• Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
London Metropolitan University Featured Masters Courses
Coventry University Featured Masters Courses
Cardiff University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University College London Featured Masters Courses
"process" AND "system"×
0 miles

Masters Degrees (Process System)

  • "process" AND "system" ×
  • clear all
Showing 1 to 15 of 554
Order by 
The MSc Process Systems Engineering programme will widen your understanding of the fundamental concepts of process systems engineering. Read more
The MSc Process Systems Engineering programme will widen your understanding of the fundamental concepts of process systems engineering.

It will provide you with a thorough grounding in current technologies and trends that will prepare you will for a rewarding career and/or further research.

PROGRAMME OVERVIEW

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Advanced Process Control
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Technology, Business & Research Seminars
-Process and Energy Integration
-Process Systems Design
-Supply Chain Management
-Knowledge-based Systems and Artificial Intelligence
-Biomass Processing Technology
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available systems in the process industries
-Design and/or select appropriate system components, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organising and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject. Read more
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject.

It combines high-quality education with rigorous intellectual challenges, enabling you to understand the principles of knowledge management, decision-making and design in process systems and business-information technologies.

PROGRAMME OVERVIEW

The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines.

Graduates from non-IT or related disciplines tend to be ill-prepared for the information and knowledge-related challenges and demands of today’s business environments.

We offer a wide selection of modules spanning process engineering, information systems, business and management. All taught modules are delivered by qualified experts in the topics and academic staff, assisted by specialist external lecturers.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. Part-time students must study at least two taught technical modules per academic year. The programme consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Information Security Management
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business and Research Seminars
-Database Systems
-Knowledge-Based Systems and Artificial Intelligence
-Process and Energy Integration
-Process Systems Design
-Supply Chain Management
-Biomass Processing Technology
-Process Safety and Operation Integrity
-Process and Energy Integration
-Transition to a Low Carbon Economy
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

An extensive library is available for individual study. It stocks more than 85,000 printed books and e-books, and more than 1,400 (1,100 online) journal titles, all in the broad area of engineering. The library support can be extended further through inter-library loans.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects.

In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications, as well as modelling of process systems.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, on-going research. In the past, several graduates have carried on their MSc research to a PhD programme.

RESEARCH

Process integration and systems analysis for sustainability of resources and energy efficiency are carried out within our well-established Centre for Process and Information Systems Engineering (PRISE).

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision support systems alongside their main technical and/or scientific expertise.

Graduates of these programmes will be well prepared to help technology-intensive organisations make important decisions in respect of vast amounts of information, by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aims are achieved through a balanced, multi-disciplinary curriculum with a core of information systems engineering modules and decision-making and process systems engineering modules as well as a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

The programme draws on the stimulus of recent research activities in the Faculty of Engineering and Physical Sciences. The programme provides the students with the basis for developing their own approach to learning and personal development.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The sources, technologies, systems, performance, and applications in information and process engineering
-Approaches to the assessment of information and process technologies
-Decision making in complex systems
-Optimisation and operations research
-Technical systems modelling
-Databases and data protection
-Representation of design processes
-Systematic approaches to observing organisational data security processes
-Understanding research issues
-Literature studies and research planning
-Experimental planning
-Communication of research outcomes
-Design of decision-support systems
-Development of databases, ontologies and agent-based architectures
-Information technology and security
-Process modelling and simulation

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available information and process and their interaction
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as conceptual design and optimization to facilitate the assessment and development of information, information security and process technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
With an increasing awareness of the environmental impact of modern manufacturing, graduates with the combined skills taught on this programme are highly sought after by both process and environmental industries. Read more
With an increasing awareness of the environmental impact of modern manufacturing, graduates with the combined skills taught on this programme are highly sought after by both process and environmental industries.

If you want to develop core skills in process systems engineering, yet focusing your attention on environmental systems approaches, this Masters is for you.

PROGRAMME OVERVIEW

This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing.

There is a wide selection of modules on offer within the programme. All taught modules are delivered by qualified experts in the topics and academic members of University staff, assisted by specialist external lecturers.

Our programme combines high-quality education with substantial intellectual challenges, making you aware of current technologies and trends while providing a rigorous training in the fundamentals of the subject.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Life Cycle Thinking
-Optimisation and Decision-Making
-Renewable Energy Technologies
-Process Modelling and Simulation
-Solar Energy Technology
-Advanced Process Control
-Technology, Business and Research Seminars
-Environmental Law
-Sustainable Development Applications
-Process and Energy Integration
-Process Systems Design
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The programme combines advanced material in two popular and complementary topics: systems engineering and environmental engineering. The key learning outcome is a balanced combination of systems and environmental skills and prepares students in a competitive market where both topics appear attractive.

The programme will provide training in general and specialist process and environmental systems engineering subjects, and prepare the students for the systems challenges they will face in industry or academia upon graduation.

The programme disseminates technology with a wide scope among engineering disciplines, with a wide selection of modules on offer. All taught modules are delivered by qualified experts in the topics and academic members of the university staff, assisted by specialist external lecturers.

The programme provides high-quality education with substantial intellectual challenges, commensurate with the financial rewards and job satisfaction when venturing into the real world. A key component is to make the student aware of current technologies and trends, whilst providing a rigorous training in the fundamentals of the subject.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in process and environmental technologies, in the areas of: life cycle assessment and sustainable development, modelling and simulation of process systems, mathematical optimization and decision making, process systems design, and process and energy integration
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: general renewable energy technologies, and solar energy in particular; advanced process control

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available systems in the process industries with focus on environmental challenges
-Design and/or select appropriate system components, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process and environmental technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organising and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This unique course views the criminal justice process as a set of decision points involving numerous agencies working singly or jointly. Read more
This unique course views the criminal justice process as a set of decision points involving numerous agencies working singly or jointly.

It provides you with comprehensive, up-to-date, information while exploring in detail some key contemporary transformations in the field (digitalisation, partnership working, internationalisation, privatisation and accountability).

It is aimed at criminal justice practitioners, or those intending to work in this field. Our strong and growing links with local and regional criminal justice agencies support a critical and reflective approach to the workings of criminal justice.

Key benefits:

• Gain a critical and comprehensive overview of the criminal justice process
• Enjoy excellent opportunities to interact with criminal justice practitioners, both on and off campus
• Develop the reflective skills that will help you perform more effectively in a criminal justice career

Visit the website: http://www.salford.ac.uk/pgt-courses/the-criminal-justice-process

Suitable for

Practitioners working in the criminal justice system, and associated agencies, wishing to further their knowledge and understanding of the contemporary criminal justice process. Also graduates with degrees in criminology, law or associated disciplines who are planning to work in the criminal justice system.

Programme details

MSc The Criminal Justice Process will lead you to:

• Develop a systematic understanding of the criminal justice process.
• Gain a critical awareness of key transformations in the contemporary criminal justice process.
• Acquire the analytical skills required to formulate original and innovative analyses of the contemporary criminal justice process.
• Develop critical reflection on the nature, linkages and accountabilities of key roles in the criminal justice process.
• The course has both full-time and part-time routes, comprising three 12-week semesters or five 12-week semesters, which you can take within one year, or 30 months, respectively.

Format

All modules except the Dissertation and Criminal Justice Placement/Project are delivered via blended learning, combining some three-hour evening sessions on campus with distance learning activities (e.g. online reading, discussion board, webinars). Classes frequently use case studies as the focus for discussion. Lecturers provide key overviews of each topic. Students use classroom or online group discussions and questions-and-answers to explore each week’s topic. Where appropriate, experienced practitioners will join the session as visiting instructors.

All modules are supported by the virtual learning environment (Blackboard), which allows students to access learning materials remotely, participate in discussion boards and webinars, and access lists of recommended readings. The vast majority of the latter are available through the Library in electronic form and can be retrieved remotely.

Students opting to write a dissertation are supported by a designated supervisor. Students opting to undertake the Criminal Justice Placement/Project are supported by an on-site supervisor in the corresponding agency and by an academic supervisor on campus.

Module titles

• Processing Criminal Justice
• International Criminal Justice
• Digital Criminal Justice
• Human Rights and Criminal Justice
• Investigating Homicide
• Dissertation
• Criminal Justice Placement/Project

Assessment

You will be assessed through written assignments (66%) and dissertation (33%) or project (25%) and oral presentation (8%)

Career potential

This course will help you progress your career within the criminal justice field.
Graduates of this course can secure roles in the wide range of organisations involved in the criminal justice process. They can go on to jobs in the police, private security, victim and court services, probation, the prison service, youth offender services, and treatment and intervention programmes.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
With over 30 years of expertise, LSBU Law has shaped the professional futures of thousands of law students. Read more
With over 30 years of expertise, LSBU Law has shaped the professional futures of thousands of law students.

Through critical and comparative studies of justice and the criminal litigation process this course will give you demonstrable understanding of the key principles that ground the UK criminal justice system, its issues, approaches and topical debates.

If you are a recent graduate, or already working within the criminal justice field, you'll further your academic and practical knowledge of the litigation process. The programme is also highly relevant to human rights workers and policy agents working in the UK or abroad. Upon completion you'll have acquired an in-depth and systematic understanding of criminal litigation and criminal justice and will be able to work at the cutting edge of practice and research in these areas.

This course is distinctive for the following reasons:

- Emphasis on human rights and justice issues;
- Practical legal problem-solving drawing upon a variety of legal and non-legal knowledge, understanding and skills;
- Leading practitioner insights into current legal and criminal justice practice issues;
- Strong national links with the legal profession;
- The learning environment is greatly enhanced by guest lectures, delivered by distinguished scholars and practitioners.

See the website http://www.lsbu.ac.uk/courses/course-finder/crime-and-litigation-llm

Modules

Core Modules:
- Research methods
This module is essential to understanding the development, implementation, and analysis of graduate level research in legal studies. It is designed to assure that you have a comprehensive knowledge of research design development, and the ability to review and understand journal articles in various subjects of common law. The ultimate purpose of the Module is to encourage you to become engaged in independent legal research in order to be able to submit successfully the dissertation of 15,000 words by the end of the course. You'll build on the research skills already acquired in undergraduate studies by covering topics such as literature review, research presentation and research evaluation, with an emphasis on practical exercises.

- Criminal litigation
You'll be introduced to the structure and process of the Criminal Justice System in England and Wales and explores some of the socio-political issues, which arise from the function of the law in practice. You'll be provided with a critical overview of the system of justice and the key procedural decisions that are made within the system. You'll consider the process of justice via practical, classroom (and E-learning) based, engagement with the litigation process and use case studies and group role play to enhance their practical and theoretical understanding of the criminal process.

- Criminal justice
You'll critically consider the criminal justice system by exploring the role of key players in the criminal justice system such as a) the police b) the Crown Prosecution Service c) defence lawyers' d) magistrates, juries and judges. All those players both individually and collectively will be examined and evaluated.
Although we will focus mainly on the English criminal justice system, learners will be encouraged to take a wider comparative perspective to the various issues involved, special reference will be made to contemporary elements of victimology and the way the criminal justice system deals with different kind of victims in order to introduce learners to the various ways in which different agents of the criminal justice system deal with victims i.e. police and courts.

- Dissertation

Module options:
After completing core modules you'll choose from options that reflect the practical/ theoretical and social justice context of the course. Choices are made following discussion with your personal tutor and also guided by your own professional interests and career aspirations.
- International criminal law
- Evidence/science and technology
- Psychological aspects of investigation
- Decision making in the forensic context
- Advocacy
- Policing
- Investigative psychology
- Terrorism
- Citizenship and combating crime in the EU

- Criminal litigation
If you're interested in criminal litigation you may prefer options such as: Advocacy, Evidence, Forensic Science and Technology or International Criminal Law

- Criminal justice
Or if you want to focus on the criminal justice system you may prefer options such as: Policing, Terrorism, Investigative Psychology, Forensic Psychology.

Study modes

Full-time:
- 14 months (taught stage: October-June; dissertation: July-October)
-Full-time; six modules plus a dissertation to be completed July-October

Part-time:
- Part-time: 26 months (taught stage: October-June years one and two. Dissertation: July-October or July to January in year 2)

- Three modules a year for two years; plus a dissertation completed July-January, or, July-October. Students can alternatively opt for the accelerated part-time learning mode (Saturday classes).

All modules (core and optional) achieve a balance between practice, theory and the development of professional skills.

Employability

Upon completion of the course you'll have developed advanced legal practice skills and an informed and reflective understanding of the criminal justice system. As well as legal practice, graduates of this LLM may seek employment in a variety of related fields such as research and policy making the police, prison and probation services.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Teaching and learning

Content, knowledge and understanding is assessed through coursework, or, a combination of coursework, presentations and online assessments. Coursework can take many forms (based on the practical or theoretical content of the module) including essays and reports.

Read less
The European Master's in System Dynamics is the first international Master's programme in System Dynamics in Europe. It has been built on the strengths of four leading universities. Read more

Overview

The European Master's in System Dynamics is the first international Master's programme in System Dynamics in Europe. It has been built on the strengths of four leading universities: the University of Bergen, New University of Lisbon, University of Palermo and Radboud University. The programme has been specifically designed for students who are interested in learning how to initiate strategic change in organisations by using computer simulation models.

Goals & expectations

Our goal is to teach you everything you need to know when starting an international career in strategic modeling with System Dynamics. After you have finished our Master's Programme, you will know how to build a System Dynamics model, how to apply it to a variety of complex problems in real life and how to facilitate the model-building process with the client in such a way that not only can a high-quality model be built, but what is equally important, that a strategic change can be achieved and policies can be implemented.

Partner universities:

University of Bergen, Norway
University of Palermo, Italy
New University of Lisbon, Portugal
Radboud University, The Netherlands

Multiple Master's degrees:

Master of Philosophy in System Dynamics
Master of Philosophy in System Dynamics
Master of Science in System Dynamics
Master of Science in Business Administration

Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
With the MSc Business Systems Analysis and Design course at City you can unravel a business system and prepare to work as an analyst within the industry. Read more
With the MSc Business Systems Analysis and Design course at City you can unravel a business system and prepare to work as an analyst within the industry.

Who is it for?

The course is for motivated students who enjoy working within high-pressure environments often to tight deadlines. You will need a good undergraduate degree as well as the tenacity and patience to understand business systems and the ability to adapt to constant change.

Objectives

There is a common misconception in building business systems: that users know their requirements. Often they don’t. This postgraduate Business Systems Analysis programme has been designed to address this problem.

The MSc in Business Systems Analysis and Design is not about developing algorithms and coding. We work with technology but we are not technicians because we know that to become an IT consultant or business analyst, you need to understand the disparate areas that make up the discipline. This is a Masters degree where you will design a business system; in order to do this you will unpick the information infrastructure to find out if the system works.

Analysing a business system is a process that demands constant re-evaluation. By investigating system requirements, considering how information flows through it, and exploring the pitfalls that emerge within user hierarchies, at City we examine the business system as a whole. This approach is essential to respond to rapid business change.

These are some of the questions the course poses:
-What is the right system to address the problem?
-Does the system meet the needs of the business now and will it be able to adapt in the future?
-How is information flowing within the system?
-How will users interact with the system throughout the project life cycle?

Placements

As a student on this programme you can undertake an internship in the July to December period, for up to six months. You can work under a client’s direction for all or part of this time. Many students use the internship as an opportunity to carry out a specific project which forms the context for their final dissertation.

One current student is working within a user experience design company to investigate how scents affect the emotional perception of digital fruit images displayed on a desktop service.

Academic facilities

As a student on the MSc Business Systems Analysis and Design course you will have access to dedicated labs and use specialist software such as SAP. At City we also have access to Microsoft Dynamics ERP software to support the enterprise information system module. Microsoft Dynamics is an industry-based CRM system. As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

We provide a diversity of teaching approaches so you get a diversity of learning experiences in the form of traditional lectures, live classroom demonstrations, tutorials, laboratories, and TV studio role-playing. We encourage you to engage with the material in an active way. As a postgraduate student, we expect you to take responsibility for your own learning and use non-timetabled hours for your own private study or group interactions.

You will be assessed in a variety of ways from coursework and laboratory work to presentations, examinations and a project dissertation. By successfully completing eight taught modules and the research project you will be awarded a Master of Science (MSc) degree. All modules in this course are supported by Moodle, City's online learning environment.

The course is available full time (12 months) and part time (up to 28 months - two days a week). The Department is aware that this involves considerable commitment from part-time students, and we try to be as flexible as we can so you can successfully combine your work and study.

By completing eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed the eight modules, you will be awarded 120 credits and a postgraduate diploma. If you successfully complete four modules (60 credits) you will be awarded a postgraduate certificate.

Modules

There are six core modules and four electives from which you can choose two topics. Practical work is emphasised throughout the degree programme to develop your understanding and skills, which is strengthened by interactive teamwork. The course has an excellent track record in producing employable hybrid IT/business professionals.

In the industry you need to communicate your expertise in lay terms. The modules give you experience in working on group projects so you can manage roles and responsibilities and build a set of professional values. The core content will also give you the ability to set strategies, manage information flows and deal with problems such as overload and risk.

The course develops:
-Skills in business awareness, design and consultancy to facilitate the alignment of IT systems and services to business objectives
-The specialist understanding of theoretical principles in business systems analysis and design.
-Technical skills, through practical laboratory work, so you can apply your knowledge of IT and how it affects business competitiveness.

The course will give you specialist knowledge ranging from business systems requirements analysis and design, software systems engineering, data modelling to business intelligence, project management and business engineering with ERP solutions.

Core modules
-Business engineering with ERP solutions INM342 (15 credits)
-Business intelligence & analytics INM451 (15 credits)
-Practical business systems consultancy INM353 (15 credits)
-Project management INM372 (15 credits)
-Research methods and professional issues INM373 (15 credits)
-Systems specification INM312 (15 credits)

Elective modules - choose from one module in the first term from the following:
-User-centred design INM355 (15 credits)
-Information and knowledge management INM351 (15 credits)

Choose from one module in the second term from the following:*
-Databases INM343 (15 credits)
-Information Retrieval (IR) INM351 (15 credits)

*Note: Databases is compulsory for students who do not have prior knowledge at the discretion of the programme director.

Career prospects

As a City graduate you leave with front-line knowledge. With insight from major areas of research including software engineering, human-computer interaction and artificial intelligence, you will be able to assimilate your skills within the industry and offer a future-focused mindset.

From Unilever to HMV and from Accenture to ITN, City graduates are employed across sectors in consultancy companies, software houses, the public services, telecommunications, multinational manufacturers, and large retailers. The programme will help you build a strong peer network as well as a solid network of contacts for your continued career development.

Read less
Who is this course for?. Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems. Read more
Who is this course for?
Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Modules

Computer Networks, which aims to advance knowledge on computer networks. Topics to be covered in this module include OSI reference model, Physical and Data Link Layer Protocols, TCP/IP Networking, IPv6, Routing Protocols, Asynchronous Transfer Mode (ATM) Networks, Packet Delay and Queuing Analysis, IP Quality of Services (Integrated Service Model and Differentiated Service Model), Resource Reservation Protocol (RSVP), Multi-Protocol Label Switching (MPLS), IP Multicasting, Network Application Layer Protocols such as HTTP, DNS, SNMP.

Network Computing, which focuses on principles and techniques for network computing. Topics to be covered in this module include Object-Oriented Software Engineering, Object-Oriented Programming with Java, Network Computing Models such as Client/Server Model and Peer-to-Peer Model, Socket Programming, Remote Procedure Call (RPC), Java Remote Method Invocation (RMI), Common Object Request Broker Architecture (CORBA), Web Computing Technologies (Java Servlet, Java Server Pages), Message Exchanging with XML, Service Oriented Architecture (SOA), XML based Web Services (WSDL, SOAP, UDDI).

Network Security and Encryption, which introduces the fundamental theory that enables what is achievable through the use of Security Engineering to be determined, and presents the practical techniques and algorithms that are currently important for the efficient and secure use of distributed /Grid computing systems. Topics to be covered in this module include Introduction to Security Engineering, Classical Cryptography (Monoalphabetic and Polyalphabetic Ciphers, Transposition, Substitution, Linear Transformation), Computational Fundamentals of Cryptosystems (Computational Complexity and Intractability, Modular Arithmetic and Elementary Number Theory), Modern Symmetric Key Cryptography (Feistel Ciphers, DES, Triple-DES and AES),Public Key Cryptography (The Diffie-Hellman Key Exchange Algorithm, Public Key Infrastructures, X.509 Certificates, PK Systems such as RSA and Elliptic Curves), Multilevel Security (the Bell-LaPadula Security Policy Model, the Biba Model, the NRL Pump), Multilateral Security (Compartmentation and the Lattice Model, the Chinese Wall, the BMA Model), Protecting e-Commerce Systems.

Distributed Systems Architecture, which presents a comprehensive evaluation of the design philosophies, fundamental constructs, performance issues and operational principles of distributed systems architectures, covering applications, algorithms and software architecture, engineering issues and implementation technology. Topics to be covered in this module include System Architecture (Bus Systems, High Performance I/O, Memory Hierarchies, Memory Coherence and File Coherence), Distributed Database, Processor Architecture, File Services, Inter-Process Communication, Naming Services, Resource Allocation and Scheduling, Distributed System Case Studies.

Grid Middleware Technologies, which introduces the principle, concepts and practice of Grid middleware technologies, and provides a practical knowledge on developing Grid applications. Topics to be covered in this module include Parallel Computing Paradigms, Parallel Programming with MPI/PVM, Cluster Computing Principles (Condor, Sun Grid Engine), Grid Computing Middleware Components (Job Submission, Resource Management and Job Scheduling, Information Service, Grid Portal, Grid Security Infrastructure), Grid Standards (OGSA/WSRF), Grid Middleware Case Study with Globus.

Grid System Analysis and Design, which aims to analyse representative production Grid systems and gain knowledge on how to design and optimise large-scale Grid systems. Topics to be covered in this module include System Analysis Methodologies with UML, Model Construction (Process Modelling, Static Class Modelling, Dynamic Modelling, Interface Modelling), Management of Large-Scale Grid System (Portal, Concurrent Version System (CVS)/Wiki), Grid System Analysis Case Study (GridPP, LCG/EGEE), Grid System Design (Performance Consideration, Open Standards, Design Patterns, Usability Analysis), Grid System Programming Models, Testing (Unit Testing, Integration Testing, Regression Testing), Debugging, Risk Analysis, System Maintenance.

Project Management, which introduces a range of formal methods and skills necessary to equip the student to function effectively at the higher levels of project management. Covers the need for the development of project management skills in achieving practical business objectives.

Workshop involves practical work, which is an important component of the course and gives students experience with relevant techniques and tools. Assignments are of practical nature and involve laboratory work with relevant equipment, hardware and software systems, conducted in a hands-on workshop environment. Typical assignments are:
TCP/IP Network Layered Protocol Analysis
Object-Oriented Programming, Java Socket Programming
Network Security and Encryption
Java RMI Programming for Distributed Systems
Grid Programming with Globus Toolkit 4 (GT4)
Grid System Analysis/Simulation

Dissertation, which is a stimulating and challenging part of the MSc programme. It provides the opportunity to apply the knowledge learnt in the taught part of the programme and to specialise in one aspect, developing students’ deep understanding and expertise in Distributed Systems related area of their choice. Students may carry out their projects wholly within the University, but industrial based projects are encouraged.

Read less
Systems in mobile telephones, computers, cars and aircraft are shrinking, with many parts implemented as a single integrated circuit. Read more

Course Summary

Systems in mobile telephones, computers, cars and aircraft are shrinking, with many parts implemented as a single integrated circuit. This course prepares you for the rapidly changing skills required to support this. The focus is on system-on-chip design techniques and extensive practical use of cutting-edge and industry-standard methods. You will be taken through the system-on-chip design process, from concept to implementation.

Modules

Semester one: System-on-Chip Electronic Design Automation; Nanoelectronic Devices; Digital System Design; System-on-Chip Design Techniques

Semester two: SOC Design Project; Automated Software Verification; Analogue and Mixed Signal CMOS Design; Advanced Wireless Communication Networks and Systems; Medical Electrical and Electronic Technologies; Cryptography; Digital Systems Synthesis; Embedded Processors

Visit our website for further information...



Read less
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems. Read more
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems.

This programme will give you opportunities to learn about major renewable-energy technologies, energy-sector economics, supply-chain management and sustainable development.

PROGRAMME OVERVIEW

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business & Research Seminars
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Solar Energy Technology
-Advanced Process Control
-Energy Economics and Technology
-Process Systems Design
-Biomass Processing Technology
-Wind Energy Technology
-Process and Energy Integration
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Economics of International Oil & Gas
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available renewable energy systems
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Upgrade is possible to the Diploma SCSE and MSc SCSE courses. This modular postgraduate Certificate course is designed to prepare students for work in the demanding field of Systems Safety Engineering (SSE) by exposing them to the latest science and technology within this field. Read more
Upgrade is possible to the Diploma SCSE and MSc SCSE courses.

This modular postgraduate Certificate course is designed to prepare students for work in the demanding field of Systems Safety Engineering (SSE) by exposing them to the latest science and technology within this field. The discipline of SSE has developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional module allows students to investigate such areas as the contribution of software, human factors or operational factors to SSE in more depth.

Learning Outcomes

The course aims to provide participants with a preliminary grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design and deployment of such a system. Graduates completing the course will be equipped to participate and in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering graduate will have a preliminary knowledge and understanding of the essential areas, as represented by the core modules.

Transferable Skills

Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Read less
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status. Read more
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status.

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Engineering and Technology (IET), the course meets Chartered Engineer status requirements
•Study at one the UK’s leading Engineering Schools
•Programme informed by internationally-acclaimed research
•Close industry links
•Excellent career opportunities in roles such as system designers, analysts, and senior engineers in the fields of electrical engineering, process control, and related industries

This Masters course will equip you with the technical and management skills you need to progress to senior professional positions, specialising in the design, fabrication and testing of microelectronic devices.

You will study the fundamental principles that drive future developments in microelectronics. We offer the opportunity to develop the critical, analytical and experimental skills to solve practical problems and work at the cutting edge of this rapidly developing field.

You’ll learn how to critically analyse designs, their functionality and expected reliability and it will also be important for you to gain a strong understanding of the capabilities and limitations of modelling and simulation tools.

The programme design provides opportunities to practice communication skills at Chartered Engineer level. You’ll gain sought after professional behavioural traits to prepare you for technical and management roles in microelectrical system design.

You will also undertake an individual project giving the opportunity to focus on your area of interest, working with our world-leading researchers.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Dynamic systems simulation
Microelectronic systems design
VLSI devices, fabrication and testing
Embedded systems
VLSI design
Research skills
Modelling with Matlab and Simulink
MSc project
Advanced single processing
Operations research
Safety and reliability
Project management
Programming for engineering
LabVIEW
Professional and leadership skills

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
MSc Manufacturing Management (online) develops skills and knowledge and specifically focuses on the areas of business, operations management, information systems, and product development and quality systems. Read more
MSc Manufacturing Management (online) develops skills and knowledge and specifically focuses on the areas of business, operations management, information systems, and product development and quality systems.

It will also equip you with the knowledge and understanding for a career in technical and engineering management. You will gain knowledge and understanding of relevant techniques in:
-The analysis of business strategy and planning
-Commercial engineering practice
-Product definition
-Process system design
-Understanding of resource management through planning and process control

Why choose this course?

MSc Manufacturing Management has been running successfully on campus for ten years by the School of Engineering and Technology. With their progressive approach and career-relevant programmes, the School of Engineering and Technology has an international reputation for attracting students and developing talented graduates who are highly sought after by employers.

Building on these successes this on campus Master's course has now be developed for 100% online delivery. Ideal if you do not wish to put your career on hold for study or unable to get to our campus in Hatfield, UK.

Professional Accreditations

This course is accredited by the Institute of Manufacturing (IManf). Graduates of this programme will be entitled to "Fellow membership of The Institute of Manufacturing" and once they can demonstrate 2 years’ work experience in Manufacturing Management they will be entitled to apply for the award of “Certified Manufacturing Practitioner”.

Careers

Graduates will have acquired the intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing.

You may then be able to work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X