• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Dundee Featured Masters Courses
Coventry University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Bath Featured Masters Courses
"prosthetic"×
0 miles

Masters Degrees (Prosthetic)

We have 15 Masters Degrees (Prosthetic)

  • "prosthetic" ×
  • clear all
Showing 1 to 15 of 15
Order by 
Our Maxillofacial Prosthetic Rehabilitation MSc has been designed for maxillofacial prosthetists, technologists and prosthodontists to learn to use cutting edge digital technology for intra and extra-oral prosthetic facial rehabilitation in clinical practice. Read more

Our Maxillofacial Prosthetic Rehabilitation MSc has been designed for maxillofacial prosthetists, technologists and prosthodontists to learn to use cutting edge digital technology for intra and extra-oral prosthetic facial rehabilitation in clinical practice.

Delivered primarily online, the programme will enable you to develop your technical skills and develop higher standards of clinical practice without disrupting your professional and personal life. The content is prepared by world-leading experts, augmented with face-to-face skills training, and enables you to enhance your knowledge of prosthetic facial rehabilitation and improve your clinical and technical skills while continuing to practice anywhere in the world.

Key benefits

  • Internationally renowned centre of excellence for teaching and research.
  • Pioneers of distance learning in dentistry with over 20 years’ experience.
  • Intensive face-to-face residential blocks, teaching theory and best clinical practice.
  • International teaching team of world experts.

Description

This programme will allow you to develop and demonstrate your extended knowledge, understanding and advanced skills in the treatment of patients who require prosthetic facial rehabilitation. You will study and practice a broad range of treatments for the replacement of missing hard and soft tissues, using both traditional and advanced digital technologies. The course includes:

  • Advanced prosthodontics, implantology, ocular prosthetics, fixed and removable prosthodontics, treatment planning and prosthesis design.
  • Digital technology, colour science, medical emergencies, cross infection control and care of medically/clinically compromised patients.
  • Biomaterials science, craniofacial implants, silicone elastomers and gels, tissue engineering and bone substitutes, biocompatibility.
  • Psychology of managing terminally ill patients, counselling skills and forming integrated care plans, or intra oral implantology, and advanced fixed and removable prosthodontics

View course taster.

Please note - The provision of any clinical opinions, treatment planning, treatment plans and/or any advice in relation to care of individual patients will not be provided by the teachers and staff of the programme. Patient treatment and care is the sole responsibility of the treating clinician. Advice regarding the suitability of a clinical case for submission for the clinical module can be given at the tutor’s discretion.

Intensive face-to-face training blocks

Delivered primarily online, the course also provides 18 days of intensive teaching and practical training at Rangoonwala College of Dental Sciences and Research Centre, Pune, India. Under expert supervision, these blocks are an invaluable way to consolidate learning and progress to the final year.

Teaching

You will be taught mostly online through King's E-learning and Teaching Service (KEATS) which provides information, interactive questions, assignments, use of bibliographic databases and reading material. This gives you the freedom to study without interrupting your work and personal life, and to put your skills directly into practice. Our students participate in online tutorials and discussion groups, interacting with expert tutors and their fellow students. Face-to-face lectures and hands-on training take place in blocks in the first two years. Students are required to undertake and submit 4 cases of clinical work in their place of work. 

Course format and assessment

60% per cent of each module will be assessed through exams and 40% through in-course assessment, with the exception of the Clinical Practice module, which is assessed entirely through coursework, and the Maxillofacial Prosthetic Rehabilitation Research Report module which is assessed on a dissertation.

You can take your exams in London or, for overseas students, at centres in your country of residence.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Why this course?. The postgraduate courses offered are modular and intended for off-campus delivery. The courses can lead to an award of an MSc., Postgraduate Diploma or Postgraduate Certificate. Read more

Why this course?

The postgraduate courses offered are modular and intended for off-campus delivery. The courses can lead to an award of an MSc., Postgraduate Diploma or Postgraduate Certificate.

The courses have been designed for professionals already working in prosthetics, orthotics, healthcare, medicine or associated disciplines. They are offered by distance learning allowing you to study at your own pace, at times and places that are convenient for you.

You’ll study

You'll select courses from the range of instructional modules available. The choice will be limited by initial qualifications. 

Optional modules

  • Clinical Governance
  • Orthotic Studies*
  • Prosthetic Studies*
  • Introductory Biomechanics
  • Lower Limb Prosthetic Biomechanics
  • Lower Limb Orthotic Biomechanics
  • Clinical Gait Analysis

* not available to prosthetists or orthotists

Restricted modules (for professional prosthetists/orthotists only)

  • Advanced Prosthetic Science
  • Advanced Orthotic Science

Please note that not all modules may be offered every year.

All modules count for 20 credits towards a postgraduate qualification.

MSc

You must obtain a total of 180 credits which includes 120 credits from a selection of compulsory, optional and restricted modules and 60 credits from a final project to be awarded an MSc in:

  • Rehabilitation Studies
  • Prosthetic Rehabilitation Studies
  • Orthotic Rehabilitation Studies
  • Prosthetic & Orthotic Rehabilitation Studies

Postgraduate Diploma

If you obtain a minimum of 120 credits from a selection of the optional and restricted modules, you may be awarded a Postgraduate Diploma in:

  • Rehabilitation Studies
  • Prosthetic Rehabilitation Studies
  • Orthotic Rehabilitation Studies
  • Prosthetic & Orthotic Rehabilitation Studies

Postgraduate Certificate

If you obtain a minimum of 60 credits from a selection of the optional and restricted modules, you may be awarded a Postgraduate Certificate in:

  • Rehabilitation Studies
  • Prosthetic Rehabilitation Studies
  • Orthotic Rehabilitation Studies
  • Prosthetic & Orthotic Rehabilitation Studies

Major projects

The final year project aims to develop planning, resourcing and implementing healthcare focused research skills within a work based research project. You'll be involved in a number of processes which include:

  • justification of the selected topic
  • selecting, devising and applying appropriate methods and techniques
  • applying for ethical approval where human subjects are involved
  • anticipating and solving problems which arise
  • displaying knowledge of background literature
  • evaluating and reporting the conclusions of the study

The project may take the form of an extended literature review or involve experimental work. This project work will have been supported by compulsory modules in research methodology and data analysis.

Learning & teaching

You select instructional modules from the range available. All the modules include:

  • coursework
  • classwork
  • tutorials
  • self-directed learning (with the appropriate academic support)

Some modules will require you to attend a residential week at the National Centre for Prosthetics & Orthotics.

The course is delivered by distance learning. All course materials are available on the University's virtual learning environment 'Myplace' along with a timetable of coursework submission and feedback dates. You can upload coursework to myplace at the appropriate time for each module and feedback is provided by an agreed feedback date. Skype is also available for individual contact with supervisors.

Guest lectures

A range of guest lecturers contribute the research methodology/data analysis and clinical gait analysis residential weeks.

Assessment

You must perform all coursework and course assignments satisfactorily. Some modules may require a pass in a written exam at the end of a compulsory residential week. Exams are held at the conclusion of each of the instructional modules, either at the end of the residential week in the National Centre or overseas at a nominated local institute or British Council Office.

If you do not show satisfactory progress you may, on the advice of either the Course Co-ordinating Committee or the Board of Examiners, be permitted to transfer your registration to the Postgraduate Diploma or the Postgraduate Certificate.

You’ll only be allowed one attempt to pass each exam. However, the Board of Examiners may, in special circumstances, allow you one further attempt to pass an outstanding exam.



Read less
Hebrew University. , Faculty of Dental Medicine and. Healthcare Learning. are pleased to announce their latest qualification, Postgraduate Diploma in Implant Dentistry. Read more

Hebrew University, Faculty of Dental Medicine and Healthcare Learning are pleased to announce their latest qualification, Postgraduate Diploma in Implant Dentistry.

Covering the foundations of Implant dentistry right through to advanced treatment procedures, this innovative blended learning programme will give dentists' the skills and knowledge required to give the best treatment possible to their patients.

The programme is part-time and will run over the course of 2 years, commencing in February 2017. This technology driven qualification is delivered from a high class international faculty through which students will communicate with a diverse global community of peers.

Syllabus

The programme covers six units including:

- Unit 1: Introduction

- Unit 2: Treatment Planning

- Unit 3: Prosthodontics

- Unit 4: Introduction to Surgical Techniques

Aims

The programme aims to:

- Provide an innovative programme that enhances current knowledge and clinical skills in Implant Dentistry

- To present sound academic theory and high quality practical training in Implant Dentistry by world class mentors

- To provide students with the confidence and ability to enhance their current clinical practice by incorporating the latest advances in technology and research

- To deliver learning using the latest technology enabling students to access the course regardless of places or time zone whilst maintaining their dental practice

As we believe that all our students should have an unrivalled learning experience, we will only be accepting a limited intake for the first cohort.

To learn more, please visit: http://www.healthcare-qualifications.com/implant-dentistry/

Alternatively you can speak to a member of the Healthcare Learning team by calling

+44 20 7400 8989

or emailing



Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
Why this course?. This MSc programme combines knowledge of the engineering and medical sciences with advances in technology and practice to generate applications and solutions to clinically relevant problems. Read more

Why this course?

This MSc programme combines knowledge of the engineering and medical sciences with advances in technology and practice to generate applications and solutions to clinically relevant problems.

It affords a Masters level degree in this clinical area, while considering globally the effects of disability within a population and society’s approaches globally.

This is one of the few programmes globally that offers a specific degree in prosthetics and orthotics. The National Centre for Prosthetics and Orthotics (NCPO) has an international reputation for quality education within this field. The staff of the NCPO is involved in research and clinical practice both nationally and internationally.

The main aim of the course is to produce postgraduates capable of developing careers in allied health professionals and biomedical engineering (research, industrial and NHS).

We require candidates first degree to be in Prosthetics & Orthotics. Our learning environment brings together ideas and concepts from science, medicine and engineering to enable the development of relevant clinical and industrial research.

What you'll study

Taught classes, laboratory demonstrations, practical exercises and clinical visits take place during semesters 1 and 2. Diploma students then complete a project dissertation and MSc students complete a research or development project reported by a thesis.

Work placement

Visits to local clinical centres and lectures from industrialists and visiting experts from the UK and overseas are an integral part of our courses.

You'll also have the opportunity to meet our many industrial and clinical collaborators to help advise and further your career.

Major projects

You'll undertake a clinically relevant project in the rehabilitation area of prosthetics and/or orthotics.

Facilities

The Department of Biomedical Engineering consists of the Bioengineering Unit and the National Centre for Prosthetics and Orthotics – two complementary and key areas of health technology teaching and research within the University.

The National Centre for Prosthetics and Orthotics was established in 1972, growing out of the Bioengineering Unit at the University of Strathclyde, which was established more than 50 years ago, both being internationally-recognised centres of excellence for education and research at the interface of engineering and the medical science, with particular emphasis on clinically-related teaching and research. The new department of Biomedical Engineering in 2012 was formed through the merger of these two esteemed units.

Research areas include:

  • Rehabilitation Engineering
  • Medical Devices
  • Diagnostic Technologies: the Foot in Diabetes

The department also hosts the Centre for Doctoral Training in Medical Devices and Health Technologies, the Strathclyde Institute of Medical Devices and the Centre for Excellence in Rehabilitation Research.

In addition the department is a major partner in the Glasgow Research Partnership in Engineering; Health Technologies Knowledge Transfer Network; and Glasgow Health Technology Cooperative.

Guest lectures

This programme will include internationally recognised lecturers from the World Health Organisation and large NGOs globally which may include Handicap International and the international Committee for the Red Cross.

Learning & teaching

The course is delivered through a wide range of lectures, tutorials, practical laboratories, teaching seminars, networking events, and career support sessions.

Assessment

The course is assessed through a range of varied methods including: written assignments, exams, written assignments, presentations, and individual projects.

Careers

This Masters degree in Prosthetics & Orthotics is planned to afford the graduates the ability to consider and evaluate prosthetic and orthotic clinical practice with an evidence-based approach. The programme is designed to develop the ability to assess the country specific health care needs as recommended in the World Health Organisation guidelines and standards, and in alignment with the UN convention of Human Rights of the persons with a Disability. Future careers would include:

  • education
  • prosthetic & orthotic healthcare management
  • clinical research


Read less
Our Masters in Health Sciences is a flexible programme of higher level study that is suitable for both clinicians and non-clinicians from both the UK and the wider international community. Read more

Our Masters in Health Sciences is a flexible programme of higher level study that is suitable for both clinicians and non-clinicians from both the UK and the wider international community. Its chief objective is to provide you with the opportunity to gain academic credits tailored to your ambitions and professional expertise and to improve your career options and pathways.

Introducing your course

This course is for clinicians and non-clinicians to develop both your independent and critical thinking skills and to enable you to constructively question healthcare policy and practice. It will also give you the skills you need to address and find innovative solutions to complex problems in healthcare, meeting the current and future challenges in healthcare.

Overview

The flexible nature of the programme means that you may bring credits from other University’s in and chose from the modules within the Faculty and wider University. If you cannot find a module to suit your needs you may choose to study an open module where in conjunction with an academic coach you will create your own learning outcomes and module of study.

You can complete this programme between one and two years full time, or between two and five years part time. All pathways end with a dissertation which is a substantial piece of work around a topic chosen by you. As a student at a Russell Group university you will benefit from research-led learning throughout your study. Furthermore, you will be supported by academic staff members who are recognised experts in their particular fields.

This course has been designed for healthcare professionals who are currently working in amputee rehabilitation or would like to move into this area. You will have the opportunity to gain an indepth understanding of the patient journey from pre-amputation to prosthetic rehabilitation within a holist framework, exploring both physical and psychosocial aspects of patient care.

This course includes two specific amputee modules (i.e. Module 1: Amputee Rehabilitation and Prosthetic Use and Module 2: Contemporary Issues in Limb Loss) as well as core and option modules that form part of the MSc in Health Sciences.

View the programme specification document for this course



Read less
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. Read more
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. This hands-on course will help you develop the multidisciplinary knowledge that the fast-moving industrial, commercial and domestic sectors demand of their technical professionals.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Academic teaching is complemented by presentations from industry experts and by industrial trips, such as the UK annual NI Days conference, held in London.
-You will enjoy group assignments, supporting each other's learning and have opportunities to develop your ability to work in teams. You will also benefit from an industry-relevant final project. The presentation, which is part of the final project, will prepare you for your job interview.

What will you study?

Although mechatronics may be perceived in combination with robotics, as robots are indeed fast and precise mechanical systems, it also has wider applications, such as in hard-disk drives for computers, tracking cameras for surveillance applications, intelligent actuators in automotive systems and many other areas including devices used in the field of healthcare and rehabilitation, like intelligent prosthetic devices.

The hands-on approach on the course, using our state-of-the art multidisciplinary laboratories with equipment from National Instruments, Freescale, Agilent Technology and many more, adds value to this postgraduate degree. The course dovetails with research activities of the teaching staff, implementing the latest advances in our research. Utilising applied research, you have the opportunity to do your own research within an individual industry-relevant 'capstone' project. This includes preparation of a scientific paper, giving an opportunity for that first breakthrough into publishing your work.

Assessment

Coursework and/or exams, presentations, industrial or research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Control Systems with Embedded Implementation
-Mechatronic Design and Automation
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Advanced Control and Robotics
-Digital Signal Processing

Read less
This specialist engineering programme. will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more

This specialist engineering programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to progress their careers, and will enable graduates to proceed to Chartered Engineer status.

This degree has been accredited by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Systems Analysis in Engineering;
  • Computer Aided Engineering Design;
  • Research Methodology;
  • Sustainable Engineering;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Advanced CFD,
  • Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more

This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to develop their management expertise in order to progress their careers. It also enables graduates to proceed to Chartered Engineer status.

Professional accreditation

This degree has been accredited by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Systems Analysis in Engineering;
  • Management Concepts;
  • Professional Skills;
  • Computer Aided Engineering Design;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Advanced CFD, Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
This programme orientates internationally qualified dental graduates to that of a UK dental practitioner by providing a comprehensive grounding in six key training areas. Read more
This programme orientates internationally qualified dental graduates to that of a UK dental practitioner by providing a comprehensive grounding in six key training areas: basic sciences and their application to modern day dental practice, applied principles of clinical dentistry, clinical skills, communication skills, professionalism, management and leadership.

The course is delivered under three broad headings:

1. Taught
Students will acquire knowledge and understanding of:

-Relevant basic sciences including anatomy, physiology, immunology, microbiology and molecular biology with respect to health and how these are altered in disease states
-Patho-physiological and anatomical basis for clinical signs of oral and craniofacial health and disease
-Relationships between dental disease, population risk factors and the preventative measures

And integrate this knowledge to dental areas through discussions in:

-Basic and clinical science associated with pharmacology and therapeutics used in dentistry
-The science underpinning the key properties of dental materials and evaluate their clinical applications


2. Clinical
Students' clinical skills will be augmented through practical, laboratory based sessions using typodont teeth set in a manikin head.

-Operative skills will be taught to ensure students can undertake skilled, competent and safe dental procedures including: cavity design, extra-coronal restorations and non-surgical endodontic treatment.
-Simulated clinical techniques will be undertaken and the student will be introduced to decision making processes leading to tooth loss and replacement and execution of appropriate operative techniques for all stages of planned prosthodontic treatment (excluding bridges and implants) in conjunction, as necessary, with other specialists and technicians.

Students will observe current UK dental practise via clinics in oral medicine, oral and maxillofacial surgery, periodontology, paediatrics, prosthodontics, radiology and orthodontics.

Tutoring in Objective Structured Clinical Reasoning Examinations (OSCE) and Structured Clinical Reasoning (SCR) Exams will be carried out using the advanced facilities in the state of the art dental skills laboratory.

3. Research
The research component consists of a structured literature review and clinical audit report. Students will acquire knowledge and understanding of:

-Critical appraisal and analysis of scientific and clinical literature
-How clinical audit identifies problems in clinical service and helps formulate solutions
-Appropriate tools for searching the literature (search engines, web-based libraries, electronic documents)

Students will develop the analytical skills to be able to:

-Critically appraise, analyse and evaluate scientific papers and clinical literature applying the principles of evidence based dentistry
-Evaluate evidence of the latest developments in Dentistry
-Communication skills will be developed throughout the taught, clinical and research elements of the course with specific topic presentations during seminars as well as through journal club reports and presentations on dental and clinical governance topics.

The application deadline is 30th June 2017. Once we have received applications by the deadline the first selection process will begin. We reserve the right to receive further application after the deadline and make decisions on those applications in July/August subject to places being available.

Why study for your MSc in Dental Science for Clinical Practice at Queen Mary?

The School of Medicine and Dentistry has an unrivalled tradition of excellence in research and teaching extending as far back as 1123 with the founding of St Bartholomew’s Hospital. The London Hospital Medical College was the first Medical School in England, founded in 1785, and our Dental School was established well over a century ago. We are ranked 3rd in the UK for Dentistry (Guardian University Guide 2017) and our research is ranked among the best in the UK according to the most recent Research Excellent Framework (REF 2014).


In April 2014, QMUL’s new Dental School opened its doors to patients and students - the first new dental school in the UK to be built in 40 years. The £78m new school houses the most modern dental facilities in the UK, following more than a decade of planning and work. The new premises provide cutting-edge technology, superb education and research facilities for clinical dentistry and a vastly improved patient experience.


Students’ postgraduate learning experience is enhanced by our fantastic location in the east of London. Not only are we in one of the capital’s most vibrant areas to live and work but we also serve a diverse local community, where students develop their clinical skills and knowledge. Moreover, the Dental School offers students many exciting opportunities to develop an understanding of health and the treatment of disease in a global and international context.


The Institute of Dentistry is a special place to undertake postgraduate studies, bringing together a number of world-leading researchers in basic and clinical sciences who supervise research students in the fields of oral medicine, oral pathology, oral microbiology, oral epidemiology, oncology, dental biomaterials, dental biophysics, dental public health, dental education, periodontology, orthodontics, paediatric dentistry, prosthetic and conservative dentistry.


You will have the opportunity to attend Continuing Development Courses of the London Deanery, Royal Society of Medicine (Odontology Section) as well as internal Departmental and Dental and Blizard Institute seminars.


You will prepare a professional development portfolio based on evidence gathered from lectures, tutorials, clinics, self-study and self-reflection sessions.


Facilities
You will have access to a range of facilities including: medical and dental libraries located at the Royal London and at Barts hospitals, as well as the Mile End library.

Postgraduate Dental students will have access to the Dental Clinical Skills Laboratory based in the Garrod building at the Whitechapel Site.

Read less
Help improve human health. Study Clinical Research and get the skills you need to carry out evidence-based research that will advance medical knowledge. Read more

Help improve human health. Study Clinical Research and get the skills you need to carry out evidence-based research that will advance medical knowledge.

You’ll learn to use both qualitative and quantitative research methods, and find out how to critically evaluate current literature. Gain knowledge in good study design and research practice, data analysis and research presentation. You'll find out how to carry out clinical trials and cover ethical and cultural issues in clinical research.

Real-world skills

Toward the end of your studies you'll be guided to write a full research grant application that describes a proposed clinical research project. Past students' projects have included a trial of medical grade honey in childhood impetigo, an investigation of a new type of prosthetic hip, a trial of a new medication in Huntingdon's disease and research into the benefits of steroids in pneumonia treatment.

Taught by the School of Biological Sciences in partnership with Capital and Coast Health, the PGDipClinRes will give you the skills essential to conducting your own clinical research or to work for a research institution.

Learn from the experts

You’ll learn from highly regarded clinicians from Capital and Coast District Health Board (CCDHB), the Medical Research Institute of New Zealand (MRINZ) and Victoria University. Some sessions are delivered by outside tutors from around New Zealand who have specific areas of expertise.

For health professionals

If you’re a medical trainee or graduate, a nurse or other health professional who wants to carry out clinical research, or you just need to up-skill in research methods, then this qualification is well-suited to you. To enrol in the Diploma, you’ll need a relevant degree in health, medicine, neuroscience, psychology, biomedical science or biostatistics with a B+ average in relevant subjects, or have extensive relevant experience in the field.

Part-time online learning

The PGDipClinRes is mostly taught online and through teleconferencing, but includes a practical weekend seminar each semester that you need to attend in person. Teleconferencing forums are normally held on a weeknight.

The programme is best suited to part time study over two years, and is equivalent to about 1,200 student work hours. You’ll complete six compulsory courses totalling 120 points and will be assessed through your presentations, essays and formal reports. There is no formal examination.

You can enrol if you’re an international student, but you should note:

  • this programme is only available part-time
  • you need to attend a weekend seminar in Wellington at least twice a year
  • you need to participate in up to eight telephone conferences each semester
  • all of the above will be at your own expense, and is on top of your international student fees.

Community

Postgraduate study at Victoria will help you build valuable relationships and networks with peers, academics, clinical experts and professional colleagues.

The Postgraduate Students' Association can give you information on study at Victoria and provides a voice for you on campus.

Careers

You‘ll be able to expand your current work to include clinical research, or move into a new career as a clinical researcher in a range of areas in the health sector. You might work for a drug company, a hospital clinical trials unit or a research institute.



Read less
Our new MRes in Control and Systems Engineering provides you with an excellent introduction to research methods while benefiting from lectures and lab work to consolidate your knowledge in the discipline. Read more

Our new MRes in Control and Systems Engineering provides you with an excellent introduction to research methods while benefiting from lectures and lab work to consolidate your knowledge in the discipline.

During your MRes, you will subsidise your knowledge with taught modules while having the freedom to pursue a research topic of your choosing. You will specialise in an area of Control and Systems Engineering you are passionate about.

Push yourself further

Reseach is an exciting career path which will open the door to working in R&D jobs or in academia. Our academics work on a range of research projects in their specific areas, often working alongside top industry professionals and research leaders across the globe.

This course is perfect for those who want to pursue a career in research or those who wish to specialise in one topic within the discipline.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Possible Research Areas

You will want to research a specific area of control and systems engineering. This area could include one of the following:

·        Cybersecurity in Electricity Grids

·        Space Weather Forecast

·        Multimodal Control of Prosthetic Limbs/Paralysed Muscles

·        Virtual Human-Robot Collaboration

·        Optimal control of disease dynamics

·        Predictive and optimization-based control of smart grids: theory and algorithms

Teaching and assessment

You will receive training in research skills and will undertake a major project of your own - allowing you to specialise even further. This will form part of your final assessment. There will also be opportunities to contribute to other projects throughout the course.

Our teaching uses lectures, tutorials, laboratory work and individual assignments. All of the lectures and tutorials are just for our systems and control students. This means you form a unique bond as a cohort of colleagues and friends, learning together and from each other. Assessment is by examination, lab assignments, coursework and project dissertation.

As well as conventional labs, we have portable equipment that you can use to explore core concepts away from the normal teaching environment. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes.



Read less
Biomedical engineering is a fast evolving interdisciplinary field, which has been at the forefront of many medical advances in recent years. Read more

Biomedical engineering is a fast evolving interdisciplinary field, which has been at the forefront of many medical advances in recent years. As such, it is a research-led discipline, which sits at the cutting edge of advances in medicine, engineering and applied biological sciences.

This MSc programme is designed to provide an advanced biomedical engineering education and to develop specialist understanding; the programme contains a large project component which allows you to develop advanced knowledge and research skills in a specialist area.

The programme also aims to develop a multidisciplinary understanding of the subject, which can be applied in a variety of clinical, biomedical and industrial settings. All subjects are taught by biomedical/medical engineers and clinical scientists. This allows you to gain the related skills and experience in healthcare science and technology, engineering principles and manufacturing, and management of various industry standard medical devices.

Cutting-edge research feeds directly into teaching and various student projects, ensuring your studies are innovative, current and focused with direct relation to related industries. All academic staff are research active and very enthusiastic, leading to research led/taught core modules with an excellent pass rate.

What you will study

Core Modules

Option Modules

  • Regenerative Medicine
  • Genomic Coding
  • Clinical Biomechanics
  • Clinical Diagnostics
  • Polymer and Materials Engineering
  • Risk Assessment & Management
  • Engineering Computational Methods
  • Biomaterials with Implant Design & Technology

Learning and assessment

  • Formal and informal lectures
  • Tutorials
  • Laboratory practicals
  • Workshop skills
  • Seminars
  • Group and individually assessed projects

Facilities

Tissue characterisation laboratory, incorporating three state-of-the-art atomic force microscopes (AFM), which enables the nano- and microstructure of various tissues and other biomaterials to be characterised in great detail. This facility enables the mechanical, physical and biological performance characteristics of tissue/biomaterials to be better understood.

Modern cell/tissue engineering laboratory for in-vitro culturing of various cells/tissues such as skin, bone, cartilage, muscle, etc, and wound repair.

State-of-the-art human movement laboratory, which enables the movement and gait of patients to be analysed in great detail. In particular, the laboratory incorporates a new VICON motion capture facility.

Prosthetic/orthotic joint laboratory containing several state-of-the-art test machines, including a friction hip/knee simulator, for evaluating the performance of artificial hip and knee joints.

Human physiology laboratory for evaluating human physiological performance including EMG, ECG, Blood Pressure, Urine, skin analysis and Spirometry (lung function) tests, etc.

World-class bioaerosol test facility for performing microbiological experiments. This facility comprises a class two negatively pressurised chamber, into which microorganisms can be safely nebulised, thus enabling infection control interventions to be evaluated.

Electrostatics laboratory for evaluating the impact of electrical charge on biological and medical systems.

Medical Electronics Laboratory equipped for the design and manufacturing of Medical diagnostic devices such as Electrocardiography (ECG), Pacemaker, Oximeter and Heart Rate Monitoring, etc.

Other Engineering Laboratories for related subjects such as materials testing and characterisation. Labs and Workshops shared with Mechanical Engineering undergraduate and postgraduate students.

Career prospects

Biomedical Engineering is a growing, increasingly important field, with many significant diagnostic and therapeutic advances pioneered by biomedical engineers. It is highly interdisciplinary in nature and requires engineers who are flexible, able to acquire new skills, and who have a broad knowledge base. In particular, given the research-lead nature of the discipline, there is demand for engineers who can work effectively in a research-lead environment and who can push forward technological boundaries.

Consequently, there is need for people with advanced knowledge and skills, who have a good appreciation of developments in the clinical and biological fields. The MSc in Advanced Biomedical Engineering programme is designed to give you this. 

There is a shortage of professionally qualified engineers in both routine clinical and medical research activities in hospitals, industrial research centres and companies that design, maintain, repair and manufacture electronic medical devices and equipment for public and private health services

We aim to produce postgraduates who aspire to challenging careers in industry, the National Health Service (NHS), commerce and the public sector or to developing their own enterprises. You should therefore be able to move directly into responsible roles in employment with a minimum of additional training. This aim is achieved by:

  • Providing a supportive, structured environment in which students are encouraged to develop independent learning and research skills
  • Developing subject knowledge and understanding, developing discipline skills and developing personal transferable skills, to enable graduates to pursue programmes of advanced study, or to move directly into responsible employment

Various local and national companies including NHS trusts are invited for graduate careers/schemes and for providing placement year specific to biomedical/medical engineering students.

Study support

You will be allocated a personal tutor who is someone with whom you will be able to talk about any academic or personal concerns. There are time-tabled personal tutorial hours per week throughout the academic year, including feedback sessions for all assignments and group/individual projects.

Programme leaders are available for any related matters and advice is given regularly towards curriculum and progression.

University central services are rich with support teams to assist students with every aspect of their journey through our degree programmes. From our Career and Employability Service, through our strong Students' Union, to our professional and efficient Student Finance team, there are always friendly faces ready to support you and provide you with the answers that you need.

Research

At Bradford, you’ll be taught only by lecturers who are involved in cutting edge research and you'll work in their research laboratories, using top-class facilities.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X