• Jacobs University Bremen gGmbH Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bath Spa University Featured Masters Courses
"propulsion"×
0 miles

Masters Degrees (Propulsion)

We have 69 Masters Degrees (Propulsion)

  • "propulsion" ×
  • clear all
Showing 1 to 15 of 69
Order by 
Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. Read more

Course Description

Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.  The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Overview

The key technological achievement underlying the development and growth of the aerospace industry has been the design and development of efficient and economical propulsion systems. This sector has experienced a consistent growth in the past and is expected to do so in the future. Major efforts are also now being dedicated to the development of new technologies relevant to the propfan and variable cycle engines.

The MSc in Aerospace Propulsion provides a comprehensive background in the design and operation of different types of propulsion systems for aerospace applications. The course is designed for those seeking a career in the design, development, operation and maintenance of propulsion systems.

The course is suitable for graduates seeking a challenging and rewarding career in an established international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Structure

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power
- Meet employer requirements for graduates within power and propulsion industries
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Aerospace Propulsion masters consists of eight compulsory modules and up to six optional modules. The modules are generally delivered from October to April.

Individual Project

Individual Project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Design of an experimental test rig facility for an axial compressor
- Energy management in a hybrid turbo-electric, hydrogen fuelled, hale UAV
- Civil aircraft intake, nacelle and nozzle aerodynamics
- The computation of adiabatic isobaric combustion temperature
- Air filtration systems for helicopters
- Nacelle parametric design space exploration
- Distributed propellers assessment for turboelectric distributed propulsion
- Aerodynamic analysis of the flowfield distortion within a serpentine intake
- Green runway :impact of water ingestion on medium and small jet engine performance and emissions
- Distributed propulsion systems boundary layer ingestion for uav aircraft
- Preliminary design of a low emissions combustor for a helicopter engine
- Compressor design and performance simulation through the use of a through-flow method
- Estimation of weight and mechanical losses of a pts for a geared turbofan engine
- Optimisation of turbine disc for a small turbofan engine
- Modelling of tip leakage flows in axial flow high pressure gas turbine
- Aerodynamic modelling and adjoint-based shape optimisation of separate-jet exhaust systems
- Preliminary design & performance analysis of a combustor for UAV.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Aerospace-Propulsion-Option-Thermal-Power

Read less
The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. Read more

Course Description

The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. This course is suitable for talented graduates seeking a challenging and rewarding career in an international growth industry. The course is suitable for graduates seeking a challenging and rewarding career in an growing international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

The gas turbine is employed today in a wide variety of industrial applications including oil, power, and process industries. The continuing expansion of the applications of rotating machinery implies that a multidisciplinary approach to their design and selection is required. This should take into account their techno-economic and environmental impact.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Benchmark of methods to measure the density of atmospheric ice
- Green runway: investigation of emissions and noise for large aircraft operation within an airport.
- Techno economic environmental risk assessment on marine propulsion.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Power-Propulsion-and-the-Environment-option

Read less
Summary. This MSc is designed for engineering, mathematics or physical science graduates. It provides an opportunity to specialise in the engineering sciences key to the design, monitoring and analysis of propulsion and engine systems.You will learn to confidently analyse and design advanced electrical systems. Read more

Summary

This MSc is designed for engineering, mathematics or physical science graduates. It provides an opportunity to specialise in the engineering sciences key to the design, monitoring and analysis of propulsion and engine systems.You will learn to confidently analyse and design advanced electrical systems.

Modules

Compulsory modules: Introduction to Advanced Mechanical Engineering Science; Advanced Electrical Systems; Aircraft Propulsion; Automotive Propulsion; MSc Research Project

Optional modules: Tribological Engineering and Engine Tribology; Advanced Sensors and Condition Monitoring; Applications of CFD; Thermo fluid Engineering for Low Carbon Energy; Microstructural Engineering for Transport Applications; Failure of Materials and Components; Spacecraft Propulsion; Environmental and Transportation Noise; Fundamentals of Acoustics; Fuel Cells and Photovoltaic Systems I; Transport Economics; Engineering Design with Management; Microstructural and Surface Characterisation; Advanced Management

Visit our website for further information.



Read less
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course is delivered in Detroit, MI, US. Although open to non-US students it is the responsibility of the student to arrange suitable visas and cover travel costs. Read more

Course Description

This course is delivered in Detroit, MI, US. Although open to non-US students it is the responsibility of the student to arrange suitable visas and cover travel costs. The course provides education and training at postgraduate level for those who expect to fill technically demanding appointments concerned with the design, development, procurement and operation of vehicles.

It will provide students with the technical knowledge and understanding of weapon systems and military vehicles to make them effective in their specification, design, development and assessment. Special attention will be given to recent advances in defence technology; and to educating students in the analysis and evaluation of systems against changes and developments in the threat.

Course overview

The taught element consists of 14 modules covering major aspects of defence technology, providing a balanced and broad coverage of key aspects, issues and constraints associated with the design, development, performance and integration of weapon and vehicle systems.

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Earning the appropriate credits can lead to the following academic awards:

- Postgraduate Certificate (PgCert) – any combination of modules (building a total of 60 credits).
- Postgraduate Diploma (PgDip) – all modules (120 credits).
- Master of Science (MSc) – all modules (120 credits) plus project (80 credits).

The programme is delivered in Detroit by delivering one or two modules per visit. There are three visits in a year (April, June and Nov/Dec). Each standard module consists of a one-week course of lectures, tutorials and practical sessions. Students are required to pass an assessment which includes a written exam (50%) on the last day of the course and course work (50%) to be submitted within eight weeks from the last day of the course.

Modules are taught three times a year in Detroit, USA. This allows 60 credits to be attained in two years and 120 credits over three years.

Core modules (10 Credits)

- Fighting Vehicle Design or Finite Element in Engineering
- Modelling, Simulation and Control in Defence Engineering or Systems Engineering and Assured Performance

Compulsory Module (10 Credits) for MSc and Elective for PGCert

- Armoured Fighting Vehicle and Weapon Systems Study

Elective Modules (100 Credits)

- Fundamentals of Ballistics
- Weapon System Technology
- Vehicle Systems Integration
- Electric Drive Technologies
- Military Autonomous Vehicles
- Light Weapon Design
- Gun Systems Design (Gun Systems Stream)
- Military Vehicle Dynamics (Vehicle Stream)
- Military Vehicle Propulsion and Dynamics (Gun Systems Stream)
- Military Vehicle Propulsion (Vehicle Stream)
- Military Vehicle Propulsion
- Solid Modelling CAD (optional)

Individual Project

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of current titles are given below:

- Use of Vibration Absorber to help in Vibration
- Validated Model of UGV Power Usage
- Power and Mobility Enhanced Robotic Platform (PMERP)
- Conceptual Design of a Behind Armour Battery Pack
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Investigation of New Compact Suspension Concepts for the Light Armoured Vehicle III
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.

Assessment

Continuous assessment, examinations and thesis (MSc only).

Funding

For more information on funding please contact the Programme Director, Dr Amer Hameed, email

Career opportunities

Takes you on to employment within the armed forces or defence research establishments.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/vehicle-and-weapon-engineering.html

Read less
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery). Read more
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery).

The course develops your practical skills to enable you to:
-Design, select, analyse and install marine propulsion and transmission systems
-Produce mathematical and computer modelling of marine machinery and engineering systems
-Design and analyse control systems for marine machinery
-Use mathematics and physics appropriate to marine technology
-Develop engineering solutions to practical problems
-Test design ideas through laboratory work or simulation with technical analysis
-Critically evaluate results
-Integrate and analyse information from a variety of sources

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in marine engineering.

You will choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of marine engineering systems. It can include ships' propulsion and power transmission systems. Our research strengths include:
-Design of diesel-electric hybrid propulsion configurations
-Engine emission prediction and simulation
-Online ship performance monitoring and optimisation
-Ballast water management

You benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Six taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is delivered by the School of Marine Science and Technology.

It is also available with a preliminary year if you do not meet the entry criteria for the one year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.

Course content

You’ll take a compulsory module in Semester 1 which develops your knowledge of aerospace structures and the theory behind aerospace structural analysis, as well as applying this understanding to real-world problems.

This will inform the rest of your studies, where you’ll select from a wide range of optional modules allowing you to pursue the topics that appeal to your interests or suit your future career plans. You could gain sophisticated knowledge in areas such as aerospace vehicle design, computational methods or materials failure analysis.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within aerospace engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around your topic and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more about your modules?

Take a look our Aerospace Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Aerospace Structures 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Selection and Failure Analysis 15 credits
  • Design Optimisation - MSc 15 credits
  • Aerospace Vehicle Design 20 credits
  • Aerodynamics and Aerospace Propulsion 20 credits
  • Finite Element Methods of Analysis 20 credits
  • Mechatronics and Robotics Applications 15 credits
  • Engineering Computational Methods 15 credits
  • Rotary Wing Aircraft 15 credits
  • Vehicle and Product Systems Design 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Aerospace Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Typical projects for MSc Aerospace Engineering students could include:

  • Design of a stiffened titanium aircraft structural component for additive manufacturing
  • Development of software based on Swarm Intelligence Methodologies for Structural Optimisation
  • Circulation control using air jets to improve the performance of aircraft wings and wind turbines
  • Design and optimisation of a Flexible Structural Support for a Mars Rover Umbilical Release Mechanism
  • Aerodynamic analysis of the Bloodhound supersonic car using Computational Fluid Dynamics
  • Computational Fluid Dynamics modelling of turbulent combustion processes
  • The control of flow separation using vortex generators

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The aerospace industry is one of the most successful parts of UK engineering and is truly global in nature.

You’ll be able apply the skills you gain from this course to numerous areas of the aerospace industry, such as aerospace fundamental research, airline management and operations, satellite operations, aerospace design and manufacture in both the civil and military environments and Formula 1 racing.

Whether you join an aerospace company in the UK, such as Airbus, BAE Systems or Rolls-Royce or choose to work elsewhere in the world, the foundation provided by the MSc will make sure you are prepared for a rewarding and challenging career.

Links with industry

During this course you will meet employers from organisations operating within this sector through seminars and talks and by attending our careers fair. In previous years there have been talks from colleagues at Airbus, Astrium, BAE Systems, Rolls-Royce to provide additional industrial perspectives to the course and career guidance to students. 



Read less
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. Read more
The Master's degree in Aerospace Engineering is a new graduate program of the Université de Lyon, operated by the École Centrale de Lyon. It offers a two-year program in Master 1 (M1) and Master 2 (M2). It will be set up progressively starting from September 2016, with only one M2 option "Aerospace Propulsion (PAS)" opened. Then from September 2017, a second M2 option "Dynamic and Sustainability of Composite Materials (DDC)" and the M1 common-core syllabus will be opened.

The concerned disciplinary fields are fluid mechanics and energy, solid and structural mechanics, materials, and control engineering, in relation with three renowned research laboratories of Lyon: LMFA, LTDS and Ampère.

The Master is in line with the strategic axis "Science and engineering for a sustainable society" defined by the Université de Lyon, as well as with two social challenges identified by the École Centrale de Lyon, "Aeronautics and space" and "Increasing the competitiveness of the industrial economy through innovation and entrepreneurship".

The purpose is to train future technical leaders and researchers for all aspects of the aerospace industry from major constructors like SAFRAN and Airbus, to component suppliers. A special attention is paid to make students aware of codes, languages and common practice in the industry. Furthermore, this industry is intrinsically transnational, with numerous opportunities to work abroad with connections to France or to work in France with connections to other countries. So the students are given the opportunity to develop international/intercultural skills.

It is to notice that the aerospace industry is subjected to long-term cycles. A "design" dominated stage with ambitious projects (A380, A350, A400M, EC 175, LEAP, …) is ending, while a "production" dominated stage is starting for the next decade. The problematic is thus moving from the design of large complex systems to the continuous optimisation of components, taking into account manufacturing and maintainability constraints, in particular with the increasing implementation of composite materials. The provided training is supporting such a change.

More specifically, the M2 option "Aerospace Propulsion" is focusing on the design process of an aircraft or a rocket engine, providing a practical understanding of all aspects of the industry, from design to manufacture and maintenance. Graduates should drive components redesign, for optimisation for new purposes or for adaptation to new production processes or maintenance procedures.

Read less
The University of Toronto Institute for Aerospace Studies (UTIAS) offers graduate programs leading​ to research-intensive Master of Applied Science (MASc) and Doctor of Philosophy (PhD) degrees and a professionally oriented Master of Engineering (MEng) degree. Read more
The University of Toronto Institute for Aerospace Studies (UTIAS) offers graduate programs leading​ to research-intensive Master of Applied Science (MASc) and Doctor of Philosophy (PhD) degrees and a professionally oriented Master of Engineering (MEng) degree.

Faculty research areas include advanced aerospace structures, aircraft flight systems and control, aerospace mechatronics, autonomous space robotics, combustion and emissions in aviation, combustion and propulsion, computational aerodynamics, computational fluid dynamics and propulsion, computational modelling, and design optimization under uncertainty, dynamic systems, experimental engines, experimental fluid dynamics, flow control and experimental turbulence, fusion energy, nanosatellite and microsatellite missions, space robotics, space and terrestrial autonomous robotic systems, spacecraft dynamics and control and microsatellites, and vehicle simulation.

Read less
The Guided Weapon Systems MSc is a flagship Cranfield course and has an outstanding reputation within the Guided Weapons community. Read more

Course Description

The Guided Weapon Systems MSc is a flagship Cranfield course and has an outstanding reputation within the Guided Weapons community. The course meets the requirements of all three UK armed services and is also open to students from NATO countries, Commonwealth forces, selected non-NATO countries, the scientific civil service and industry. The course structure is modular in nature with each module conducted at a postgraduate level; the interactions between modules are emphasised throughout. A comprehensive suite of visits to industrial and services establishments consolidates the learning process, ensuring the taught subject matter is directly relevant and current.

Overview

This course is an essential pre-requisite for many specific weapons postings in the UK and overseas forces. It also offers an ideal opportunity for anyone working in the Guided Weapons industry to get a comprehensive overall understanding of all the main elements of guided weapons systems.

It typically attracts 12 students per year, mainly from UK, Canadian, Australian, Chilean, Brazilian and other European forces.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Course overview

The course comprises a taught phase and an individual project. The taught phase is split into three main phases:
- Part One (Theory)
- Part Two (Applications)
- Part Three (Systems).

Core Modules

- Introductory and Foundation Studies
- Electro-Optics and Infrared Systems 1
- Radar Principles
- GW Propulsion & Aerodynamics Theory
- GW Control Theory
- Signal Processing, Statistics and Analysis
- GW Applications – Control & Guidance
- GW Applications – Propulsion & Aerodynamics
- Radar Electronic Warfare
- Electro-Optics and Infrared Systems 2
- GW Warheads, Explosives and Materials
- GW Structures, Aeroelasticity and Power Supplies
- Parametric Study
- GW Systems
- Research Project

Individual Project

Each student has to undertake an research project on a subject related to an aspect of guided weapon systems technology. It will usually commence around January and finish with a dissertation submission and oral presentation in mid-July.

Assessment

This varies from module to module but comprises a mixture of oral examinations, written examinations, informal tests, assignments, syndicate presentations and an individual thesis.

Career opportunities

Successful students will have a detailed understanding of Guided Weapons system design and will be highly suited to any role or position with a requirement for specific knowledge of such systems. Many students go on to positions within the services which have specific needs for such skills.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Guided-Weapon-Systems

Read less
This course provides education and training in military vehicle systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in military vehicle systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military vehicles.

It will provide students with the technical knowledge and understanding of weapon systems and military vehicles to make them effective in their specification, design, development and assessment.

The course is accredited by the Institute of Mechanical Engineers and will contribute towards an application for chartered status.

Course overview

This course is made up of two essential components, the equivalent of 12 taught modules (including some double modules, typically of a two week duration).

In addition to the taught part of the course, students undertake an individual project . The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Earning the appropriate credits can lead to the following academic awards:

- Postgraduate Certificate (PgCert) – any combination of modules (building a total of 60 credits).
- Postgraduate Diploma (PgDip) – all modules (120 credits).
- Master of Science (MSc) – all modules (120 credits) plus project (80 credits).

The Military Vehicle Technology MSc is part of the Vehicle and Weapons Engineering Programme. The course is designed to provide an understanding of the technologies used in the design, development, test and evaluation of military vehicle systems. Both armoured and support vehicles are covered within the course.

This course offers the underpinning knowledge and education to enhance the student’s suitability for senior positions within their organisation.

Each individual module is designed and offered as a standalone course which allows an individual to understand the fundamental technology required to efficiently perform the relevant, specific job responsibilities. The course also offers a critical depth to undertake engineering analysis or the evaluation of relevant sub systems.

Individual Project

In addition to the taught part of the course, students undertake an individual project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of current titles are given below:

- Use of Vibration Absorber to help in Vibration
- Validated Model of UGV Power Usage
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.
- Optimisation of the suspension system for a vehicle.
- Analysis of the off-road performance of a wheeled or tracked vehicle.

Modules

Core -

Introductory Studies
Solid Modelling CAD
Finite Element Methods in Engineering
Modelling, Simulation and Control
Weapon System Technology
Survivability
Vehicle Systems Integration
Armoured Fighting Vehicle and Weapon Systems Study
Military Vehicle Dynamics
Military Vehicle Propulsion

Optional -

Fundamentals of Ballistics
Military Vehicle Propulsion and Dynamics
Gun System Design
Element Design
Guided Weapons
Uninhabited Military Vehicle Systems
Reliability and System Effectiveness
Light Weapon Design
Rocket Motors and Propellants

Assessment

Continuous assessment, examinations and thesis (MSc only). Approximately 30% of the assessment is by examination.

Funding

For more information on funding please contact

Career opportunities

Many previous students have returned to their sponsor organisations to take-up senior programme appointments and equivalent research and development roles in this technical area.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/military-vehicle-technology.html

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. Read more
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. This diversity means that engineers need to be able to operate and develop advanced devices, and understand complex theoretical and computational models.

* This programme will give you advanced skills in computational modelling, numerical techniques and an in-depth understanding in engineering approaches to aerospace problems
* After your degree, you will be well prepared to develop new computational and technological products for the aerospace industries
* You will join research groups working at the cutting edge of aerospace engineering, and computational modelling
* This is a well established course with variety and choice for students - there are a wide number of engineering modules, but also the chance to specialise on your own area

Why study with us?

The School of Engineering and Materials Science (SEMS) undertakes high quality research in a wide range of areas. This research feeds into our teaching at all levels, helping us to develop very well qualified graduates with opportunities for employment both in many leading industries as well as in research. Both Engineering and Materials are very well established at Queen Mary, with the Aerospace Department being the first established in the UK. Our aerospace teaching programmes were ranked number 2 in the UK in the 2011 National Student Survey.

Studying Engineering has taught me to think, plan, organise and execute tasks in a systematic and methodical manner. Osman Bawa

* This MSc programme is available to students from a variety of non-engineering backgrounds such as Physics, Maths, and Electronic Engineering
* It was the first of its kind in the country; offering some unique modules including, Aeroelasticity, Crash worthiness, and Space engineering
* Students will collaborate with researchers working in alternative fuels sources, so it is relevant and timely
* Aerospace Engineering is an employment related field which allows you to keep up-to-date with the latest developments in design, aerodynamics, propulsion and technology.

Facilities

You will have access to a range of facilities, including:

* Excellent computing resources such as a high-performance computing cluster, several high-performance PC clusters and parallel high-performance SGI computer clusters, an extensive unit of Linux and UNIX workstations.
* A wide range of experimental facilities from low speed wind tunnels with one of the lowest ever recorded turbulence level of 0.01% to supersonic wind tunnels, anechoic chamber dedicated to aeroacoustics problems, two new state-of-the-art electrospray technology laboratories, experimental propulsion, an advanced CueSim flight simulator and labs equipped with modern measurements techniques.
* Engineering and Materials Sciences postgraduates will also have access to the School's extensive experimental facilities used for materials, the latest electron microscopes and a brand new Nanovision centre.

Read less

Show 10 15 30 per page



Cookie Policy    X