• Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
EURECOM Featured Masters Courses
Imperial College London Featured Masters Courses
University of Warwick Featured Masters Courses
University of Bath Featured Masters Courses
"process"×
0 miles

Masters Degrees (Process)

We have 3,860 Masters Degrees (Process)

  • "process" ×
  • clear all
Showing 1 to 15 of 3,860
Order by 
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more

The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content

In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course

A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Coursework and assessment

Assessment is a combination of examinations and submitted coursework.

Examinations take place in the January and May of each year at the University of Manchester. Distance learning students who do not live in mainland UK can take examinations at a local British Council office or University. You would be expected to meet the cost of the supervision of each exam if taken away from Manchester.

The Dissertation Project forms a major part of the MSc course and provides useful practice in carrying out academic research and writing in an area that you are interested in. You learn to apply your knowledge by solving industry-based problems and demonstrate the knowledge you have acquired by solving an original problem. You choose a topic from a wide selection provided by the University's teaching staff and by industry.  Students have the opportunity of working with large engineering or engineering software development companies and The Process Integration Research Consortium (comprising approximately 30 international companies) also provides opportunities for students to discuss project work in a large number of engineering related areas.

Course unit details

A full list of course units is avaialble here

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).



Read less
This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects. Read more

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

Programme learning outcomes

Knowledge and understanding

  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Read more

Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Its major challenges are the development of concepts, methodologies and models for the prediction of performance and for decision-making for an engineered system.

Who is it for?

Suitable for engineering and applied science graduates who wish to embark on successful careers as process systems engineering professionals. 

The course equips graduates and practising engineers with an in-depth knowledge of the fundamentals of process systems and an excellent competency in the use of state-of-the-art approaches to deal with the major operational and design issues of the modern process industry. The course provides up-to-date technical knowledge and skills required for achieving the best management, design, control and operation of efficient process systems. 

Why this course?

Process systems engineering constitutes an interdisciplinary research area within the chemical engineering discipline. It focuses on the use of experimental techniques and systematic computer-aided methodologies for the design, operation, optimisation and control of chemical, physical, and biological processes, e.g. from chemical and petrochemical processes to pharmaceutical and food processes. 

A distinguished feature of this course is that it is not directed exclusively at chemical engineering graduates. Throughout the years, the course has evolved from discussions with industrial advisory panels, employers, sponsors and previous students. The content of the study programme is updated regularly to reflect changes arising from technical advances, economic factors and changes in legislation, regulations and standards.

By completing this course, a diligent student will be able to: 

  • Evaluate the technical, environmental and economic issues involved in the design and operation of process plants and the current practice in process industries.
  • Apply effectively the knowledge gained to the design, operation, optimisation and control of process systems via proper methodologies and relevant software.
  • Apply independent learning, especially via the effective use of information retrieval systems and a competent and professional approach to solving problems of industrial process systems.
  • Apply and critically evaluate key technical management principles, including project management, people management, technology marketing, product development and finance.
  • Apply advanced approaches and use effectively related tools in more specialised subjects related to process industries (for example risk management, biofuels or CFD tools).
  • Integrate knowledge, understanding and skills from the taught modules in a real-life situation to address problems faced by industrial clients; creating new problem diagnoses, designs, or system insights; and communicating findings in a professional manner in written, oral and visual forms.
  • Define a research question, develop aim(s) and objectives, select and execute a methodology, analyse data, evaluate findings critically and draw justifiable conclusions, demonstrating self-direction and originality of thought.
  • To communicate his/her individual research via a thesis and in an oral presentation in a style suitable for academic and professional audiences.

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE).

Course details

The taught programme for the MSc in Process Systems Engineering is delivered from October to February and is comprised of six compulsory taught modules. There are four optional modules to select the remaining two modules from.

Group project

The Group Project, which runs between February and April, enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. The group project is usually sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. Potential future employers value this experience. This group project is shared across the MSc in Process Systems Engineering and other courses, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. At the end of the project, all groups submit a written report and deliver a presentation to the industrial partner. This presentation provides the opportunity to develop interpersonal and presentation skills within a professional environment.

It is clear that the modern engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is very common for our industrial partners to put forward real-world problems or areas of development as potential research topics.

The individual research project component takes place between April/May and August for full-time students. For part-time students, it is common that their research projects are undertaken in collaboration with their place of work under academic supervision; given the approval of the Course Director.

Individual research projects undertaken may involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

Typical research areas include:

  • Design, simulation and optimisation of process or energy systems.
  • Advanced process control methodologies.
  • Instrumentation and process measurement systems.
  • Multi-phase flow and processes.
  • Renewable energy systems.
  • Studies involving environmental issues.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual Research Project 40%.

Your career

Graduates of the course have been successful in gaining employment in:

  • Engineering consultancies and design practices
  • Industry (oil and gas, petrochemical, chemical, food and drink, water and energy)
  • Research organisations
  • Central government departments
  • Local governments
  • Academic institutions.


Read less
This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing. Read more

This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing.

There is a wide selection of modules on offer within the programme. All taught modules are delivered by qualified experts in the topics and academic members of University staff, assisted by specialist external lecturers.

Our programme combines high-quality education with substantial intellectual challenges, making you aware of current technologies and trends while providing a rigorous training in the fundamentals of the subject.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme combines advanced material in two popular and complementary topics: systems engineering and environmental engineering. The key learning outcome is a balanced combination of systems and environmental skills and prepares students in a competitive market where both topics appear attractive.

The programme will provide training in general and specialist process and environmental systems engineering subjects, and prepare the students for the systems challenges they will face in industry or academia upon graduation.

The programme disseminates technology with a wide scope among engineering disciplines, with a wide selection of modules on offer. All taught modules are delivered by qualified experts in the topics and academic members of the university staff, assisted by specialist external lecturers.

The programme provides high-quality education with substantial intellectual challenges, commensurate with the financial rewards and job satisfaction when venturing into the real world. A key component is to make the student aware of current technologies and trends, whilst providing a rigorous training in the fundamentals of the subject.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both process and environmental systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in process and environmental technologies, in the areas of: life cycle assessment and sustainable development, modelling and simulation of process systems, mathematical optimization and decision making, process systems design, and process and energy integration
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: general renewable energy technologies, and solar energy in particular; advanced process control

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.

The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process and environmental systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries with focus on environmental challenges
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process and environmental technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines. Read more

The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines.

Graduates from non-IT or related disciplines tend to be ill-prepared for the information and knowledge-related challenges and demands of today’s business environments.

We offer a wide selection of modules spanning process engineering, information systems, business and management. All taught modules are delivered by qualified experts in the topics and academic staff, assisted by specialist external lecturers.

Programme structure

This programme is studied full-time over one academic year. Part-time students must study at least two taught technical modules per academic year. The programme consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

An extensive library is available for individual study. It stocks more than 85,000 printed books and e-books, and more than 1,400 (1,100 online) journal titles, all in the broad area of engineering. The library support can be extended further through inter-library loans.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects.

In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications, as well as modelling of process systems.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, on-going research. In the past, several graduates have carried on their MSc research to a PhD programme.

Research

Process integration and systems analysis for sustainability of resources and energy efficiency are carried out within our well-established Centre for Process and Information Systems Engineering (PRISE).

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision support systems alongside their main technical and/or scientific expertise.

Graduates of these programmes will be well prepared to help technology-intensive organisations make important decisions in respect of vast amounts of information, by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The primary aims are achieved through a balanced, multi-disciplinary curriculum with a core of information systems engineering modules and decision-making and process systems engineering modules as well as a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

The programme draws on the stimulus of recent research activities in the Faculty of Engineering and Physical Sciences. The programme provides the students with the basis for developing their own approach to learning and personal development.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.



Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

  • Process Risk Identification and Management
  • Upstream Oil and Gas Processing
  • Loss of Containment
  • Computational Fluid Dynamics

Semester 2

  • Applied Risk Analysis and Management
  • Process, Plant, Equipment and Operations
  • Process Design, Layout and Materials
  • Human Factors Engineering

Semester 3

  • Process Safety Individual Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors. Read more

This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors.

Upon completion of the course you will have gained a comprehensive understanding of oil refining and associated downstream processing technologies, operations and economics; process safety and operations integrity; and methods for the optimal design of process systems.

You will learn about the general economics of the energy sector, oil exploration and production, as well as renewable energy systems.

Furthermore, your study of the various aspects of petroleum refining will be augmented by unique work assignments at a virtual oil-refining and chemical company.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to provide a highly vocational education that equips the students with the essential knowledge and skills required to work as competent engineers in the petrochemical sector.

This is to be achieved through combining proper material in two popular and complementary topics: process systems engineering and petroleum refining. The key objective is to develop a sound understanding of oil refining and downstream processing technologies, process safety and operation integrity, as well as systems methods for the optimal design of process systems.

A balanced curriculum is provided with essential modules from these two areas supplemented by a flexible element by way of elective modules that permit students to pursue subjects of preference relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both petroleum refining and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in petroleum refining and petrochemical processing, in terms of the technologies of processes that comprise a modern refinery and petrochemicals complex
  • The principles for analysing and improving the profitability of refining and petrochemicals processing
  • General Safety, health, and environment (SHE) principles on a refinery and petrochemicals complex
  • Methods and systems for ensuring safe and reliable design and operation of process units
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design and process and energy integration
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: petroleum exploration and production, economics of the energy sector, sustainable and renewable systems, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.

The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to the design and operation of petroleum refining processes. The key learning outcomes include the abilities to:

  • Apply knowledge of the operation of refineries to analyze and to improve the profitability of refining and petrochemical processing
  • Apply relevant principles, methods, and tools to improve the safety and operation integrity of refineries
  • Apply systems engineering methods such as modelling, simulation, optimization, and energy integration to improve the design of petroleum refining units and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills that are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation.

The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. Read more
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. It will provide you with advanced understanding of the principles of chemical engineering, and process control and automation methodologies.

Control Engineers apply engineering principles to design, build, and manage sophisticated computer-based instrumentation and control systems in the manufacturing industries. This sector depends on process control and automation technology to maintain a competitive edge.

Through this course you will understand the fundamental principles of chemical engineering and key aspects of:
-Mathematics
-Statistics
-Information technology
-Process control and automation methodologies

The interdisciplinary nature of this course qualifies you to manage the challenges of modern process control technology.

Engineers with training in these areas are in demand and enjoy a wide range of careers in the chemical and process industries.

The course is delivered by the School of Chemical Engineering and Advanced Materials.

Delivery

The MSc requires you to study 120 credits of taught modules and undertake a 60 credit research project. The PGDip requires 120 credits of taught modules only.

Modules to the value of 60 credits are delivered in both semester one and semester two. The Research project is carried out in semester three (June to August).

You have the opportunity to attend lectures and seminars from external industry lecturers. Some of the research projects are industry based and involve guidance from industrial supervisors.

The majority of the modules in semester one run for the duration of the semester, whereas most of the semester two modules are delivered in blocks, ie over one week. All teaching is carried out during weekdays.

Facilities

We have a Process Control laboratory with four control rigs operated by computer control systems. These rigs are equipped with industrial scale instrumentations.

We also have a dedicated postgraduate computer cluster with relevant software, including:
-MATLAB
-Simulink
-Aspen HYSYS
-Multivariate statistical data analysis and monitoring tools (Pre-screen, MultiData, and BatchData)

The Robinson Library has a large collection of text books and journals used by the course.

Read less
IN BRIEF. Gain a critical and comprehensive overview of the contemporary criminal justice process. Excellent opportunities to interact with criminal justice practitioners, both on and off campus. Read more

IN BRIEF:

  • Gain a critical and comprehensive overview of the contemporary criminal justice process
  • Excellent opportunities to interact with criminal justice practitioners, both on and off campus
  • Boost your career within Criminal Justice through enhancing your knowledge in this area and developing your reflective skills
  • Part-time study option
  • Work/industrial placement opportunity
  • International students can apply

COURSE SUMMARY

This unique course views the criminal justice process as a set of decision points involving numerous agencies working singly or jointly.

It provides you with comprehensive, up-to-date, information while exploring in detail some key contemporary transformations in the field (digitalisation, partnership working, internationalisation, privatisation and accountability).

It is aimed at criminal justice practitioners, or those intending to work in this field. Our strong and growing links with local and regional criminal justice agencies support a critical and reflective approach to the workings of criminal justice.

COURSE DETAILS

MSc The Criminal Justice Process will lead you to:

  1. Develop a systematic understanding of the criminal justice process.
  2. Gain a critical awareness of key transformations in the contemporary criminal justice process.
  3. Acquire the analytical skills required to formulate original and innovative analyses of the contemporary criminal justice process.
  4. Develop critical reflection on the nature, linkages and accountabilities of key roles in the criminal justice process.

The course has both full-time and part-time routes, comprising three 12-week semesters or five 12-week semesters, which you can take within one year, or 30 months, respectively.   

TEACHING

All modules except the Dissertation and Criminal Justice Placement/Project are delivered via blended learning, combining some three-hour evening sessions on campus with distance learning activities (e.g. online reading, discussion board, webinars). Classes frequently use case studies as the focus for discussion. Lecturers provide key overviews of each topic. Students use classroom or online group discussions and questions-and-answers to explore each week’s topic. Where appropriate, experienced practitioners will join the session as visiting instructors.

All modules are supported by the virtual learning environment (Blackboard), which allows students to access learning materials remotely, participate in discussion boards and webinars, and access lists of recommended readings. The vast majority of the latter are available through the Library in electronic form and can be retrieved remotely.

Students opting to write a dissertation are supported by a designated supervisor. Students opting to undertake the Criminal Justice Placement/Project are supported by an on-site supervisor in the corresponding agency and by an academic supervisor on campus.

ASSESSMENT

You will be assessed through written assignments (66%) and dissertation (33%) or project (25%) and oral presentation (8%)

EMPLOYABILITY

Criminal justice practitioners who obtain this qualification will typically use it as a credential for promotion within their organisation.  

Recent graduates can use this qualification to support their applications for employment in the criminal justice system.

CAREER PROSPECTS

This course will suit you if you are planning to seek promotion within the criminal justice agency in which you currently work, or are seeking to change employment within the sector.  

Recent graduates can use this qualification to support their applications to the wide variety of organizations involved in the criminal justice process: police, private security companies, victim and court services, probation, the prison service, youth offending services, treatment and intervention programmes.

LINKS WITH INDUSTRY

We are proud of the growing links we have established with our Criminal Justice Partners – experienced practitioners from all segments of the criminal justice system who support our teaching at all levels. These practitioners provide invaluable guidance on new procedures and policies in criminal justice, contribute to our classes as guest instructors, and host site visits for students. They ensure that our teaching is up-to-date, closely linked to developments in the sector, and critically informed by their professional perspectives and experiences.

FURTHER STUDY

Further study beyond the MSc would involve a research degree (either an MPhil or PhD). The Directorate of Social Sciences has numerous research-active staff, several of whom specialise in topics relating to criminology and security. (See http://www.salford.ac.uk/nmsw/academics for detailed information.) We welcome applications for research degrees and can support a wide variety of projects relating to the criminal justice process.



Read less
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. Read more

Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. The MSc in Chemical Process Engineering at UCL is specifically designed to facilitate this collaboration and provides graduates from a variety of engineering and science disciplines with the advanced training required to enter the chemical or biochemical industries.

About this degree

The MSc in Chemical Process Engineering aims to provide students with a solid academic background in a broad range of Chemical Engineering topics and advanced skills in problem-solving necessary for a successful career in the sector.

For 2017/18, the MSc in Chemical Process Engineering programme consists of seven modules selected from a list of available modules.

From 2018/19, the programme will be split into three different routes with different compulsory and optional modules. The routes are:

  • Advanced Chemical Engineering Route (accredited by the IChemE)
  • Design Route (accredited by the IChemE)
  • Research Route

Apart from this, the programme remains unchanged.

Dissertation/report

All students undertake either a research project or a design project, which culminates in a project report and an oral examination.

Teaching and learning

The programme is delivered through a combination of lecture-based courses, individual and group activities, assessed coursework and tutorial sessions. Advanced design or research projects are provided to extend knowledge and understanding of the topics studied and to encourage critical thinking. Creativity and innovation is encouraged on the demonstration of sound judgement and assumptions. Assessment is mainly through examinations, coursework and reports.

Further information on modules and degree structure is available on the department website: Chemical Process Engineering MSc

Careers

Upon completion, our graduates can expect to play a major role in developing the technologies that make available most of the things that we use in everyday life and provide the expertise and technology to enhance our health and standard of living. These activities may involve the development of new materials, food processing, water treatment, pharmaceuticals, transport and energy resources as well as being at the frontline, addressing present environmental issues such as climate change.

Typical destinations of recent graduates include: Amec Process and Energy, British Petroleum, Royal Dutch Shell, National Grid, Health & Safety Executive. Career profiles of some of our recent MSc graduates are available on our website.

Employability

Students gain in-depth knowledge of core chemical engineering subjects and of the advanced use of computers in process design, operation and management. They receive thorough training in hazard identification, quantification and mitigation, as well as in risk management and loss prevention, and also learn how to design advanced energy systems, with emphasis on sustainability, energy efficiency and the use of renewable energy sources. Students learn how to make decisions under uncertain scenarios and with limited available data and receive training on how to plan, conduct and manage a complex (design or research) project.

Why study this degree at UCL?

UCL Chemical Engineering, situated in the heart of London, is one of the top-rated departments in the UK, being internationally renowned for its outstanding research.

The programme is the first of its kind in the UK and is accredited by the Institution of Chemical Engineers (IChemE) as meeting IChemE's requirements for Further Learning to Master's Level. This recognition will fulfil an important academic qualification for MSc graduates with suitable first degrees in eventually becoming Corporate Members of IChemE.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemical Engineering

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Why this course?. This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. Read more

Why this course?

This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. The course has a strong project-based approach and is relevant to the recruitment needs of a wide range of employers.

It meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Our course is one of the few MSc programmes to offer the module Safety Management Practices. It offers exposure to best industry practice and much required industrial training.

You’ll study

This is a modular course. To gain the Postgraduate Certificate you need to pass six modules.

The Diploma requires eight taught modules and a group project.

The MSc requires eight taught modules, a group design project and an individual research project. You'll work with our talented team of researchers on chemical engineering issues of the future.

The key areas of the programme are:

Chemical & Process Engineering

  • process design principles
  • safety management practices
  • energy systems
  • colloid engineering
  • multi-phase processing
  • petroleum engineering
  • environmental control technologies
  • process safety design
  • emerging technologies
  • programming & optimisation

Multidisciplinary Skills

  • project management
  • risk management
  • information management
  • understanding financial information

If you want to study the same scope of subjects but be part a sustainable engineering programme, you should apply for the MSc Sustainable Engineering: Chemical Processing pathway.

You’ll work on an individual research project with our highly talented team of leading researchers on chemical engineering issues of the future.

Facilities

We're one of the largest chemical engineering departments in the country.

We have new state-of-the-art research laboratories. These include experimental facilities for light scattering, spectroscopy, adsorption measurements and high pressure viscometry.

You'll have access to the department's own dedicated computer suite which is installed with industry standard software.

Accreditation

The course meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Learning & teaching

All classes are delivered over a twelve week period.

The Emerging Technologies module makes extensive use of external speakers who are leading practitioners in their field.

The Safety Management Practices module offers exposure to best industry practice and is one of a few MSc programmes to offer much required industrial training.

Assessment

Assessment is through a balanced work load of class based assessment, individual and group based projects and exams.

Careers

There is growing demand for high-calibre graduates who can develop and apply advanced process technologies in chemical and process industries.

Some students may be eligible to apply for PhD places in the department and across the Engineering faculty.



Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more

The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules

Semester 1:

- Applied Engineering Practice

- Downstream Processing

- Research and Communication

Semester 2:

- Applied Heterogeneous Catalysis

Semester 1 and 2:

- MSc Project

Optional Modules (select four)

Semester 1:

- Chemical Product Design

- Colloid Engineering and Nano-science

- Filtration

- Hazard Identification and Risk Management

Semester 2:

- Mixing of Fluids and Particles

- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities

The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research

The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects

The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/



Read less
About the course. Accredited by the Energy Institute and the Institution of Chemical Engineers. Whether you're already working in the field or just starting out, this course will deepen your understanding and equip you with skills and expertise in process safety, loss prevention and risk assessment. Read more

About the course

Accredited by the Energy Institute and the Institution of Chemical Engineers

Whether you're already working in the field or just starting out, this course will deepen your understanding and equip you with skills and expertise in process safety, loss prevention and risk assessment.

You'll be ready for a career in the oil and gas, chemical, nuclear and pharmaceutical industries, or with any of the consultancies that service them.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,

UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Diploma: three core modules and five optional modules. MSc(Eng): one core module, major research project, and five optional modules.

Core modules

  • Process Safety Management and Loss Prevention
  • Introduction to Hazard Analysis and Risk Assessment
  • Hazards in Process Plant Design and Operation
  • Dissertation (for MSc).

Examples of optional modules

  • Process Plant Reliability and Maintainability
  • Human Error and Human Behaviour
  • Applied Hazard and Operability Studies (HAZOP)
  • Safety in Nuclear Operations
  • Computer Control
  • Safe Practice; Process Safety in the Oil and Gas Industry
  • Process Safety in the Pharmaceutical, Food and Consumer Products

Full-time or part-time

This course is available full-time over a year, or part-time over two or three years. Each module can be taken as a short course – useful if you’re already working in industry.

Part-time students need to complete all modules within two years. You can take an extra third year to complete your dissertation if you need to – we won’t charge fees for that year. Modules are delivered about once per month from September to June. Each module is four days long. You must therefore attend for 32 days in total.

Teaching and assessment

We use lectures, tutorials and project work. All your tutors are actively involved in research and consultancy in their field.

Assessment is by formal examinations and a research or design project dissertation. Continuous assessment of some modules.



Read less
Why this course?. This course is a part-time distance learning Masters degree. It's for students who are working in chemical and process engineering roles, who want to include business and management in their study. Read more

Why this course?

This course is a part-time distance learning Masters degree.

It's for students who are working in chemical and process engineering roles, who want to include business and management in their study. Parts of the course, including the final project, relate to the students' workplace. 

It's also suitable for graduates of related science and engineering disciplines who are working in chemical and process industries. For these students, there will be an optional revision semester at the start of the course. 

A two-year postgraduate diploma option and one-year postgraduate certificate are also available.

What you'll study

You'll attend a mix of core and elective taught classes. In your final year, you'll completed a major project in your place of work. 

Around 70% of the course content has a technical and engineering focus, with a mix of core and elective classes. There are also business and management classes in areas such as finance, strategy, and project management. 

Facilities

You'll be based in the Department of Chemical and Process Engineering. We have state-of-the-art research laboratories that feature a comprehensive suite of experimental facilities including:

  • light scattering
  • spectroscopy
  • adsorption measurements
  • High-pressure viscometry

As a distance learning student, you'll have access to the University library online. You can borrow online books and download academic papers and journals. The library also offers a postal service for distance learning students.

Course awards

Our staff have been nominated in the annual University of Strathclyde Teaching Excellence Awards, voted for by Strathclyde’s students. Our staff have also received external awards from organisations like the IChemE and the Royal Academy of Engineering.

Learning & teaching

The course is delivered from our Virtual Learning Environment MyPlace.

Your lecturers will provide support through:

  • online tutorials
  • webinars
  • forums
  • email
  • telephone

Classes are taught by our academic staff, external consultants, and industry specialists.

You're also welcome to attend full-time lectures and tutorials and use the facilities on campus.

Assessment

You'll be assessed using online tests and assignments. Your major project will be assessed by a written project report. You may also be required to attend a written exam.

Students from the UK

Students from the UK students will attend exams on campus, here in Glasgow. We will make the odd exception, on occasion, in compelling circumstances. This includes staff working in offshore installations. In these circumstances, a suitable examination arrangement can be agreed with the University.

Students from outside the UK

If you're from outside of the UK, you can take the exam at an approved international centre. 

Careers

Whether you're planning to progress your career into engineering management, redevelop yourself as an engineer or move into a new industry – a Masters degree will expand your career opportunities. 

This MSc will also let you validate your skills and competency to employers. Through its accreditation by the IChemE, it can provide a route to Chartered Engineer (CEng) status.

Where are they now?

Job titles include 

  • Operations Director
  • Process Chemist
  • Process Engineer
  • Production Chemist
  • Senior Research Engineer
  • Senior Quality Officer
  • Concept Engineer
  • Engineering Manager 

Employers and sponsors include

  • BOC
  • BP
  • Centrica
  • GlaxoSmithKline
  • Glenmorangie
  • Johnson Mathey
  • Pfizer
  • Schlumberger 
  • Total


Read less
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. Read more
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. You may work on multidisciplinary research projects in collaboration with colleagues across the University or from external organisations.

Research in the School of Chemical Engineering and Advanced Materials is cross-disciplinary and our strategy is to ensure that our research groups grow and provide a balanced portfolio of activities for the future. This is achieved in part through MPhil and PhD supervision.

Advanced materials

Every article, instrument, machine or device we use depends for its success upon materials, design and effective production. We work on a wide range of materials topics including:
-New material development
-Optimising of materials processing
-Testing and evaluation at component scale and at high spatial resolution
-Modelling
-Failure analysis

Much of our work relates to materials and processes for renewable energy generation, energy efficiency, carbon capture and storage. We also use biological and bio-inspired processes to develop new functional materials.

The Group Head is Professor Steve Bull, Cookson Group Chair of Materials Engineering – high spatial resolution mechanics. His research focuses on development and testing of compliant and porous materials, and the use of sustainable materials. Professor Bull is the 2013 recipient of the Tribology Silver Medal presented by the Tribology Trust, the top national award in this area.

Electrochemical engineering science

Electrochemical Engineering Science (EES) arose out of the pioneering fuel cell research at Newcastle in the 1960s. We are continuing this research on new catalyst and membrane materials, optimising electrode structures and developing meaningful fuel cell test procedures.

We are investigating electrochemical methods for surface structuring, probing and testing at the micron and nanoscale. More recently, we have been using electrochemical analysis to understand cellular and microbial catalysis and processes.

Applications of our research are in:
-Energy production and storage
-Micro and nanoscale device fabrication
-Medical and health care applications
-Corrosion protection

The Group Head is Professor Sudipta Roy. Professor Roy's research focuses on materials processing, micro/nano structuring and corrosion.

Process intensification

Process intensification is the philosophy that processes can often be made smaller, more efficient and safer using new process technologies and techniques, resulting in order of magnitude reductions in the size of process equipment. This leads to substantial capital cost savings and often a reduction in running costs.

The Group Head is Professor Adam Harvey. Professor Harvey's research focuses on Oscillatory Baffled Reactors (OBRs), biofuel processing and heterogeneous catalysis.

Process modelling and optimisation

Our goal is to attain better insight into process behaviour to achieve improved process and product design and operational performance. The complexity of the challenge arises from the presence of physiochemical interactions, multiple unit operations and multi-scale effects.

Underpinning our activity is the need for improved process and product characterisation through the development and application of process analytical techniques, hybrid statistical and empirical modeling and high throughput technologies for chemical synthesis.

The Group Head is Professor Elaine Martin. Professor Martin's research focuses on Process Analytical Technologies, Statistical and Empirical Process Data Modelling, and Process Performance Monitoring.

Read less

Show 10 15 30 per page



Cookie Policy    X