• Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Swansea University Featured Masters Courses
"process" AND "analytical…×
0 miles

Masters Degrees (Process Analytical Technology)

We have 176 Masters Degrees (Process Analytical Technology)

  • "process" AND "analytical" AND "technology" ×
  • clear all
Showing 1 to 15 of 176
Order by 
Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations. Read more

Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations.

You learn the skills of an analyst and become familiar with the principles of modern instrumental analytical techniques, analytical methods and statistics. You learn how to conduct your tests according to regulations which demand that you work under a strict quality assurance and quality control regime.

Because we have designed the course in close consultation with the pharmaceutical industry, your training is excellent preparation for a career in the industry. In addition to giving input on course structure, industrial practitioners deliver lectures on a variety of topics which relate to industry. You can take modules individually for continuing professional development.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. We also have excellent research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers, which are used in taught modules and research projects.

As a student, you

  • gain knowledge and practical skills to operate commonly used analytical laboratory instruments
  • become familiar with automated approaches to analysis and process analytical technology
  • apply good experimental design techniques and use statistical methods for data evaluation
  • develop your knowledge of validated analysis methods for determining chemical compounds and elements in a range of sample types
  • understand the principles and practice of laboratory quality systems
  • interpret mass spectra and nuclear magnetic resonance data.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Quality issues, laboratory accreditation and the analytical approach (15 credits)
  • Separation, detection and online techniques (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Drug detection and analysis (15 credits)
  • Methods for analysis of molecular structure (15 credits)
  • Process analytical technology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Assessment

Mostly by coursework including

  • problem solving exercises
  • case studies
  • practical laboratory work
  • written examinations.

Research project assessment includes a written report and viva voce. 

Employability

You improve your career prospects in areas such as • pharmaceutical research and drug development • medical research in universities and hospitals • care products • biotechnology companies • government research agencies.

It also offers you the training and knowledge to go on to research at PhD level in pharmacology, biotechnology pharmaceutical and analytical science.

How we support your career

Sheffield Hallam University is committed to the employability of its students. That’s why we design so many of our courses with employers. Find out how we can support your career.



Read less
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. Read more

Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses.

The course is taught by researchers with an international reputation in advanced analytical techniques, such as the application of mass spectrometry to the analysis of biological matrices. Tutors also have expertise in production and detection of nanoparticles and detection of pollutants, particularly in soil.

This course is suitable if you wish to increase your knowledge and skills and increase your competitiveness in the job market or pursue a PhD. It will also suit you if you work in a chemistry-related profession and are seeking to further your career prospects.

You gain experience and understanding of

  • key techniques in separation sciences, including liquid and gas chromatography
  • atomic and molecular spectroscopy, such as atomic absorption and emission, NMR and IR
  • analytical technologies applied in process control and solving complex biological problems

This is a multi-disciplinary course where you learn about various topics including statistics, laboratory quality assurance and control, environmental analysis and fundamentals of analytical instrumentation.

You also gain the transferable skills needed to continue developing your knowledge in science, such as data interpretation and analysis, experimental design and communication and presentation skills.

You complete a research project to develop your research skills and their application to real world situations. You are supported by a tutor who is an expert in analytical chemistry.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. This is supplemented by access to our research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers.

Professional recognition

This course is accredited by the Royal Society of Chemistry (RSC). Applicants should normally have a degree (bachelors or equivalent) in chemistry that is accredited by the RSC. Applicants whose first degree is not accredited by the RSC, or with overseas degrees or degrees in which chemistry is a minor component will be considered on a case by case basis on submission of their first degree transcript.

Candidates who do not meet the RSC criteria for accreditation will be awarded a non-accredited masters qualification on successful completion of the programme.

Applicants will be informed in writing at the start of the programme whether or not they possess an acceptable qualification and, if successful on the masters programme, will receive an RSC accredited degree. If you do not meet the RSC criteria for accreditation, you will be awarded a non-accredited masters after successfully completing the programme.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Quality issues, laboratory accreditation and the analytical approach (15 credits)
  • Separation, detection and online techniques (15 credits)
  • Surface analysis and related techniques (15 credits)
  • Drug detection and analysis (15 credits)
  • Methods for analysis of molecular structure (15 credits)
  • Process analytical technology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Assessment

Assessment methods include written examinations and coursework including

  • problem-solving exercises
  • case studies
  • reports from practical work.

Research project assessment includes a written report and viva voce. 

Employability

This course is aimed at either recent graduates or those already in employment who wish to develop a career in analytical chemistry or enhance their laboratory skills and knowledge in the techniques and methods used in a modern analytical science laboratory. It also offers you the training and knowledge to go on to research at PhD level in analytical science.



Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr04/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
EV4002 Environmental Monitoring (10 credits)

Research Project Module (30 credits)

CM6021 Research Project and Dissertation in Environmental Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr02/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits) or

Research Project Nodule (30 credits)

CM6022 Research Project and Dissertation in Pharmaceutical Analysis (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
See the department website - http://saunders.rit.edu/graduate/mba_program.php. The master of business administration degree provides students with the capabilities for strategic and critical thinking needed for effective leadership in a global economy where creative management of both people and technology is vital. Read more
See the department website - http://saunders.rit.edu/graduate/mba_program.php

The master of business administration degree provides students with the capabilities for strategic and critical thinking needed for effective leadership in a global economy where creative management of both people and technology is vital. The curriculum begins with a solid grounding in the functional areas of business and combines that foundation with the flexibility that allows students to specialize in one or two areas of expertise. In the classroom, students learn the latest theories and concepts, and how they can be immediately applied to solve problems in the workplace.

Plan of study

The MBA program requires 48 credit hours and consists of 16 courses, 11 of which are devoted to core functional areas and five available in concentration areas and as electives.

- Concentrations

An MBA concentration is a sequence of three courses in one discipline, giving you in-depth knowledge in that subject matter. In addition to the program's core courses, at least one area of concentration must be selected to complete the MBA program.

Our most popular MBA concentrations are featured below. Customized concentrations can also be created that leverage graduate courses offered at Saunders, as well as the other RIT colleges, providing a wide array of disciplinary focus areas. While several examples are provided, many possibilities exist. Students may also elect to complete a second concentration, if they choose. A graduate advisor can assist in developing a customized plan of study.

- Accounting

Designed for students planning to enter corporate accounting, this concentration is also an excellent complement to a concentration in finance or management information systems.

- Entrepreneurship

The entrepreneurship concentration is designed to enable students to recognize and commercialize attractive business opportunities—either by new independent ventures or by established firms seeking growth or rejuvenation. It involves integrating all functions of business (marketing, innovation, finance, accounting, etc.) within one coordinated value-creating initiative.

The concentration requires an applied entrepreneurial learning experience that may be satisfied through either the Field Experience in Business Consulting (MGMT-753) course or an approved commercialization project. These projects may involve students developing their own businesses or working with RIT incubator companies, local start-up firms, or RIT multidisciplinary commercialization projects.

- Environmentally sustainable management

With a goal of familiarizing students with environmentally sustainable business practices, this concentration is attractive to those with an overall interest in understanding how firms can manage social and political demands for more environmentally sustainable products and operations. It may be of particular interest to those students in industries with a significant environmental impact such as the automotive, chemical, energy, transportation, or agricultural industries, where environmental issues are central to operational and strategic decision making.

- Finance

This concentration is designed to provide a foundation of knowledge in finance and allow students to choose courses appropriate for a career in investments or corporate finance. Students interested in investments will acquire advanced skills in securities evaluation and portfolio management. Those interested in corporate finance will acquire advanced skills in budgeting, planning, global financing and operations, and corporate risk management.

- International business

This concentration prepares graduates for today's global business environment. Regardless of size, nearly all enterprises operate globally: sourcing, producing, researching, and marketing worldwide. Suppliers and competitors are not only across the street, they are around the globe. Balancing the needs of local, regional, and national communities--and the benefits attained from global competition and cooperation--requires an understanding of the international dimensions of business. Managers and professionals must be able to think, market, negotiate, and make decisions designed for the diversity, complexity, and dynamism that are the hallmarks of global business.

- Management and leadership

Managers need to combine effective leadership with analytical reasoning. The management and leadership concentration provides students with the leadership skills needed to be successful managers in business, nonprofit, and public organizations. Students develop the essential analytical and decision-making skills for today's rapidly changing world. They learn why change is difficult, when to initiate change, and how to introduce and manage change in the workplace. These courses also prepare students for the demands of managing people and projects.

- Management information systems

This concentration enhances students' understanding of modern information systems. It was designed for students who may not have a background in computers or information systems.

- Marketing

The overall process of entering markets, creating value for customers, and developing profit for the firm are the fundamental challenges for today's marketing manager. Effective marketing must consider the target audience, along with the changing business environment and competitive pressures of technological and global challenges. Additionally, digital media, the Internet, and big data continue to drive the development of our global marketplace. Digital marketing is evolving quickly creating an enormous need to understand the implications of these shifts for strategic initiatives in marketing and advertising.

- Operations management and supply chain management

This concentration focuses on providing the knowledge to assist in developing, and implementing, efficient supplier systems in order to maximize customer value. Supply chain management is focused on the coordination of the associated processes required both within a business, as well as across businesses/suppliers, to deliver products and services - from raw materials to customer delivery. In addition to courses covering project management, quality control, process improvement and supply chain management, additional electives allow students to broaden their knowledge base across other relevant operations and supply chain management functions.

- Product commercialization

This concentration targets students who are interested in developing expertise in managing the marketing-related activities required to move new products and services through preliminary business and development stages to a successful launch. The commercialization of new corporate offerings is increasingly important as product life cycles get shorter.

- Quality and applied statistics

This concentration is for students interested in studying the technical aspect of managing quality (i.e., statistical quality control). Students gain an understanding of the basics of statistical process control, quality improvement, acceptance sampling, and off-line quality control techniques such as the design of experiments.

- Technology management

In a constantly changing environment, the ability of an organization to innovate and renew itself is critical if it is to survive and prosper. Technology managers, who are typically responsible for the innovation and application of new technology, are central to the long-term strategy and success of their companies. To manage these processes well, managers need to understand both business and technological perspectives. Co-op or internship experience in high-technology settings may be helpful to students pursuing a specialty in technology management.

- Customized concentration options

In addition to the above concentrations, MBA students may create a customized three-course concentration utilizing graduate courses from Saunders and other RIT colleges. Some examples are listed below, while additional options may be pursued on a case by case basis. To create a customized concentration the approval of a Saunders College graduate advisor is needed, and course prerequisites may apply.

- Communication and media technologies

Communication, and the technologies for message creation and dissemination, is at the center of dramatic economic, social, and cultural changes occurring as a result of technological development and global connectedness. This concentration, offered by the College of Liberal Arts, prepares students for careers as communication experts in commerce, industry, education, entertainment, government, and the not-for-profit sector.

- Health systems administration

Specifically designed for students employed in the health care environment, this concentration, offered by the College of Applied Science and Technology, introduces up-to-date, industry-relevant content that is continually developed in response to the changing health care environment. All courses in this concentration are offered online.

- Human resource development

The field of human resource development has grown in both size and importance over the last decade, leading to a higher demand for educated and skilled human resource professionals. This concentration, offered by the College of Applied Science and Technology, provides education in training, and career and organizational development.

- Industrial and systems engineering management

Organizations need individuals who possess a blend of technical and business skills, as well as the integrated systems perspective needed to commercialize complex products and services. This concentration, offered by the Kate Gleason College of Engineering, may be significantly interdisciplinary.

- Information technology

Corporations are aware of the cost savings and performance improvement possible when information technology is applied in a systematic manner, improving organizational information flow, employee learning, and business performance. Information technology includes a mixture of computers and multipurpose devices, information media, and communication technology. Students may choose from the following areas of specialization: Web programming/multimedia, software project management, programming, or telecommunications. This concentration is offered by the B. Thomas Golisano College of Computing and Information Sciences.

- Print media

Leadership and management in the print media industry require an understanding of the cutting-edge technology and emerging markets to articulate a corporate vision that encompasses new opportunities and directions. This concentration, offered by the College of Imaging Arts and Sciences, is designed to provide a solid technical background in cross-media digital workflow processes and a keen understanding of the issues and trends in the print media industry.

- Public policy

Formulating public policy and understanding its impact are critical, whether you work in government, not-for-profit, or the private sector. This concentration, offered by the College of Liberal Arts, gives students the skills to effectively formulate public policy and evaluate its impact, particularly as related to science and technology issues. The courses focus on policy formation, implementation, and analysis.

Read less
Small Unmanned Aircraft (SUA) which are more commonly referred to as Drones are now being used for commercial purposes in an exciting and booming business sector predicted to be worth more than £15 billion in the next 10 years. Read more

Small Unmanned Aircraft (SUA) which are more commonly referred to as Drones are now being used for commercial purposes in an exciting and booming business sector predicted to be worth more than £15 billion in the next 10 years.

This practical orientated MSc in Unmanned Aircraft Systems (UAS) Technology has been specifically designed for professionals whose occupational fields would benefit from applications of UAS technology. These are as diverse as agriculture, logistics, surveying, mining, forestry, ecology, archaeology, emergency services, estate management, virtual reality and computer gaming. This course is also ideal for those who are keen to enter this industry sector and wish to develop a thorough understanding of UAS Technology. 

During this course you will construct a Drone and gain an in depth understanding of drone and payload sensor technology. This course will also help to build your confidence as a drone operator, allowing you to safely undertake simulated and actual UAS missions in the knowledge that you have complied with all of the relevant statutory requirements.  

UAS are frequently used for data-gathering purposes and during this course you will have the opportunity and the analytical support to gather and analyse data as part of the project dissertation. Typical forms of data gathering are 3D terrain mapping and surveying using PIX4D software.

The structural design and component architecture of UAS is also a rapidly evolving field of technology. Here at Wrexham Glyndwr University we have the facilities and technical support staff necessary to realise the conceptual ideas that you may have. Our Advanced Composite Centre facility allows the manufacture and testing of high performance UAS airframes, there are rapid prototyping and 5-axis CNC machining facilities, wind tunnels for aerodynamic testing and our electrical and electronic build and test laboratories are available for the production and testing of control, sensor and power supply circuitry.  

Key course features

  • Build and keep your own Drone.
  • Learn to fly and safely operate a Drone.
  • Field trips to conduct actual Drone missions.
  • Use of Glyndwr University’s Advanced Composite Manufacturing and Testing Facilities.
  • Use of Glyndwr University’s Drone Simulator and Flight-Test field facilities.
  • The latest computational software for engineering design, and image analysis.  

What will you study?

Specific Modules

Drone Technology & Operations.

Drone Construction.

Advanced UAV Operations and the Law.

UAV Sensor Technology and Measurement Techniques.

Common Modules

Research Methods.

Sustainable Design and Innovation

Dissertation

Assessment & Teaching

  • Postgraduate Study and Research Methods

Report

Critique based on a quantitative or qualitative research framework or methodology.

Research Proposal

Individual report and presentation relating to a proposed research strategy.

 

  • Sustainable Design & Innovation

Presentation and Group Report

Learning Logs/Journals

 

  • UAS Technology & Applications

Practical & Coursework

A series of Flight Tests.

Report

Based on an investigation or comparison of a relevant UAS technology.

 

  • UAV Construction

Learning Logs/Journals relating to the design and build of a UAS.

Practical

Test-Flight of a UAS.

 

  • UAS Operations and the Law

Examination relating to UAS commercial legislation.

Essay

Critical evaluation of a realistic scenario relating to UAS payloads, telemetry and transmission systems.

 

  • UAS Sensor Technology and Measuring Techniques

Examination 

Based on sensor technology and theory.

Essay

A critical evaluation of an aspect of current sensor technology, research and advanced scholarship.

 

  • Dissertation

Presentation

Dissertation



Read less
If you are a scientist or technologist wanting transition into an industry with exciting career opportunities or are already involved in the leather industry but wanting to increase your knowledge and skills, this is an ideal course for you. Read more
If you are a scientist or technologist wanting transition into an industry with exciting career opportunities or are already involved in the leather industry but wanting to increase your knowledge and skills, this is an ideal course for you.

Here at the Institute for Creative Leather Technologies (ICLT), you will cover the science and technology of leather manufacture in a way designed to suit graduates for senior tannery positions. Whilst developing the critical mind it provides an excellent base for a move into Research and Development departments within chemical companies, tanneries and brands or into academic careers.

Leather is returning to prominence as nearly all alternatives require using up non-renewable carbon-based materials. Scientific advances in conjunction with environmental responsibility have transformed the leather manufacture industry into a modern scientific process, creating a highly sustainable material with high value in many sectors such as sports, automobiles, luxury goods and fashion.

Northampton graduates have been at the forefront of these changes making our leather alumni one of the best bodies in the industry to be associated with. Successful graduates from this course can expect easy access into senior industry positions.

This course is ideal for embedding into corporate continuing personal development (CPD) programmes. Taking this into account, ICLT delivers the course in a way that enables employees to only be away from their place of work for three months between September and December. During this period the theoretical and practical elements of the course are delivered in an intensive manner, after which the employees are able to return to their workplace to continue with their assessments and research elements of the programme. The course also enables students to study in the traditional manner where they stay at University for the whole academic year if desired.

As one of the foremost centres for leather education in the world, ICLT is dedicated to providing cutting edge education and training in the theory and practice of leather technology at the highest level.

If you do not meet our standard entry requirements, it is possible to undertake a single or a number of modules. The non-credit bearing course is called ‘Professional Leather Development’ Course, for further information about this course please visit the Professional Leather Development Course page: https://www.northampton.ac.uk/study/courses/professional-leather-development-course/

Course content

The MSc Leather Technology (Professional) course is unique in that it aims to provide the opportunity to acquire and/or enhance technical skills within the subject of leather technology. Students will study within an environment that encourages the development of intellectual creativity as well as providing transferable skills to undertake research with respect to advanced technologies, developing skills and flexibility necessary to discriminate between technical and entrepreneurial issues and relating these to the needs of the leather industry such as successful management of the commercial operations.

This course offers students the opportunity to work and learn in a state-of-the-art teaching tannery for some of the modules, and will also be working with staff with a mix of academic and industrial experience. Many of the staff carry out research in various leather subjects and over the last 20 years Northampton leather research has built a leading world-wide reputation.

Industry leaders are frequent visitors to meet students and provide knowledge on current technical and commercial aspects of leather and its fascinating chain from farm to fashion or one of its many other end uses.

The MSc Leather Technology (Professional) course is delivered to meet student flexibility. In order for you to complete Master’s level qualification, you must complete up to seven modules and an independent research dissertation. During the course, you will complete six compulsory modules and choose up to two optional modules. This ensures that you have a basic understanding of principles pertinent to the leather industry with an added advantage in that you are able tailor the course to meet your particular needs and career aspirations.

Further information on the indicative content of the leather modules is available through the module catalogue for Leather Technology (Level 7).

Course modules (16/17)

-Leather Process Operations
-Performance Leather Process Operations
-Quality Evaluation and Systematic Problem Solving
-Sustainable Manufacture within the Leather Industry
-Research and Analytical Methods
-Dissertation
-From Hide to High Street
-Leather Science
-Marketing: Principles and Management
-International Marketing Strategy
-Managing Operations
-Podiatry: Applied to the Footwear Industry
-Wastes Management

Methods of Learning

Theoretical lectures and seminars are reinforced by practical examples, case studies and site visits. Our virtual learning environment allows you and course tutors to exchange ideas as well as submit assignments.

Assessments

A variety of approaches to teaching is used such as lectures, seminars, workshops, practical sessions with course teaching materials made available through our virtual learning environment. Modules are assessed by a wide range of methods and include the following: practical reports, seminar files, reflective portfolios, presentations and dissertation.

Facilities and Special Features

As the UK’s only university to integrate leather technology with subjects such as fashion, marketing, business and the environment, we are proud to house an on campus working tannery for practical leather making as well as laboratories to enable leather testing.
-100% employment of graduates in 2011, 2012, 2013, 2014.
-This course is unique to the University of Northampton and not offered anywhere else in the UK or Europe.
-The University has an on campus tannery and laboratories for teaching.
-Modules to cater for leather career choices in practical leather making and testing.
-Industry-led practical workshops and seminars in technology and supply chain knowledge delivered by international experts.
-Continual networking with potential employers within the industry.
-Opportunities to attend international leather fairs in Hong Kong, Milan and Shanghai.
-Bursaries and scholarships available for leather students.

Careers

Graduates of this course are in high demand and are able to secure suitable posts in leather making or associated industries, including technical management, research and development, technical services, higher education and government bodies. When it comes to jobs in the leather industry, demand exceeds supply and opportunities are available worldwide with excellent progression prospects. Employment opportunities can also be found in other materials production or chemical industries. Successful graduates from this course can also proceed to undertake MPhil or PhD studies with us.

Read less
The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career. Read more

The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

Graduates of this programme are expected to understand the whole process of converting fibrous materials into the end product and to be able to identify and analyse the appropriate material and production route for a specific end product. You will also have developed the expertise and skill to conduct quality evaluation of textile products.

The complete MSc programme is made up of taught course units and a research dissertation. The taught course units are delivered through a combination of lectures and practical laboratory work.

Special features

The Masters programme in Technical Textiles enables you to develop a high level of understanding of the advanced Technical Textiles sector, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

After successfully completing the programme, you will have gained a thorough grounding and understanding of the whole process of converting fibrous polymeric materials to the end product. This successful delivery to the Technical Textiles sector involves materials performance, Computer Aided Design (CAD), 2D/3D product design and specification, sustainability, effective supply chains and an understanding of diverse product sectors such as textile composites, protective wear, filtration, sportswear, medical textiles and the integration of electronics into textile structures.

Coursework and assessment

You will be assessed by a combination of exams and coursework. The coursework supports the development of your transferable skills such as literature review and report writing. You will complete your MSc programme with a dissertation project. Your dissertation is an opportunity to apply your learning on a five-month technical textiles project. It also enables you to further develop your knowledge and skill in your chosen field. Your choice of topic, in consultation with your personal tutor, will range in purpose from investigatory and problem-solving work, through studies of state-of-the-art technology and current practice, to experimental and analytical research.

Course unit details

 The taught units are:

  • Textile Materials and Performance Evaluation
  • Yarn Technology
  • Applied Manufacturing Processes
  • Advanced Manufacturing Techniques
  • Technical Textiles
  • Advanced Coloration and Performance Evaluation

Textile Materials and Performance Evaluation

This programme unit provides a wide range of topics in textile materials science, performance enhancement and testing that are fundamental for effective functioning in a technical capacity within any textiles or materials related organisation. 

  • Nature of man-made and natural fibres.
  • Characteristics of fabrics and fabric mechanical properties. Yarn and Nonwovens Technology
  • Principles and applications of KES-FB and FAST fabric evaluation systems. Comfort in garment microclimates.
  • Dimensional stability, surface modification techniques, oil/water repellency, waterproofing, coating, lamination, flame retardants and smart materials.
  • Microscopy and surface analysis.

Yarn and Nonwovens Technology

This programme unit introduces the technologies of producing yarns and nonwovens from staple fibres and continuous filaments and provides knowledge in the quality and quality control aspects of yarn production. 

  • Fibre preparation, ring and other modern spinning technologies, texturing, yarn quality control, fancy yarns, composite yarns and yarn preparation.
  • Nonwovens web forming technology including dry laying, air laying, wet laying, spun-bonding, melt-blowing. Nonwovens consolidation/bonding technologies; mechanical and chemical bonding; thermal bonding; applications of nonwoven products.

Applied Manufacturing Processes

This programme unit provides a working knowledge of the weaving, knitting and joining processes, types of machinery used, types of fabric structures and associated properties of the product fabrics.

  • Fundamentals of weaving. Shuttle and shuttleless looms; multi-phase weaving machines and other modern developments in weaving technology; warp preparation; technical weaving and braiding.
  • Classification and analysis of knitting techniques and knitting cycles; patterning and shaping; flat bed, circular, Tricot and Raschel knitting machines; modern knitting techniques; cycle of high-speed circular knitting machines; machine performance; yarn performance and properties in knitting; quality and the dimensions stability of the fabric.
  • Fabric joining techniques.

Fundamental Technology and Concepts for Industrial Manufacture

This programme unit provides a working knowledge of concepts of `production for profit', `economy of scale', the importance of the Supply Chain in Textile manufacturing, the importance of pre-competitive research, Design of Experiments(DoE), prototyping and technology transfer and the basics concepts of textile engineering & machine mechanics.

  • The fundamentals of engineering & machine mechanics in order to deal with the Technical Textiles end users in Aerospace, Automotive and other industries, sustainability and recycling issues in manufacturing and design.
  • The nature of the global traditional and technical textiles industry and concepts relating to successful manufacturing and supply chain. Nature of engineering & chemical industry as opposed to the textile industry. Certification requirements (e.g. Aerospace, Automotive, Healthcare, Sportswear), product development in real industrial context, Design of Experiments, quality & inspection, product lifecycles, Sustainable Design. The nature of the research and production environment, individual and team R&D activities.

Technical Textiles - Industrial Applications

This programme unit introduces industrial applications for technical textiles and covers the production and application of textile composites, architectural textiles, geotextiles, automotive textiles, and industrial filtration.

  • Composites: Basic concepts, classification, manufacturing techniques-from fibre to composite, textile composites, composite applications, reuse & recycling; geotextiles: basic classification, main functions of a geotextiles, applications; Architectural textiles, concepts of tensegrity structures.
  • Automotive Textiles: requirements on automotive textiles including tyre cords, air bags, seat belts and seat fabrics, carpets, trims.
  • Principles of filtration, industrial filtration in textile, chemical, food and metallurgical applications.

Technical Textiles - Personal Environment

This programme unit introduces the production and use of technical textiles in human related areas including medical, smart, protective, sportswear, space applications.

  • Medical textile materials and structures; application of compression bandage technology for medical care; integrating electronic sensors into medical textiles; knitted electro-textiles.
  • Protective Textiles: Bullet proof, stab proof vests. Impact protection: impact mechanism and cellular textile composites. Ballistics and body armour.
  • Technical clothing, sportswear, spacewear, sailing equipment.
  • Medical and Smart Textiles

Accrediting organisations

Accredited by the Institute of Minerals, Materials and Mining (IOM 3 ) as meeting the Further Learning requirements for registration as a Chartered Engineer.



Read less
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. Read more
The MEngSc/PG Dip in Pharmaceutical and Biopharmaceutical Engineering are part-time modular degrees which can be taken over 24 months (for award of a Postgraduate Diploma) to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckr35/

Course Details

The aim of this course is to fill a need for the continuing professional development (CPD) and postgraduate education of engineers working in the pharmaceutical industry. This course covers issues of particular concern to the pharmaceutical industry such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design, validation, etc.

Format

The MEngSc course is in two parts. Part I (which constitutes the PG Diploma) involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. Part II consists of a research thesis to the value of 30 credits. The choice of modules is subject to the approval of the course coordinator.

Part I

Students take 60 credits from the following:

Offered in 2015/16
PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment; Materials and Mechanical Design (5 credits)
PE6013 Powder and Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17
PE6016 Pharmaceutical Industry; Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only):

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Music Technology.  is a rapidly evolving field of study with a diverse and expanding range of possibilities. Read more

Music Technology is a rapidly evolving field of study with a diverse and expanding range of possibilities.

The MSc in Audio Technology is designed to go beyond the simple provision of training, and to instead enable you to engage with current debates and actively participate in some of the most vibrant areas of contemporary research.

Throughout the course you will be encouraged to demonstrate self-direction and autonomy as you critically explore and define your position within the wider field. One overarching aim is that you should leave the course as not only an adept user of various hardware and software technologies, but as someone able to actively shape and develop their own, responding as necessary to future developments.

Thus, in addition to developing your theoretical and methodological understanding, the MSc in Audio Technology features a strong emphasis on practical work in a number of different (but related) areas. For example, you will study modules in Advanced Studio Practice, Sound on Screen, Music Computing and Musical Human-Computer Interaction. These are supported by a technology-orientated Research and Development module that provides robust foundation for the final Audio Technology Project.

Acting as summary of all that you have learned and a portfolio going forward, the Audio Technology Project provides an opportunity to plan and execute a substantial project in an area of personal specialism or interest. Innovative projects are encouraged, and there exists the potential for interdisciplinary and/or collaboration with practitioners in other fields.

What happens on the course?

Advanced Studio Practice

This module explores various methodologies employed in the planning, recording, editing, mix down and mastering stages of audio production. You will conduct research into genre and equipment-specific working practices, which will lead to the development of innovative engineering concepts and techniques. You will evaluate and use a variety of software and hardware tools and produce work in both stereo and surround sound.

Sound on Screen

The module aims to investigate the relationship between sound and the moving image in contexts such as film, television, advertising and video games. Throughout the module you will develop your understanding of theories, practices and techniques used in the production of music intended to be experienced in conjunction with other media. This will initially involve analysing and deconstructing a range of audio-visual media, examining their aims and how effectively these aims are met. You will then use your understanding of the work of others in the field to critically inform and evolve your own approaches. Using a variety of techniques and technologies, you will create a number of short practical pieces to accompany a variety of linear and non-linear media.

Music Computing

In this module you will explore the relationship between theories of music and computing and creative practice. More specifically, you will study perception and cognition of sound, the ways in which computers can analyse music and audio, generative musical structures, and how these compositional processes can be applied to the generation and transformation of audio. In carrying out the practical assignment, you will critically evaluate, understand the differences between, and demonstrate mastery of common musical programming languages in the realisation of your ideas.

Musical Human-Computer Interaction

Musical interaction is a vibrant area of contemporary research with considerable crossover into more established areas such as Human-Computer Interaction (HCI) and Physical/Ubiquitous Computing. In the first part of the module you will look at recent work by the New Interfaces for Musical Expression (NIME) community, using these examples to examine and explore a range of pertinent design issues. These include: novice versus virtuoso users (i.e. ease of use versus the potential for mastery), single versus multi-user, discrete versus continuous data control, the provision of haptic feedback, and causality of sound. Using appropriate Physical Computing technologies (e.g. Arduino, Beagleboard, sensors, actuators, basic electronics), you will then design and implement a musical interface for a chosen real-time application (i.e. analysis, composition, or performance). Finally, you will consider how HCI-inspired evaluation methods may be applied to your work, and document your design (online) in such a way that it can be recreated and developed further by interested others.

Research and Development

The Research and Development module initially explores the nature of innovation, then moves on to examine research process including design and development, fundamentals of both quantitative and qualitative traditions, and HCI-inspired methodologies for the evaluation of audio software, musical interfaces and other technologies. Towards the end of the module the emphasis then shifts to the development of an individual research design/proposal that may form the basis of your final Audio Technology Project.

Audio Technology Project

The Audio Technology Project is an opportunity for students to pursue a substantial, self-directed project in a chosen area of audio or musical technology.

Career path

The course will actively equip both graduates and those already in industry with a diverse range of skills to enhance their career prospects. It will also develop a range of opportunities for experience and employment in areas such as studio recording, media production and content creation, video game and software development, education (FE/HE), research assistantships/studentships, and employment in HE institutions.

In addition to subject-specific practical skills, you will also acquire a range of transferable skills relevant for pursuing a research degree. These include critical, analytical, project management and research skills from the study of a broad spectrum of literature, research, and external projects.



Read less
This Master's of Public Administration prepares the next generation of climate and energy leaders and decision makers to tackle complex challenges, from mitigating climate change to developing sustainable and renewable energy. Read more

This Master's of Public Administration prepares the next generation of climate and energy leaders and decision makers to tackle complex challenges, from mitigating climate change to developing sustainable and renewable energy. Graduates gain the tools, practical skills and knowledge to leverage technology and innovate climate and energy policy and gain insights from practising experts.

About this degree

Students are taught the conceptual frameworks, policy analysis tools and analytical methods to develop energy and climate policies. Students also study how energy and climate policies are implemented, evaluated and revised in policy cycles. A focus on leadership and the development of professional skills is emphasised throughout. 

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (105 credits), one optional module (15 credits), an elective module (15 credits), and a major group project module (45 credits) of around 12,000 words.

Core modules

Students undertake three core modules with students from sister MPA programmes, and a specialist module focusing on their degree topic.

  • Introduction to Science, Technology, Engineering and Public Policy
  • Analytical Methods for Policy
  • Energy, Technology and Climate Policy
  • Evidence, Institutions and Power

Optional modules

Students select one optional STEaPP module from the following:

  • Science, Technology and Engineering Advice in Practice
  • Risk Assessment and Governance
  • Communicating Science for Policy
  • Negotiation, Mediation and Diplomacy

Students will then also select one further 15-credit graduate module which is relevant to their degree of study. This module can be selected from any UCL department.

MPA Group Policy Project

In the group project, students work with an external client on a relevant policy challenge. With the support of STEaPP academic staff, the multidiscipinary student groups work together to produce an analysis that meets their clients' needs.

Teaching and learning

The programme combines innovative classroom teaching methods with unique scenario-based learning, enabling students to dynamically engage with real-world policy challenges. Scenarios are designed to help students consolidate knowledge and develop essential practical skills and their understanding of principles. During the programme, students acquire a comprehensive range of relevant skills.

Further information on modules and degree structure is available on the department website: Energy, Technology and Climate Policy MPA

Careers

Graduates of this Master's of Public Administration acquire skills to work in a range of sectors involved in analysis and/or policy-making concerning energy and climate change. Career destinations might include national and local government; international agencies such as the World Bank, United Nations and other global organisations; technology companies focused on sustainable energy; government offices of energy, innovation or development; environment agencies; consultancies and think tanks.

Employability

Throughout the MPA programme, students will:

  • gain a greater awareness of current issues and developments in energy and climate policy and technology
  • develop an understanding of the knowledge systems underpinning successful policy-making processes
  • learn how to communicate with scientists and engineers, policymakers and technology experts
  • develop the skills to mobilise public policy, and science and engineering knowledge and expertise, to address societal challenges relating to energy and climate policy.

Why study this degree at UCL?

A rapidly changing energy landscape and the impacts of climate change are providing opportunities for policy strategy and leadership in almost every country and industry sector. This practical programme offers experiential learning for skills needed in energy and climate policy-making.

Students undertake a week-long scenario activity on the policy-making process where they engage with external experts and UCL academics. Students go on to undertake a nine-month major project for a real-world client. Example policy problems include renewable energy sources, carbon capture and storage, or emerging energy technologies.

Students will gain the opportunity to network with UCL STEaPP's broad range of international partners, expert staff and a diverse range of academics and professionals from across the department's MPA and doctoral programmes.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. Read more
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckp08/

Course Details

Many graduates working in the pharmaceutical industries with a scientific background find themselves working in areas which increasingly overlap with engineers and engineering. Many would like to develop an engineering-based understanding of processes and production in a formal manner. This course offers you the opportunity to do this, developing your skills set and employability across a wider range of roles.

The course also presents the pharmaceutical and biopharmaceutical industry with an opportunity to enable greater cohesion and understanding among inter- and multi-disciplinary teams as graduates with science backgrounds receive a formal qualification in engineering.

Format

The PGDip involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. The choice of modules is subject to the approval of the course coordinator. Candidates who achieve an average of 50% in all taught modules may apply for entry to the MEngSc to complete a thesis.

Part I

Students take 60 credits from the following:

Offered in 2015/16

PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment, Materials and Mechanical Design (5 credits)
PE6013 Powder & Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015 Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17

PE6016 Pharmaceutical Industry, Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022 Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only)

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Placement and study abroad

Students will study at a UCC partner university in China and take the equivalent of 60 credits there in the Third Year.

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

Read less
What is the Master of Food Technology all about?.  The Interuniversity Programme in Food Technology (IUPFOOD) focuses on . Read more

What is the Master of Food Technology all about?

 The Interuniversity Programme in Food Technology (IUPFOOD) focuses on two technological dimensions of prime and crucial importance in food processing and preservation:

  • the transformation (processing) of raw materials into products suited for human consumption
  • the role of postharvest and food preservation unit operations in delivering safe and nutritious foods to the end consumer.

These two concerns are directly translated in the focus points of the IUPFOOD programme.

The InterUniversity Programme in Food Technology (IUPFOOD) is jointly organised by KU Leuven and Ghent University (UGent). The programme builds on KU Leuven’s and UGent’s combined expertise in research and education in the field of food technology.

Structure

The Master of Science in Food Technology (120 ECTS) consists of four major segments:

  • In-depth education segment (60 ECTS)
  • Specialisation segment (18 ECTS)
  • Elective courses segment (12 ECTS)
  • Master’s thesis segment (30 ECTS) 

 In the first year of the Master's programme, students will spend the first semester in Ghent and the second semester in Leuven. The second stage courses of the majors 'Postharvest and Food Preservation Engineering' and 'Food Science and Technology' are taught respectively at KU Leuven and UGent; at both universities, optional courses and thesis research topics are offered.

Objectives

1. Has profound and detailed scientific knowledge and understanding of the (bio)chemical processes in biological raw materials during postharvest storage and their transformation into food products.

2. Has profound and detailed scientific knowledge and understanding of engineering principles of unit operations and their use in the transformation of raw materials into food products as a basis for qualitative and quantitative design, evaluation and optimization of food process and preservation unit operations.

3. Has profound and detailed scientific knowledge and understanding of ecology, physiology, detection, use and combat microorganisms in food systems.

4. Has profound and detailed scientific knowledge and understanding of (bio)-chemical, physical and microbiological methods for analysis of raw materials and foods including the skills to identify and use such methods in the context of research, process and product design and optimization and food control.

5. Has profound and detailed scientific knowledge in different fields of product technology such as vegetable products, dairy products, meat products, fish products, cereal derived products and fermented products including aspects of product development in relation to consumer behavior.

6. Can critically evaluate the functionality and safety of foods in the context of human health including the relation with raw materials and their processing into foods based on analytical data and scientific literature data.

7. Masters the skills and has acquired the problem solving capacity to analyze problems of food quality and safety along the food chain and to elaborate interdisciplinary and integrated qualitative and quantitative approaches and solutions (including implementation) appreciating the complexity of food systems and the processes used while taking into account technical limitations and socio-economic aspects such as feasibility, risks, and sustainability.

8. Has acquired a broad perspective to problems of food security, related to postharvest and food processing, in low income developing countries.

9. Can investigate and understand interaction with other relevant science domains and integrate them within the context of more advanced ideas and practical applications and problem solving.

10. Can demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the broad field of food technology.

11. Can identify and apply appropriate research methods and techniques to design, plan and execute targeted experiments or simulations independently and critically evaluate and interpret the collected data.

12. Can develop and execute independently original scientific research and/or apply innovative ideas within research environments to create new and/or improved insights and/or solutions for complex (multi)disciplinary research questions respecting the results of other researchers.

13. Can convincingly and professionally communicate personal research, thoughts, ideas, and opinions of proposals, both written and oral, to different actors and stakeholders from peers to a general public.

14. Has acquired project management skills to act independently and in a multidisciplinary team as team member or team leader in international and intercultural settings.

Career perspectives

IUPFOOD's objective is to offer a programme that takes the specific needs and approaches of developing countries into account. The IUPFOOD programme prepares graduates for various tasks, including teaching and research. IUPFOOD alumni are mainly active in the following sectors:

  • academic institutions (as teaching and/or research staff)
  • research institutes (as research staff)
  • nongovernmental organisations (in different capacities)
  • governmental institutes (e.g. in research programmes, quality surveillance programmes or national nutritional programmes)
  • private industry (in particular jobs related to quality control)


Read less
This unique Master's of Public Administration degree provides professionals working in international development with the practical tools and skills to collaborate on policy that responds to the need for balanced growth, social wellbeing and environmental protection in developing countries. Read more

This unique Master's of Public Administration degree provides professionals working in international development with the practical tools and skills to collaborate on policy that responds to the need for balanced growth, social wellbeing and environmental protection in developing countries.

About this degree

Students are taught the conceptual frameworks, policy analysis tools and analytical methods to creatively develop innovative sustainable policy for developing countries. Students also study how development and innovation policies are implemented, evaluated and revised in policy cycles. A focus on leadership and the development of professional skills is emphasised throughout.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (105 credits), one optional module (15 credits), an elective module (15 credits), and a major group project module (45 credits).

Core modules

Students undertake three core modules with students from sister MPA programmes, and a specialist module focusing on their degree topic.

  • Introduction to Science, Technology, Engineering and Public Policy
  • Analytical Methods for Policy
  • Development, Technology and Innovation Policy
  • Evidence, Institutions and Power

Optional modules

Students must select one compulsory option from the following STEaPP modules

  • Science, Technology and Engineering Advice in Practice
  • Risk Assessment and Governance
  • Communicating Science for Policy
  • Negotiation, Mediation and Diplomacy

Students will then also select one further 15-credit graduate module which is relevant to their degree of study. This module can be selected from any UCL department.

MPA Group Policy Project

In the group project, students work with an external client on a relevant policy challenge. With the support of STEaPP academic staff, the multidiscipinary student groups work together to produce an analysis that meets their clients' needs. The Group Project is usually around 12,000 words.

Teaching and learning

The programme combines innovative classroom teaching methods with unique scenario-based learning, enabling students to dynamically engage with real-world policy challenges. Scenarios are designed to help students consolidate knowledge and develop essential practical skills and their understanding of principles. During the programme, students acquire a comprehensive range of relevant skills.

Further information on modules and degree structure is available on the department website: Development, Technology and Innovation Policy MPA

Careers

Graduates with Development, Technology and Innovation Policy MPA degrees will typically work in government agencies, corporate regulatory affairs departments or within advocacy groups doing legislative, regulatory or policy analysis. The career path for this type of profession begins as research or policy assistant, moves through policy or research analyst, then to technical consultant or project director or other senior professional roles. Ambitious candidates can work towards top-level positions such as assistant secretary or executive director.

Employability

Through the MPA programme, students will:

  • gain a greater awareness of current issues and developments in innovation, development, science, technology and engineering
  • develop a greater awareness of the knowledge systems underpinning successful policy-making processes
  • learn how to communicate with scientists and engineers, policymakers and industry experts
  • develop the skills to mobilise development, technology and innovation policy, and science and engineering knowledge and expertise, to address the societal challenges they care about.

Why study this degree at UCL?

Developing countries face rapid technological change, increased global interdependencies, and problems such as climate change. This practical programme offers experiential learning for skills needed in innovative development policy-making.

Students undertake a week-long scenario activity on the policy-making process where they engage with external experts and UCL academics. Students go on to undertake a nine-month major project for a real-world client involved in development initiatives. Example policy problems include water or energy infrastructure, food, or telecoms.

Students will gain the opportunity to network with UCL STEaPP's broad range of international partners, expert staff and a diverse range of academics and professionals from across the department's MPA and doctoral programmes.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X