• University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Southampton Featured Masters Courses
University of Sussex Featured Masters Courses
University of Birmingham Featured Masters Courses
"processing"×
0 miles

Masters Degrees (Processing)

  • "processing" ×
  • clear all
Showing 1 to 15 of 1,002
Order by 
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

Programme description

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses
Discrete-Time Signal Analysis
Digital Communication Fundamentals
Probability, Random Variables and Estimation Theory
Statistical Signal Processing
Image Processing
Signal Processing Laboratory
Semester 2 courses
Adaptive Signal Processing
Advanced Coding Techniques
Advanced Wireless Communication
Array Processing Methods
Advanced Concepts in Signal Processing
Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.

Read less
This intensive programme offers an exciting opportunity to learn from world leaders in both informatics and linguistics. Read more

Programme description

This intensive programme offers an exciting opportunity to learn from world leaders in both informatics and linguistics. Drawing from our cutting-edge research, the programme’s content covers all areas of speech and language processing, from phonetics, speech synthesis and speech recognition to natural language generation and machine translation.

This flexible programme provides research or vocational training and can be either freestanding or lead to PhD study. The modular nature of the programme allows you to tailor it to your own interests.

Taught by leading researchers from Linguistics & English Language, the Centre for Speech Technology Research and the School of Informatics, this programme combines elements of linguistics, computer science, engineering and psychology.

You will develop up-to-date knowledge of a broad range of areas in speech and language processing and gain the technical expertise and hands-on skills required to carry out research and development in this challenging interdisciplinary area.

Programme structure

You study two semesters of taught courses, followed by a dissertation.

Most core compulsory courses have both computational and mathematical content. A few optional courses need a stronger mathematical background. Courses in the second semester can be tailored to your own interests and abilities.

Compulsory courses:

Advanced Natural Language Processing
Computer Programming for Speech and Language Processing
Introduction to Phonology and Phonetics
Speech Processing

Option courses may include:

Advanced Topics in Phonetics: Speech Production and Perception
Automatic Speech Recognition
Introduction to Statistics and Experimental Design
Machine Learning and Pattern Recognition
Machine Translation
Natural Language Generation
Natural Language Understanding
Prosody
Simulating Language
Speech Synthesis
Univariate Statistics and Methodology using R

Learning outcomes

This programme aims to equip you with the technical knowledge and practical skills required to carry out research and development in the challenging interdisciplinary arena of speech and language technology.

You will learn about state-of-the-art techniques in speech synthesis, speech recognition, natural language processing, dialogue, language generation and machine translation.

You will also learn the theory behind such technologies and gain the practical experience of working with and developing real systems based on these technologies. This programme is ideal preparation for a PhD or working in industry.

Career opportunities

This programme will provide you with the specialised skills you need to perform research or develop technology in speech and language processing. It will also serve as a solid basis for doctoral study.

Read less
This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. Read more

Course Overview

This course equips you with the theory and practice necessary to begin a career as a design or development engineer in communications and signal processing. You will also develop transferable skills in research and knowledge acquisition.

Highlights of the course include: unparalleled coverage of all major disciplines in communications engineering and signal analysis methodology; the comprehensive treatment of advanced communication systems from theoretical and practical approaches; innovative educational techniques designed to equip you with practical knowledge; design skills and research methodologies

On completing the course, many students progress into employment as design and development engineers in telecommunications and digital signal processing areas or onto a higher research degree.

Our Communications and Signal Processing MSc derives its uniqueness from research strengths in communications and digital signal processing in the School of Electrical and Electronic Engineering. All course lecturers have a world-wide reputation for high quality research at the leading edge of the subject. They have many years of experience with industrial projects and in running short courses for industry.

Research projects cover a range of applications in areas of: wireless networks; future generation communication technologies; error control coding; digital signal and image processing; biometrics identification and authentication.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/communications-signal-processing-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/communications-signal-processing-msc/#howtoapply

Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
Bournemouth University has one of the largest face-processing laboratories in the UK, and our academic staff have expertise in neuropsychological disorders of face-processing and forensic applications of face-processing research. Read more
Bournemouth University has one of the largest face-processing laboratories in the UK, and our academic staff have expertise in neuropsychological disorders of face-processing and forensic applications of face-processing research. This expertise is central to the delivery of the course, where you will learn about the detection, management and potential remediation of face-processing disorders, including those with acquired, progressive, developmental or neuropsychiatric origins.

Through the study of contemporary issues in face-processing research, the fascinating programme of study is especially relevant if you hope to become a researcher in this area and/or are seeking further professional development by gaining a unique and relevant qualification in an increasingly difficult job market.

You will also gain key technological skills that are required for face-processing research. There will be training in the manipulation of facial stimuli, instruction in programming, and consideration of methodological issues and experimental design. Using our state-of-the-art research equipment, including eye-tracking, tDCS, EEG and when possible MRI, you will get plenty of practical, hands-on experience. These skills will be fundamental for the research project, in which you will carry out an experimental investigation addressing a novel research question in the field.

The course was reveiwed in February 2016.

Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:
Core Modules
- Advanced Characterisation Techniques (SL)
- Surface Engineering (SL)
- Ceramics: Processing and Properties (SL)
- Design with Engineering Materials (SL)
- Sustainable Use of Materials (OW)
- Metals: Processing and Properties (SL)
- MSc Project

Optional Modules
- Plastics Processing Technology (OW)
- Industrial Case Studies (OW)
- Materials Modelling (SL)

Part-time Modules:
Core Modules
- Ceramics: Processing and Properties (DL)
- Design with Engineering Materials (DL)
- Sustainable Use of Materials (OW or DL)
- Metals: Processing and Properties (DL)
- Surface Engineering (DL)
- Plastics Processing Technology (OW)
- MSc Project

Optional Modules
- Industrial Case Studies (OW)
- Adhesive Bonding (OW)
- Rubber Compounding and Processing (OW or DL)

Alternative modules:*
- Polymer Properties (DL)
- Advanced Characterisation Techniques (SL)
- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning
Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.
PG Diploma: 120 credits – six core and two optional modules.
PG Certificate: 60 credits – four core modules.

- Assessment
Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation
Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.
Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.
Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities
We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.
The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research
Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects
Over 90% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are
hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Read less
Accredited by the British Computer Society. Speech and language technology graduates are in demand, in areas like machine translation, document indexing and retrieval, and speech recognition. Read more

About the course

Accredited by the British Computer Society

Speech and language technology graduates are in demand, in areas like machine translation, document indexing and retrieval, and speech recognition. Our world-leading language and speech research staff will help you to develop the skills you need.

Prepare for your career

Our courses give you experience of how real-world projects work. We consult with big employers to ensure that you develop the skills and the personal qualities they’re looking for.

You’ll learn about the issues that matter in global business and industry. Our graduates go into academic and industrial research, the software industry, banking and finance. They work for companies such as Logica, IBM, Hewlett Packard, PWC, Vodafone, the BBC and HSBC.

About us

Our challenge is to use computation to understand all kinds of systems: computer systems, living systems and cognitive systems. Our research areas include robotics, machine learning, speech and language processing, virtual reality, computational systems biology and software verification and testing. It’s work that makes a difference to people’s lives.

Network and hardware

We have our own high-performance network so you can access our advanced computing facilities. There are labs for teaching smaller groups, wi-fi coverage throughout the department, and you can connect your own laptop to the network. Mobile devices and tablets are available for you to borrow for project work.

We also use specialised equipment: an immersive virtual reality facility, robotics hardware and an acoustic booth for speech processing research.

Core modules

Research Methods and Professional Issues; Dissertation Project; Text Processing; Natural Language Processing; Speech Processing; Speech Technology; Machine Learning and Adaptive Intelligence.

Examples of optional modules

Object-Oriented Programming and Software Design; Modelling and Simulation of Natural Systems; Theory of Distributed Systems; 3D Computer Graphics; Computer Security and Forensics; Testing and Verification in Safety-critical Systems; Intelligent Web; Software and Hardware Verification; Software Development for Mobile Devices; Virtual Environments and Computer Games Technology; Java E-Commerce; Network Performance Analysis.

Teaching and assessment

We use lectures, tutorials and group work. Assessment is by formal examinations, coursework assignments and a dissertation.

Read less
Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. Read more

Why this course?

Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. It’s the underpinning technology of all communication including the internet, wireless and satellite.

We’ve been carrying out research and development in signal processing for more than 30 years. Many of today’s industry leaders are alumni of the University and this industry awareness and experience underpins this specialised degree.

This MSc aims to address the growing skills shortage in industry of engineers who have an understanding of the complete signal processing design cycle. It’s also essential preparation if you’re considering advanced research in applied signal processing.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/signalprocessing/

What you’ll study

There are two semesters of compulsory and optional classes, followed by a three-month practical research project in a specialist area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners eg ScottishPower, SmarterGridSolutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces such as our Hyperspectral Imaging Centre and the DG Smith Radio Frequency laboratory, equipped with the latest technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET). This means that you'll meet the educational requirements to become a Chartered Engineer – a must for your future engineering career.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Xilinx, Texas Instruments, MathWorks, and Agilent are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – the purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – a vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – this assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With Signal Processing being a core technology in high-growth areas such as sensor networks, medical devices, renewable energy and communications, this course enables you to capitalise on job opportunities across all of these sectors, as well as in electronics design, IT, banking, and oil and gas.

Almost all of our graduates secure jobs by the time they have completed their course. They've taken up well-paid professional and technical occupations with multinationals such as Google, Microsoft, Texas Instruments, Motorola Mobility, Intel, as well as Wolfson Microelectronics, Agilent, Freescale and Thales in the vibrant national UK arena.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Read more

Course Summary

This programme is structured around topics in systems and signal processing, with specialisms in control and systems theory, image processing and machine learning. Skills developed are sought after by industry (biotech, financial services, systems engineering, medical imaging, etc) and the academic research community. The modules have a high mathematical content and much of the material is computationally based, developing strong transferable skills in algorithmic development and programming.

Modules

Semester one: Signal Processing; Control System Design; Machine Learning; Computer Vision

Semester two: Advanced Systems and Signal Processing; Digital Control System Design; Applied Control Systems; Biological Inspired Robotics; Advanced Computer Vision; Image Processing; Advanced Machine Learning; Computational Finance; Computational Biology; Biometrics

Visit our website for further information...



Read less
Strongly interdisciplinary in nature, the Institute for Language, Cognition and Communication (ILCC) is dedicated to both basic and applied research in the computational study of language, communication, and cognition, in both humans and machines. Read more

Research profile

Strongly interdisciplinary in nature, the Institute for Language, Cognition and Communication (ILCC) is dedicated to both basic and applied research in the computational study of language, communication, and cognition, in both humans and machines.

As technology focuses increasingly on language-based communication tools, research into the automation of language processing has become vital. ILCC offers you the broadest research scope in the UK, and a strong computational focus.

Our primary areas of research are:

natural language processing and computational linguistics
spoken language processing
dialogue and multimodal interaction
information extraction, retrieval, and presentation
computational theories of human cognition
educational and assistive technology
Much of our research is applied to software development, in areas as diverse as social media, assisted living, gaming and education.

You may find yourself working closely with other departments of the University, particularly the School of Philosophy, Psychology & Language Sciences.

Many of our researchers are involved in two cross-disciplinary research centres:

Centre for Speech Technology Research (CSTR)

The Centre for Speech Technology Research (CSTR) is an interdisciplinary research centre linking Informatics and Linguistics. Founded in 1984, it is now one of the world's largest concentrations of researchers working in the field of language and speech processing.

CSTR is concerned with research in all areas of speech technology including speech recognition, synthesis, signal processing, acoustic phonetics, information access, multi-modal interaction and dialogue systems.

The Centre is home to state-of-the-art research facilities including specialised speech and language-orientated computer labs, a digital recording studio, perception labs and a meeting room instrumented with multiple synchronised video cameras and microphones. There is also access to high-performance computer clusters, the University storage area network, a specialist library, and many speech and language databases.

Human Communication Research Centre

The Human Communication Research Centre (HCRC) is an interdisciplinary research centre at the Universities of Edinburgh and Glasgow that brings together theories and methods from several formal and experimental disciplines to understand better how this happens.

We focus on spoken and written language; we also study communication in other visual, graphical and computer-based media.

Training and support

You carry out your research within a research group under the guidance of a supervisor. You will be expected to attend seminars and meetings of relevant research groups and may also attend lectures that are relevant to your research topic. Periodic reviews of your progress will be conducted to assist with research planning.

A programme of transferable skills courses facilitates broader professional development in a wide range of topics, from writing and presentation skills to entrepreneurship and career strategies.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

The award-winning Informatics Forum is an international research facility for computing and related areas. It houses more than 400 research staff and students, providing office, meeting and social spaces.

It also contains two robotics labs, an instrumented multimedia room, eye-tracking and motion capture systems, and a full recording studio amongst other research facilities. Its spectacular atrium plays host to many events, from industry showcases and student hackathons to major research conferences.

Nearby teaching facilities include computer and teaching labs with more than 250 machines, 24-hour access to IT facilities for students, and comprehensive support provided by dedicated computing staff.

Among our entrepreneurial initiatives is Informatics Ventures, set up to support globally ambitious software companies in Scotland and nurture a technology cluster to rival Boston, Pittsburgh, Kyoto and Silicon Valley.

Career opportunities

While many of our graduates pursue an academic career, others find their skills are highly sought after in the technology industry. A number of our students serve internships with large UK and international software developers, while others take up positions with major social media companies.

Read less
Are you interested in working with cutting-edge technology at the forefront of language processing?. This course is run by a leading research group at the University of Wolverhampton. Read more
Are you interested in working with cutting-edge technology at the forefront of language processing?

This course is run by a leading research group at the University of Wolverhampton. As a Master's student, you will be part of our Research Institute of Information and Language Processing (RIILP) (http://www.wlv.ac.uk/research/institutes-and-centres/riilp---research-institute-in-information-and-lan/), an independent, research-driven University unit specialising in Linguistics and Natural Language Processing.

What will I learn?

Computational Linguistics (sometimes called Natural Language Processing) is the use of computers to study language. On the course, you will be able to study:
• How to use Python and the well-established NLTK library to process natural language texts;
• How to analyse real language usage;
• How to automatically translate text using computer programs;
• The use of computers to study features of language;
• Translation tools such as translation memory systems;
• Computer techniques for automatically classifying natural language texts;
• Understand how Siri, Amazon Echo and Google Home etc. work;
• How to design an experiment that will thoroughly test your research questions.

You will be mentored through this programme by experienced and leading academics from the field. Join our research group today (http://www.wlv.ac.uk/research/institutes-and-centres/riilp---research-institute-in-information-and-lan/) to become part of this team of leading researchers and academics and create your path to a career in computers and language!

What modules will I study?

When studied full-time, this course comprises of three semesters worth 60 credits each. Three modules will be studied in semesters one and two. During the third semester, students will undertake their research project and complete a 15,000 word dissertation on any aspect of Computational Linguistics.

The course covers all aspects of Computational Linguistics in line with current and leading work in research and industry, and is divided into the following taught modules:
1. Computer programming in Python
2. Corpus Linguistics in R
3. Machine translation and other natural language processing applications
4. Computational Linguistics
5. Translation tools for professional translators
6. Machine learning for language processing
7. Research methods and professional skills

Translation Tools for Professional Translators is an elective module that may be chosen in the Second Semester to replace another taught module for those students who are interested in pursuing careers in Translation.

Opportunities

- You will be taught by leading researchers in the field: our teaching staff at the Research Institute of Information and Language Processing (RIILP) (http://www.wlv.ac.uk/research/institutes-and-centres/riilp---research-institute-in-information-and-lan/) are engaged in high-quality research, as evidenced by the latest RAE 2008 and REF 2014 results.
- We offer an exciting programme of invited lectures and research seminars, attended by both students and staff;
- The institute has a wide network of contacts in academia and in the industry from which you will be able to benefit;
- Find out about Dr. Vinita Nahar’s (past group member) innovative research into technology to detect Cyberbullying online http://www.itv.com/news/central/topic/cyber-bulling/.

How will I be assessed?

Assessments will include writing assignments on given topics, reports on practical work carried out in the class, portfolios, projects, oral presentations, and tests. The culmination of the study programme will be your 15,000-word dissertation, which will allow you to carry out an in-depth study of a chosen topic within the areas of corpus linguistics, language teaching, lexicography, or translation.

What skills will I gain?

The practical sessions include working with tools and software and developing programs based on the material taught in the lectures, allowing you to apply the technical skills you are learning. Some of the tasks are group based, feeding into the collaboration aspect of blended learning which enhances team-working skills, and some are done individually. Through portfolio building, you will be able to share your learning with other students. You will also be able to enhance your employability by sharing your online portfolio with prospective employers. Some assessments will require you to present your work to the rest of the class, enabling you to develop your presentation skills, which are useful in both academia and industry. Other transferable skills are the abilities to structure your thoughts, present your ideas clearly in writing and prepare texts for a wider audience. You will acquire these skills through assessed report and essay writing, and most of all through writing your dissertation.

Career path

Graduates of this course will be well-placed to continue their academic/research careers by applying for PhD positions within RIILP or at other leading centres for language and information processing. This degree will also enable graduates to access research and development positions within the language processing and human language technology industries, as well as in related areas such as translation, software development and information and communication technologies, depending on their specific module choices and dissertation topic. It should be noted that computer programming is a skill that is increasingly sought after by many companies from technological backgrounds and skills gained from this course will place graduates in a good position to take up such posts. Past graduates from this course have also gone on to successful careers specifically within the computer programming industry.

Student comments

"This course allowed me to see all the potential of Natural Language Processing - my favourite topic was Corpus Linguistics."

"I would recommend this course to people interested in linguistics or languages in general to show them that linguistics can also be paired with Computer Science and to those interested in Computer Science, for it could show them a new application to Computer Science."

"I would recommend this course to the individuals who seek to increase their knowledge of Machine Learning and Natural Language Processing. People who want to understand how, say, SIRI works, should join this course."

"Thanks to this course, I know what I want to do in the future; I want to be a Professor of Corpus Linguistics. I have several opportunities for a PhD in the US. I also learnt how to use a few programming languages, which is of great importance nowadays if one wants to find a job."

Read less
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you. The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning. Read more
If you are intrigued by the acquisition, processing, analysis and understanding of computer vision, this Masters is for you.

The programme is offered by Surrey's Department of Electrical and Electronic Engineering, recognised for world-leading research in multimedia signal processing and machine learning.

PROGRAMME OVERVIEW

This degree provides in-depth training for students interested in a career in industry or in research-oriented institutions focused on image and video analysis, and deep learning.

State-of-the-art computer-vision and machine-learning approaches for image and video analysis are covered in the course, as well as low-level image processing methods.

Students also have the chance to substantially expand their programming skills through projects they undertake.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and a standard project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Signal Processing A
-Object Oriented Design and C++
-Image Processing and Vision
-Space Robotics and Autonomy
-Satellite Remote Sensing
-Computer Vision and Pattern Recognition
-AI and AI Programming
-Advanced Signal Processing
-Image and Video Compression
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department of Electronic Engineering are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas.
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin computer vision, machine learning as well as how they can be related to robotics
-Be able to analyse problems within the field computer vision and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within computer vision, machine learning
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway
This programme in Computer Vision, Robotics and Machine Learning aims to provide a high-quality advanced training in aspects of computer vision for extracting information from image and video content or enhancing its visual quality using machine learning codes.

Computer vision technology uses sophisticated signal processing and data analysis methods to support access to visual information, whether it is for business, security, personal use or entertainment. The core modules cover the fundamentals of how to represent image and video information digitally, including processing, filtering and feature extraction techniques.

An important aspect of the programme is the software implementation of such processes. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspirations.

Key to the programme is cross-linking between core methods and systems for image and video analysis applications. The programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within the field that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods

Time and resource management
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by the Centre for Vision, Speech and Signal Processing (CVSSP).

CAREER PROSPECTS

Computer vision specialists are be valuable in all industries that require intelligent processing and interpretation of image and video. This includes industries in directly related fields such as:
-Multimedia indexing and retrieval (Google, Microsoft, Apple)
-Motion capture (Foundry)
-Media production (BBC, Foundry)
-Medical Imaging (Siemens)
-Security and Defence (BAE, EADS, Qinetiq)
-Robotics (SSTL)

Studying for Msc degree in Computer Vision offers variety, challenge and stimulation. It is not just the introduction to a rewarding career, but also offers an intellectually demanding and exciting opportunity to break through boundaries in research.

Many of the most remarkable advancements in the past 60 years have only been possible through the curiosity and ingenuity of engineers. Our graduates have a consistently strong record of gaining employment with leading companies.

Employers value the skills and experience that enable our graduates to make a positive contribution in their jobs from day one.

Our graduates are employed by companies across the electronics, information technology and communications industries. Recent employers include:
-BAE Systems
-BT
-Philips
-Hewlett Packard
-Logica
-Lucent Technologies
-BBC
-Motorola
-NEC Technologies
-Nokia
-Nortel Networks
-Red Hat

INDUSTRIAL COLLABORATIONS

We draw on our industry experience to inform and enrich our teaching, bringing theoretical subjects to life. Our industrial collaborations include:
-Research and technology transfer projects with industrial partners such as the BBC, Foundry, LionHead and BAE
-A number of our academics offer MSc projects in collaboration with our industrial partners

RESEARCH PERSPECTIVES

This course gives an excellent preparation for continuing onto PhD studies in computer vision related domains.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project. Read more
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project.

Teaching and learning

The course contains both compulsory core taught modules and a substantial individual research project. Four taught modules are delivered in the first semester from September to January, and four taught modules are delivered in the second semester from February to June. Each taught unit is assessed by coursework or laboratory report, with written examinations in January and June.
You will conduct your dissertation project work during summer and submit your final dissertation in September.

Course unit details

Typical course units include:
-Signals and data capture engineering
-Digital image processing
-Digital Communications engineering
-Sensing and transduction
-Digital image engineering
-Tomography engineering and applications

Career opportunities

Digital signals are part of almost every aspect of 21st technology. If you take this course, you will become expert in this area and expose yourself to a world of opportunity respecting careers. You will, for example, be able to perform biomedical signal processing, audio/visual/multimedia engineering, digital waveform synthesis and medical, industrial and military image processing. You will be able to work in the fields of imaging, medical physics, aerospace, telecommunications systems development, mechatronics, robotics, remote sensing and nondestructive testing. Your skills will be highly sought after in organisations that develop systems for these and many related state-of the art disciplines.

This course will not only make you very employable; it will be a very fulfilling and enriching experience.

Read less
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. Read more
The MSc in Telecommunications with Digital Signal Processing aims to produce postgraduates with an advanced understanding of communication systems with special emphasis on the application of digital signal processing, which supports and pervades all modern communication systems. It makes extensive use of MATLAB and Simulink simulation tools to design digital filters that perform noise reduction, signal shaping and channel modelling. Adaptive filters, matched filters, reception and detection algorithms essential for digital communications are also modelled and tested.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). Read more

Why this course?

This full-time course covers the theoretical and practical aspects of communications theory and networks, fundamental control technology and digital signal processing (DSP). All these topics are critical to the information and communications age.

You’ll gain an advanced knowledge of the principles of the communications, control and DSP domains. You’ll also develop an understanding of the current and future developments and technologies within these three disciplines.

Along with full accreditation from the Institution for Engineering and Technology (IET), this course will enable you to capitalise on job opportunities across a range of sectors including:
- control
- telecommunications
- signal processing
- electronics
- IT user companies

EDF Energy, Siemens and Texas Instruments are just some of the multinationals where our graduates have secured positions.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/communicationscontroldigitalsignalprocessing/

You’ll study

You’ll take two semesters of compulsory and optional taught classes. These are followed by a three-month research project in your chosen area. Opportunities exist to do the project through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners including Selex ES, ScottishPower, SmarterGridSolutions. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

We’ve a wide range of excellent teaching spaces including interactive classrooms and brand new state-of-the-art laboratories equipped with the latest technologies including:
- White Space Communications Facility
- Hyperspectral Imaging Centre
- DG Smith Radio Frequency Laboratory

You’ll have access to our IT facilities including web based resources, wireless internet and free email. There’s an IT support team to help with all your needs.

Accreditation

The course is fully accredited by the professional body, the Institution for Engineering and Technology (IET).
This programme also fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme or equivalent.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development.
Xilinx, Texas Instruments, MathWorks, and Selex ES are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

By concentrating on three distinct disciplines, this course enables you to capitalise on job opportunities across a range of sectors including control, telecommunications, signal processing, electronics and IT user companies. Globalisation of the communications, electronic & digital sectors means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.
Almost all of our graduates secure jobs by the time they have completed their course. They have gained professional and technical occupations with international companies such as Samsung, MathsWorks, Nokia and Texas Instruments, as well as joining Wolfson Microelectronics, Seles ES and Linn Products in the UK.
Increasingly, graduates of this course also play leading roles in the power and renewable energy sectors, supporting data analytics, information transmission and security for organisations such as EDF Energy, Siemens & Petrofac Engineering.

Where are they now?

87.5% of our graduates are in work or further study.*

Job titles include:
- Graduate controls engineer
- Graduate software engineer
- Lecturer
- Plant controls graduate

Employers include:
- FTDI
- MacDonald Humfrey (Automation)
- Mehran University of Engineering
- Vestas

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12)

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X