevant problems. Read more

Why this course?

This MSc programme combines knowledge of the engineering and medical sciences with advances in technology and practice to generate applications and solutions to clinically relevant problems.

It affords a Masters level degree in this clinical area, while considering globally the effects of disability within a population and society’s approaches globally.

This is one of the few programmes globally that offers a specific degree in prosthetics and orthotics. The National Centre for Prosthetics and Orthotics (NCPO) has an international reputation for quality education within this field. The staff of the NCPO is involved in research and clinical practice both nationally and internationally.

The main aim of the course is to produce postgraduates capable of developing careers in allied health professionals and biomedical engineering (research, industrial and NHS).

We require candidates first degree to be in Prosthetics & Orthotics. Our learning environment brings together ideas and concepts from science, medicine and engineering to enable the development of relevant clinical and industrial research.

What you'll study

Taught classes, laboratory demonstrations, practical exercises and clinical visits take place during semesters 1 and 2. Diploma students then complete a project dissertation and MSc students complete a research or development project reported by a thesis.

Work placement

Visits to local clinical centres and lectures from industrialists and visiting experts from the UK and overseas are an integral part of our courses.

You'll also have the opportunity to meet our many industrial and clinical collaborators to help advise and further your career.

Major projects

You'll undertake a clinically relevant project in the rehabilitation area of prosthetics and/or orthotics.

Facilities

The Department of Biomedical Engineering consists of the Bioengineering Unit and the National Centre for Prosthetics and Orthotics – two complementary and key areas of health technology teaching and research within the University.

The National Centre for Prosthetics and Orthotics was established in 1972, growing out of the Bioengineering Unit at the University of Strathclyde, which was established more than 50 years ago, both being internationally-recognised centres of excellence for education and research at the interface of engineering and the medical science, with particular emphasis on clinically-related teaching and research. The new department of Biomedical Engineering in 2012 was formed through the merger of these two esteemed units.

Research areas include:

Rehabilitation Engineering
Medical Devices
Diagnostic Technologies: the Foot in Diabetes

The department also hosts the Centre for Doctoral Training in Medical Devices and Health Technologies, the Strathclyde Institute of Medical Devices and the Centre for Excellence in Rehabilitation Research.

In addition the department is a major partner in the Glasgow Research Partnership in Engineering; Health Technologies Knowledge Transfer Network; and Glasgow Health Technology Cooperative.

Guest lectures

This programme will include internationally recognised lecturers from the World Health Organisation and large NGOs globally which may include Handicap International and the international Committee for the Red Cross.

Fees and funding

Scotland/EU/Rest of UK: Any UK practicing Orthotist wishing to undertake this Masters programme will be eligible to apply for funding from the Orthotic Education and Training Trust OETT, and would be considered for funding up to a maximum or 67%.

International: £19,100

International Excellence Awards: Biomedical Engineering is pleased to offer these prestigious competitive scholarships to four full-time international applicants to the MSc Biomedical Engineering. Recipients will be awarded up to £4,000 towards their fees. The recipients will be notified before the beginning of term.

The China-Scotland Friendship Award: This award of £4,000 towards tuition fees is offered to a Chinese applicant of outstanding ability. The recipient will be notified before the beginning of term.

Biomedical Engineering Celebration Awards for India: These awards of £6,000 towards tuition fees are open to well-qualified applicants from India joining the one-year full-time MSc Biomedical Engineering. The final submission date for applications is 29 May 2015. Applicants will be advised of the outcome in June 2015.

Biomedical Engineering Malaysia Award: This competitive award of £4,000 towards tuition fees is offered each year to one very well-qualified Malaysian applicant to the MSc Biomedical Engineering. The recipient will be notified before the beginning of term.

Home applicants: Home applicants may apply for a Postgraduate Student Awards Agency for Scotland (PSAS) loan which covers the cost of tuition fees on specific eligible courses.

Scottish students: Students living in Scotland can find out more about funding from the Student Awards Agency Scotland.

Read less
The postgraduate course in Prosthetics & Orthotics Rehabilitation Studies is modular and intended for off-campus delivery. Read more

Why this course?

The postgraduate course in Prosthetics & Orthotics Rehabilitation Studies is modular and intended for off-campus delivery. The course can lead to an award of an MSc, Postgraduate Diploma or Postgraduate Certificate.

The course has been designed for professionals already working in prosthetics, orthotics, therapy, surgery or associated disciplines. They're offered by distance learning allowing you to study at your own pace, at times and places that are convenient for you.

You’ll study

You'll select courses from the range of instructional modules available. The choice will be limited by initial qualifications.

Optional modules:
Clinical Governance
Orthotic Studies*
Prosthetic Studies*
Introductory Biomechanics
Lower Limb Prosthetic Biomechanics
Lower Limb Orthotic Biomechanics
Clinical Gait Analysis
* not available to prosthetists or orthotists

Restricted modules (for professional prosthetists/orthotists only):
Advanced Prosthetic Science
Advanced Orthotic Science

Please note that not all modules may be offered every year.

All modules count for 20 credits towards a postgraduate qualification.

MSc

You must obtain 180 credits to be awarded the MSc Rehabilitation Studies.

You must have completed the compulsory classes Research Methodology and Data Analysis, as well as the final project which is 60 credits. All other modules are from the options list.

Postgraduate Diploma

If you obtain a minimum of 120 credits from a selection of the optional and restricted modules you may be awarded a Postgraduate Diploma in Rehabilitation Studies.

Postgraduate Certificate

If you obtain a minimum of 60 credits from a selection of the optional and restricted modules you may be awarded a Postgraduate Certificate.

Major projects

The final year project aims to develop planning, resourcing and implementing healthcare focused research skills within a work based research project. You'll be involved in a number of processes which include:

-justification of the selected topic
-selecting, devising and applying appropriate methods and techniques
-applying for ethical approval where human subjects are involved
-anticipating and solving problems which arise
-displaying knowledge of background literature
-evaluating and reporting the conclusions of the study

The project may take the form of an extended literature review or involve experimental work. This project work will have been supported by compulsory modules in research methodology and data analysis.

Read less
This MRes conversion course is ideal for graduates interested in developing a research career in an academic, industrial or clinical setting. Read more
This MRes conversion course is ideal for graduates interested in developing a research career in an academic, industrial or clinical setting. It introduces biomedical engineering and provides extensive training in research methodology and practice.

The MRes is a credit-based modular degree comprising both assessed instructional modules and project work. Students must obtain a minimum of 180 credits, 60 of them by satisfactory completion of instructional classes and 120 by satisfactory completion of research project requirements.

Instructional modules are selected from conversion classes, compulsory classes and advanced study class options as follows (number of credits in brackets):

Conversion Classes

. Engineering Science (20)
. Medical Science (20)

Compulsory Taught Classes

. Professional Studies in Biomedical Engineering (10)
. Research Methodology (10)

Advanced Class Options (minimum of one)

. Biomedical Electronics (10)
. Biomedical Instrumentation (10)
. Introduction to Biomechanics (10)
. Clinical and Sports Biomechanics (10)
. Tissue Mechanics (10)
. Biomaterials and biocompatibility (10)
. Regenerative Medicine & Tissue Engineering (10)
. Cardiovascular Devices (10)
. Prosthetics and Orthotics (10)
. Bio-signal Processing and Analysis (10)


Students also undertake a research/development project (120 credits), chosen from a pool of relevant industrial or clinical projects, and submit a thesis.

Read less
The term Clinical Gait Analysis now means different things to different people. This programme has been designed for health professionals already employed within a clinical service offering full three dimensional gait analysis (kinematics, kinetics and EMG). Read more
The term Clinical Gait Analysis now means different things to different people. This programme has been designed for health professionals already employed within a clinical service offering full three dimensional gait analysis (kinematics, kinetics and EMG). It requires students to have access to these facilities to support their learning. It is not appropriate for people who only have access to more basic technology or who are hoping to move into the field but who have no current access to such facilities.

This course is part of the EU CMAster project that establishes masters level education in clinical gait analysis.

The course is distance based with set weekly learning objectives incorporating both self-study and group reflection. A highly practical approach embeds learning into professional practice by using your own measurement systems and clinical data.

You will benefit from the knowledge and expertise of the course leader Professor Richard Baker. Richard has over 20 years experience delivering and managing clinical gait analysis services in Europe and Australia. He was founding Director of the Australian National Health and Medical Research Council Centre for Clinical Research Excellence in Clinical Gait Analysis.

If you are a professional with a technical or clinical background who wants to be equipped with the skills and knowledge required to be competent across all of the major elements of clinical gait analysis this course will meet your needs.

Students enrolling from 2014 onwards will have the option of undertaking a full-time research project at KU Leuven (Belgium) or VU Amsterdam (The Netherlands) as an alternative to Module 5. Erasmus funding may be available to support this. This is part of the CMAster collaboration.

Key benefits:

• Benefit from a strong focus on practical gait analysis and the interpretation of clinical data
• Fit your studies around your work – the course is delivered part-time by distance learning
• Receive guidance and support from a pioneer in the field in both Europe and Australia

Visit the website: http://www.salford.ac.uk/pgt-courses/clinical-gait-analysis

Suitable for

Health professionals with a technical or clinical background already working in instrumented clinical gait analysis services.
You will need to have access to kinematic, kinetic and EMG measurement systems and local guidance in how to use them

Programme details

MSc Clinical Gait Analysis helps you to gain:

• a systematic understanding of the theoretical basis and practical application of clinical gait analysis with an awareness of current challenges and new insights which is at the state of the art.
• a comprehensive understanding of techniques applicable to your own research, advanced scholarship and evidence based practice and a proven ability to apply these with originality and practical understanding to improve your clinical practice.
• excellent learning and critical appraisal skills to serve as a foundation for self-directed lifelong learning and continuing professional and clinical development.

Format

The course is delivered entirely by distance learning. Most of the learning will be through a number of learning tasks that the student is expected to perform and reflect upon as an individual and within learning groups. There will be a specific emphasis on learning through giving and receiving peer feedback. Students will have access to a wide range of materials prepared for the University of Salford and our European partners in at the VU University in Amsterdam and the Katholieke Universiteit in Leuven, Belgium.

Students will be encouraged to spend some time learning abroad particularly for a clinical placement. European students who spend more than five weeks in a country other than their own or the UK will qualify for a Diploma Supplement recording their participation in the CMAster programme.

Module titles

• Measuring Walking
• Healthy Walking
• Walking with Pathology
• Clinical Data Interpretation
• Major Project

Assessment

You will be assessed through:

• Electronic portfolio of work completed
• Professional interview
• Contribution to course wiki
• Clinical and measurement case studies
• Negotiated assessment illustrating how you are applying your education to your clinical practice
• Written dissertation in form of paper for publication

Career potential

The course will provide you with a strong foundation for further professional development and career advancement.
The aim of the EU CMAster Project is to educate Europe’s next generation of clinical movement analysts.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The MCh Orth Course in Dundee (accredited by the Royal College of Surgeons of England) is a clinically-based Masters degree that encompasses taught, clinical attachment and research elements, which provide orthopaedic surgeons with in-depth knowledge of the latest advances in surgical and biomechanical techniques. Read more
The MCh Orth Course in Dundee (accredited by the Royal College of Surgeons of England) is a clinically-based Masters degree that encompasses taught, clinical attachment and research elements, which provide orthopaedic surgeons with in-depth knowledge of the latest advances in surgical and biomechanical techniques.

In the 2008 Research Assessment Exercise, to reflect the multi-disciplinary aspect of the research carried out at IMAR, where the majority of the MCh Orth projects are conducted, the respective staff were returned into Unit of Assessment 25 (General Engineering - Biomedical Engineering) and Unit of Assessment 8 (Primary Care and Other Community Based Clinical Subjects) where 90% and 85% of our quality profile was deemed of international class. This is an excellent outcome taking into consideration that IMAR was only established in 2003 in support of the MCh Orth course.

Why study Orthopaedic Surgery at Dundee?

There are six key reasons:
- Course accredited by the Royal College of Surgeons of England
- Best lecturing faculty drawn from specialists across the entire UK
- Best research experience in clinical and biomechanics in association with the Institute of Motion Analysis and Research, one of the leading facilities in biomechanics and motion analysis worldwide
- Associated clinical attachment with a consultant orthopaedic surgeon with no need for GMC registration
- Our MCh Orth philosophy is to recruit ambitious orthopaedic surgeons with career aspirations that encompass leadership, academic excellence and the highest levels of skill and expertise
- Our successful MCh Orth graduates value education and recognise the need for professional reflection and lifelong learning to deepen their understanding, and to enhance their ability and develop a sound professional judgement

We have been successfully educating orthopaedic surgeons for 20 years and to date we have over 350 graduates. We continue to offer the highest standard of visiting external lecturer and orthopaedic lecture topics to be found anywhere and on any other similarly titled course; arthritis, foot and ankle, gait and motion analysis, hand and wrist, biomechanics, hip and knee, paediatrics, imaging techniques, shoulder and elbow, trauma, wheelchairs and seating systems, spine, research, statistical analysis and many other associated specialities.

What's so good about studying Orthopaedic Surgery at Dundee?

This programme is delivered by the Department of Orthopaedic & Trauma Surgery and the Institute of Motion Analysis & Research within the School of Medicine.

"It was a great learning experience. Coming here, my overall personality has changed. I have learnt the right way to write thesis and also got to know the recent advancements in field of Orthopaedic surgery."
International Student Barometer, 2009

How you will be taught

You will be taught via lectures, tutorials, multi-media demonstrations, dry bone workshops, anatomy demonstrations, clinical and operating theatre attachments, and hands-on latest surgical techniques using Thiel embalming cadavers, which is unique to Dundee in the whole of the UK.

What you will study

Bioengineering material will provide you with basic science and permitting you, as clinicians, to associate with clinical engineering materials to compliment your clinical knowledge. A formal programme of lectures, tutorials, multi-media demonstrations, dry bone workshops, anatomy demonstrations, clinical and operating theatre attachments, and hands on latest surgical techniques (using

Thiel Embalming cadavers, which is unique to Dundee in the whole of the UK) are provided and these include:
Foot and Ankle
Hand and Wrist
Hip and Pelvis
Knee
Paediatric Orthopaedics
Shoulder and Elbow
Spine
Trauma
Tumour
Infection
Pathology
Disability Medicine
Biomechanics
Implants
Introduction to Mechanics
Orthopaedic Technology
Statistics in Medical Research
Mechanics of Materials
Orthotics
Prosthetics
Seating and Wheelchairs
Foot Pressure Analysis
Gait Analysis
Motion Analysis
Sports Injury

How you will be assessed

The programme assessment is made up of three elements: two written MCQs (one per semester) using the latest e-assessment technology and iPads, OSCE and a thesis. Candidates will be examined orally on the subject of thesis by a committee consisting of a convenor, an external and internal examiners. Students are required to pass each element to qualify for the award of the degree. There is no resit facility.

Careers

Many of our MCh Orth graduates have gone on to highly successful careers once returned to their own countries with many taking up new challenges and opportunities within the UK up to Consultant position. Several have published widely in journals and at conferences and have even gone onto Fellowships throughout Europe and employment in the UK.

This unique MCh Orth course offers a truly wide ranging curriculum that will help you to achieve your career goals no matter what your speciality. Our distinguished visiting lecturers are specialists at the forefront of innovative orthopaedics and continue to return each year to teach as they understand the value and benefit of this course to working surgeons. They care deeply about the course and what it has achieved over the last twenty years and without their support we would not have been able to be so successful.

Read less
Accreditation. Institute of Physics and Engineering in Medicine (IPEM). The MSc is a modular conversion course which provides broad training in biomedical engineering to help you progress with a career in research, industry or in the NHS. Read more
Accreditation: Institute of Physics and Engineering in Medicine (IPEM)

Why this course?

The MSc is a modular conversion course which provides broad training in biomedical engineering to help you progress with a career in research, industry or in the NHS.

We bring together engineering, medicine and the life and physical sciences to enable the development of relevant clinical and industrial research.

The programme explores advances in technology and engineering to generate applications and solutions to clinically relevant problems.

As part of the course you’ll go on visits to local clinical centres and attend lectures from industrialists and visiting experts from the UK and overseas. You’ll also have the opportunity to meet our many industrial and clinical partners to help advise and further your career.

You’ll study

The first and second semesters consist of taught classes, laboratory demonstrations, practical exercises and clinical visits.

Following this, Diploma students complete a project dissertation and MSc students complete a research or development project reported by a thesis.

Facilities

The Department of Biomedical Engineering was formed in 2012 following the merger of the Bioengineering Unit and the National Centre for Prosthetics & Orthotics.

Accreditation

The MSc in Biomedical Engineering is accredited by the Institute of Physics and Engineering in Medicine (IPEM). An IPEM-accredited MSc is normally required for those wishing to pursue careers as Clinical Scientists in the National Health Service.

Learning & teaching

Instructional classes include:

-lectures
-laboratory demonstrations
-practical exercises
-clinical visits

You’ll also have the opportunity to visit local clinical centres and attend seminars given by visiting experts from the UK and overseas.

Assessment

This credit-based modular degree comprises assessed instructional modules and project work.

Careers

How much will I earn?

The starting salaries for entry level medical engineering technicians in the NHS range between £21,176 and £27,625 (Band 5)*.

Salaries for biomedical engineers in the private sector are comparable to those in the NHS, ranging between £21,000 and £45,000 depending on experience and level of responsibility*

Read less
Technology has always been central for the diagnosis and treatment in orthopaedics, biomechanics and rehabilitation, and the use of technology has never been greater than it is at the present time. Read more
Technology has always been central for the diagnosis and treatment in orthopaedics, biomechanics and rehabilitation, and the use of technology has never been greater than it is at the present time. For instance, twenty-five years ago there was only one type of artificial hip and today there are more than forty. This rapid development has considerable implications for all those working in the fields of orthopaedics and rehabilitation. This programme aims to provide an understanding of the principles involved in the development, application and evaluation of orthopaedics, biomechanics and rehabilitation technology.

The programme consists of two seperate courses, the Postgraduate Diploma in Orthopaedic and Rehabilitation Technology and the MSc in Orthopaedic and Rehabilitation Technology. For each course there are four groups of distance learning modules. In addition, the MSc course includes a project. The courses must be completed within a period of two to five years from the start date.

This programme is delivered by the Orthopaedic & Trauma Surgery Department.

In the 2008 Research Assessment Exercise, to reflect the multi-disciplinary aspect of the research carried out at the Orthopaedic & Trauma Surgery Department where the majority of staff are tutors on this programme, the respective staff were returned into Unit of Assessment 25 (General Engineering - Biomedical Engineering) and Unit of Assessment 8 (Primary Care and Other Community Based Clinical Subjects) where 90% and 85% of our quality profile was deemed of international class.

Aims of the Programme

The programme is intended to provide students with an understanding and knowledge of the technological aspects of orthopaedics and rehabilitation.

Programme Content

The programme consists of four taught modules: Introductory Topics, Biomechanics, Rehabilitation Technology and Orthopaedic Technology. In addition, those studying for an MSc, undertake a research project in a relevant area.

Each student is assigned a tutor, who is available for direct contact by telephone; a telephone answering service is available after office hours, and you may also contact your tutor by email, post or fax. Email is the preferred option for all tutor contact.

For detailed information on the syllabus, visit the course website.

Methods of Assessment

The modules are assessed by a combination of written examination and continuous assessment. In addition, the research project, undertaken by those studying towards an MSc, is assessed by dissertation and oral examination.

Coursework:
At the end of each module group you submit an assignment to your tutor(s) for assessment. A copy of the assignment is returned to you with your marks and the original is retained by the University. The assignment forms the coursework element of the final assessment.

Examinations:
Written examinations are held during March every year in Dundee and also by arrangement at fully approved examination centres throughout the United Kingdom and overseas. You will sit either four or five examinations, depending on the introductory modules you have studied. You must complete all the modules in a module group, including the assignment, before you can sit the exam(s) for that group. You may choose to sit all the exams together or spread them throughout your course.

Dissertation:
The Masters project is assessed by dissertation and viva (oral examination). Vivas are held during September each year in Dundee. Course regulations require MSc students to pass the final assessment for the Diploma course before they may submit their dissertation.

Learning Materials

For each module, you receive learning materials consisting of a module guide and one or more study guides. The module guide for each module provides information about the structure, recommended reference materials and the tutor support system. Modules consists of several individual units, each unit dealing with a different aspect of the module. For every unit there is a study guide that explains the objectives of that unit (what you will have learned by the end of the unit) and leads you through the learning material, section by section, using text, illustrations, activities, exercises and references to the recommended textbooks.

You monitor your own progress through the unit by completing the self-assessment questions, which are placed at regular intervals throughout the text, and checking your answers against those provided in the study guide. At the end of each study guide, there is a short exercise which you complete and return to your tutor for marking.

Tutor Support

When you need to discuss any aspects of your study, you may contact your tutor for support. Your tutor is available for direct contact by telephone at set times during the week, as specified in the module guide for each module. A telephone answering service is available after office hourse and you may also contact your tutor by email, post or fax.
You recieve a regular newsletter and are encouraged to contact other students, even to form local groups where possible, to share ideas.

Students wishing to pursue the MSc must complete the Diploma within 3 years part-time or 9 months full-time. The MSc must be completed within a period of 1 year full-time or 2-5 years part-time.

Fees must be paid in full prior to commencing the course (in-house only).

Read less
This programme is delivered by the Institute of Motion Analysis & Research within the Department of Orthopaedic & Trauma Surgery at the TORT Centre. Read more
This programme is delivered by the Institute of Motion Analysis & Research within the Department of Orthopaedic & Trauma Surgery at the TORT Centre.

The Institute of Motion Analysis and Research (IMAR) was established in 2003 by combining the Foot Pressure Analysis Laboratory and the Dundee Gait Laboratory at the Orthopaedic and Trauma Surgery Department, University of Dundee. However, gait analysis has been at the forefront of development in this field for the past 25 years and foot pressure measurement for the past 16 years, which gives us a tremendous bank of knowledge on which to draw. IMAR's main goal is to promote excellence in teaching and research and to provide a comprehensive clinical service in the field of motion analysis.

A third laboratory dedicated to Sports Biomechanics is currently nearing completion to augment and support the current facilities of IMAR.

In the 2008 Research Assessment Exercise, to reflect the multi-disciplinary aspect of the research carried out, the respective staff at IMAR were returned into Unit of Assessment 25 (General Engineering - Biomedical Engineering) and Unit of Assessment 8 (Primary Care and Other Community Based Clinical Subjects) where 90% and 85% of our quality profile was deemed of international class. This is an excellent outcome taking into consideration that IMAR was only established in 2003.

Aims of the Programme

The programme is intended to provide students with an understanding and knowledge of the technological aspects, and the fundamental and advanced concepts of motion measurement and clinical analysis.

Programme Content

This is a modular course, which includes a foundation module, plus the following subjects:
Motion Measurement
Fundamentals in Motion Analysis
Advanced Motion Analysis
For more details, visit the course website.

In addition, those studying for an MSc undertake a research project in a relevant area.

Methods of Assessment

The modules are assessed by a combination of written examination and continuous assessment. In addition, the research project, undertaken by those studying towards an MSc, is assessed by dissertation and oral examination.

Coursework:
At the end of each unit you submit an assignment to your tutor for assessment, along with an assignment card containing a signed declaration that the work submitted is your own. A copy of the assignment is returned to you with your marks and the original is retained by the University. The assignments form the coursework element of the final assessment for both courses.

Examinations:
Written examinations are held during March/ April each year in Dundee. Under special circumstances exams can also be sat by arrangement at approved examination centres (for example, at British Council Offices) outside, and in the United Kingdom. If you sit an examination outside Dundee you will be responsible for paying any costs the examination centre may charge

You must complete all the modules in a module group, including the assignment, before you can sit the exam(s) for that particular group. You may choose to sit all the exams at one time or spread them throughout your course .

Dissertation:
The MSc project is assessed by dissertation and viva (oral examination). Vivas are held in Dundee.

Available Courses

MSc (distance learning) - Normally up to 36 months £8,650
PGDip (distance learning) - Normally up to 36 months* £5,650
PGCert (distance learning) - Normally up to 18 months £2,825
MSc (in house) 12 months - £10,000

If taken in-house, the start date for this course is September. The distance learning start date can be at any point in the year.
*PG Dip to be normally completed in 24 months if the MSc is being considered.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X