• Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Strathclyde Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Leeds Featured Masters Courses
Loughborough University Featured Masters Courses
"prediction"×
0 miles

Masters Degrees (Prediction)

  • "prediction" ×
  • clear all
Showing 1 to 15 of 61
Order by 
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Intelligent Mobile Robots
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment. Read more
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment.

This programme provides comprehensive training in understanding, modelling and prediction of atmospheric processes; as well as the collection, management, supply and application of atmospheric data for the needs of a variety of public and private sectors. The course also demonstrates how these create opportunities or pose problems for the successful operation of natural and human systems. Our aim is that upon graduation you will be able to compete for careers in Meteorology and Climatology.

This well-established programme was developed in response to industry and research institution requirements for applied meteorologists and climatologists. This demand continues, partially due to the growing attention of the society to climate change, its mitigation and adaptation to it.

Skills gained

The programme aims to:

- Provide training in theoretical and applied aspects of atmospheric physics and dynamics, quantitative modelling techniques, -weather forecasting, climate prediction and observation of atmospheric processes
- Equip you with the skills of quantitative and statistical analysis with regards to atmospheric data processing and management
- Enable you to apply theoretical concepts and analytical techniques to the resolution of environmental and socio-economic problems that have an atmospheric origin
- Develop your independent research ability
- Convert participants with non-environmental backgrounds to applied meteorologists and climatologists
- Develop your communication skills using traditional and IT-based media

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Data Mining
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

Academic expertise

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you will gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Joining the Department as a postgraduate is certainly a good move. The Department maintains strong research in both pure and applied mathematics, as well as the traditional core of a mathematics department. Read more
Joining the Department as a postgraduate is certainly a good move. The Department maintains strong research in both pure and applied mathematics, as well as the traditional core of a mathematics department. What makes our Department different is the equally strong research in fluid mechanics, scientific computation and statistics.

The quality of research at the postgraduate level is reflected in the scholarly achievements of faculty members, many of whom are recognized as leading authorities in their fields. Research programs often involve collaboration with scholars at an international level, especially in the European, North American and Chinese universities. Renowned academics also take part in the Department's regular colloquia and seminars. The faculty comprises several groups: Pure Mathematics, Applied Mathematics, Probability and Statistics.

Mathematics permeates almost every discipline of science and technology. We believe our comprehensive approach enables inspiring interaction among different faculty members and helps generate new mathematical tools to meet the scientific and technological challenges facing our fast-changing world.

The MPhil program seeks to strengthen students' general background in mathematics and mathematical sciences, and to expose students to the environment and scope of mathematical research. Submission and successful defense of a thesis based on original research are required.

Research Foci

Algebra and Number Theory
The theory of Lie groups, Lie algebras and their representations play an important role in many of the recent development in mathematics and in the interaction of mathematics with physics. Our research includes representation theory of reductive groups, Kac-Moody algebras, quantum groups, and conformal field theory. Number theory has a long and distinguished history, and the concepts and problems relating to the theory have been instrumental in the foundation of a large part of mathematics. Number theory has flourished in recent years, as made evident by the proof of Fermat's Last Theorem. Our research specializes in automorphic forms.

Analysis and Differential Equations
The analysis of real and complex functions plays a fundamental role in mathematics. This is a classical yet still vibrant subject that has a wide range of applications. Differential equations are used to describe many scientific, engineering and economic problems. The theoretical and numerical study of such equations is crucial in understanding and solving problems. Our research areas include complex analysis, exponential asymptotics, functional analysis, nonlinear equations and dynamical systems, and integrable systems.

Geometry and Topology
Geometry and topology provide an essential language describing all kinds of structures in Nature. The subject has been vastly enriched by close interaction with other mathematical fields and with fields of science such as physics, astronomy and mechanics. The result has led to great advances in the subject, as highlighted by the proof of the Poincaré conjecture. Active research areas in the Department include algebraic geometry, differential geometry, low-dimensional topology, equivariant topology, combinatorial topology, and geometrical structures in mathematical physics.

Numerical Analysis
The focus is on the development of advance algorithms and efficient computational schemes. Current research areas include: parallel algorithms, heterogeneous network computing, graph theory, image processing, computational fluid dynamics, singular problems, adaptive grid method, rarefied flow simulations.

Applied Sciences
The applications of mathematics to interdisciplinary science areas include: material science, multiscale modeling, mutliphase flows, evolutionary genetics, environmental science, numerical weather prediction, ocean and coastal modeling, astrophysics and space science.

Probability and Statistics
Statistics, the science of collecting, analyzing, interpreting, and presenting data, is an essential tool in a wide variety of academic disciplines as well as for business, government, medicine and industry. Our research is conducted in four categories. Time Series and Dependent Data: inference from nonstationarity, nonlinearity, long-memory behavior, and continuous time models. Resampling Methodology: block bootstrap, bootstrap for censored data, and Edgeworth and saddle point approximations. Stochastic Processes and Stochastic Analysis: filtering, diffusion and Markov processes, and stochastic approximation and control. Survival Analysis: survival function and errors in variables for general linear models. Probability current research includes limit theory.

Financial Mathematics
This is one of the fastest growing research fields in applied mathematics. International banking and financial firms around the globe are hiring science PhDs who can use advanced analytical and numerical techniques to price financial derivatives and manage portfolio risks. The trend has been accelerating in recent years on numerous fronts, driven both by substantial theoretical advances as well as by a practical need in the industry to develop effective methods to price and hedge increasingly complex financial instruments. Current research areas include pricing models for exotic options, the development of pricing algorithms for complex financial derivatives, credit derivatives, risk management, stochastic analysis of interest rates and related models.

Facilities

The Department enjoys a range of up-to-date facilities and equipment for teaching and research purposes. It has two computer laboratories and a Math Support Center equipped with 100 desktop computers for undergraduate and postgraduate students. The Department also provides an electronic homework system and a storage cloud system to enhance teaching and learning.

To assist computations that require a large amount of processing power in the research area of scientific computation, a High Performance Computing (HPC) laboratory equipped with more than 200 high-speed workstations and servers has been set up. With advanced parallel computing technologies, these powerful computers are capable of delivering 17.2 TFLOPS processing power to solve computationally intensive problems in our innovative research projects. Such equipment helps our faculty and postgraduate students to stay at the forefront of their fields. Research projects in areas such as astrophysics, computational fluid dynamics, financial mathematics, mathematical modeling and simulation in materials science, molecular simulation, numerical ocean modeling, numerical weather prediction and numerical methods for micromagnetics simulations all benefit from our powerful computing facilities.

Read less
Fashion and Textiles aims to develop the creative process for designers in conjunction with valuable marketing and business skills. Read more
Fashion and Textiles aims to develop the creative process for designers in conjunction with valuable marketing and business skills. The course is aimed at ambitious designers, designer-makers or textile artists who wish to develop opportunities within the profession and who may wish to set up on their own or with others in small teams.

COURSE STRUCTURE AND CONTENT

The course is offered in both full and part-time modes. It is normally one year (3 trimesters) in duration in full-time mode or 6 trimesters in part-time mode. The first two trimesters comprise taught sessions and assessed projects, while the Master’s Project in the final part of the course is by negotiated project only. Completion of the first 2 modules on the course lead to the award of the Postgraduate Certificate, and completion of the first 4 modules leads to the award of the Postgraduate Diploma. Subsequent completion of the MA double module leads to the award of MA Design: Fashion and Textiles.

You will be introduced to research skills and methods, product development, design management and methods, with marketing and business skills. The emphasis of the course is learning how best to present ideas, and where and how to place them in the market.

The course is developed through seminars, lectures, tutorials, visiting speakers, group critiques, market research and personal research. You are encouraged to trial a product in the market. This may be through first hand experience, or through working with studios and agents for designers, shops and craft markets (for designer makers), or with galleries or public spaces (for textile artists). Students propose a route of study through the course to explore and research a chosen area of textiles in knit, print, weave, or embroidery for fashion or interiors, or in fashion design.

MODULES

Research Methodologies - Part One introduces generic methodologies with Part Two considering subject specific data retrieval analysis and evaluation techniques.

The Development of Product, Market Research and Product Ideas - Developing ideas technically and aesthetically, in-depth investigation into techniques and researching to market.

Marketing Skills - Marketing and Business skills – developing an understanding of marketing requirements for textile designers and artists.

Product Sampling and Development and Research - Initial product sampling techniques and investigation. Developing and progressing ideas to enable the creation of new products. Range planning.

TEACHING METHODS AND RESOURCES

The first trimester (PGCert) consists of two modules. Research Methodologies consists of a taught programme of lectures, seminars, group critiques, and assignments. You will also negotiate a programme of study for the Product, Market Research and Product Ideas module. The emphasis at this level is on ideas. During the second trimester (PGDip) you will take two further modules: Marketing Skills comprises of lectures, seminars and research; the Development of Product and Product Ideas is negotiated by each student. The final trimester, leading to the MA, involves a negotiated study which you will propose. The study will be research based resulting in a body of work for assessment.

Specialist facilities include computer studios with over 70 Macs, as well as flatbed and transparency scanners. There is a recently re-equipped digital media studio. Fashion and Textiles students benefit from specialist studio spaces for both digital and screen printing, knitting, weaving, embroidery, laser cutting and pattern cutting, using the latest digital technology for CAD/CAM. All students have access to workshops in photography, sound and video, etching and litho, as well as the specialist Art and Design library.

CAREER OPPORTUNITIES

The main aim of the course is for students to identify their own employment opportunities. Other possibilities may include textile design, product or fashion design, retail or sales and marketing opportunities, teaching, trend prediction and promotion, or further research in industry or education, and exhibiting in galleries as a textile artist.

ASSESSMENT METHODS

The PGCert is assessed by studio exhibition and/or portfolio presentation with a marketing report. The PGDip involves a written report including market analysis of your chosen product field. Practical work is presented by studio work and/or portfolio. For the MA you will present a cohesive body of creative work, supported by written work.

Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Read less
The research degrees in corrosion and protection benefit from one of the world’s largest academic based activities dedicated to corrosion and its control. Read more
The research degrees in corrosion and protection benefit from one of the world’s largest academic based activities dedicated to corrosion and its control. We work closely with the world’s leading companies, consultancies and industrial research groups to create a forward-looking and strategic research activity.

Industry driven
Corrosion science and technology are key to the development of new materials and innovative production processes for use in industries driven by the need to improve their capital productivity, operational reliability, efficiency, performance and health and safety of the world’s physical assets.

Our industry-driven, fundamental and strategic research is organised into four overlapping themes: corrosion mechanisms, prediction and control; environmental degradation and protection by coatings; high-temperature protection; performance of light alloys.

Read less
The research degrees in corrosion and protection benefit from one of the world’s largest academic based activities dedicated to corrosion and its control. Read more
The research degrees in corrosion and protection benefit from one of the world’s largest academic based activities dedicated to corrosion and its control. We work closely with the world’s leading companies, consultancies and industrial research groups to create a forward-looking and strategic research activity.

Industry driven
Corrosion science and technology are key to the development of new materials and innovative production processes for use in industries driven by the need to improve their capital productivity, operational reliability, efficiency, performance and health and safety of the world’s physical assets.

Our industry-driven, fundamental and strategic research is organised into four overlapping themes: corrosion mechanisms, prediction and control; environmental degradation and protection by coatings; high-temperature protection; performance of light alloys.

Read less
Clinicians, scientists and students engaged in cancer research at Newcastle share a common purpose. to improve treatment outcomes for patients with cancer. Read more

Programme Overview

Clinicians, scientists and students engaged in cancer research at Newcastle share a common purpose: to improve treatment outcomes for patients with cancer. Work covers a broad spectrum - understanding the biological and molecular differences between normal and malignant cells and using this knowledge to develop new anti-cancer drugs.

Research Supervision

Exploratory biology, target and biomarker discovery
Molecular genetic and mechanistic studies are used to identify critical molecular changes in cancer and their relevance to disease development and progression, and to validate these as biomarkers and targets for therapeutic intervention. A wide range of contemporary genomic, bioinformatic, molecular biology, biochemical and cell biology techniques are used.

Studies focus on haematological malignancies (leukaemia and lymphoma), paediatric solid tumours (neuroblastoma and medulloblastoma), and adult solid tumours (eg breast, ovarian, prostate, bladder and liver cancers).

Drug development
The exploitation of novel targets is achieved by the use of rational drug design, notably the use of structure-based design, in conjunction with medium-throughput screening. Target molecule synthesis and multiple parallel synthesis approaches are used for lead optimisation, and candidate drugs are evaluated in cell-free and whole cell target-based assays.

Biomarker development
We exploit critical molecular defects as biomarkers to enhance disease detection and diagnosis, prediction of disease course, sensitivity to specific drugs and therapeutic monitoring. We play leading roles in molecular diagnostics, biomarker assessment and therapeutic monitoring for national and international clinical trials.

Clinical trials
Clinical trials (Phase I/II/III) are undertaken in both adults and children. Trials have a strong hypothesis-testing translational research component and are performed under the auspices of national or international research networks (eg CR–UK, CCLG, EORTC), as well as directly in collaboration with the pharmaceutical industry.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/cancer-mphil-phd-md/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/cancer-mphil-phd-md/#howtoapply

Read less
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. Read more
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. In UK alone, hundreds get killed and tens of thousands are injured every year. Some single incidents cost millions of pounds, the total monetary cost of fire and explosions in the UK is estimated at £12 billion per year or approximately 1% of GDP.

This course offers students from diverse academic backgrounds advanced training in the field of Fire and Explosion Engineering for those wishing to embark on a career, or further develop their career, in the industry. Particular emphasis is placed on fire and explosion protection systems within a legislative framework that is complex and fast-changing.Core modules will cover both foundation and advanced aspects of fire and explosion engineering, from the factors that influence flame spread to the latest research in explosion prediction. You’ll also gain a firm grounding in fire safety design and have the chance to design a fire protection system for a complex building.

Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject:

- Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
- Engineering geology and site investigation
- Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
Engineering geology and site investigation
Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The IOA Diploma is a sought after accredited qualification which enables you to become an Associate Member of the Institute of Acoustics. Read more

Why choose this course:

• The IOA Diploma is a sought after accredited qualification which enables you to become an Associate Member of the Institute of Acoustics.
• The programme is regarded as the leading specialist qualification for the professional practitioner in acoustics.
• We're the leading centre in the Midlands for this one year part time course.

About the course:

This course is perfect for you if you're looking for a specialist qualification as a professional practitioner in acoustics. You'll become a member of the Institute of Acoustics (IOA) which will help to set you apart from other professionals in this field.

It also means that if you went on to further study, for example the MSc Applied Acoustics course, you could miss out the Postgraduate Certificate level and go straight onto the Postgraduate Diploma.

The course only takes one year to complete and you'll study on a Tuesday afternoon and evening starting in September. The examinations are held in June and you'll need to complete a project which usually takes place over the summer months.

Because the course is part time it means you can fit it around your work and life commitments, but if you are in employment you'll need to ensure that you can come in to Derby on a Tuesday afternoon to study.

You'll be taught by a dedicated and friendly team who are experienced acousticians with most having full membership of the IOA. And you'll study at the leading centre in the Midlands for this course.

Everyone must take the following modules:

• General Principles of Acoustics
• Laboratory Module
• Project.

You will then take a further two specialist modules from:

• Regulation and Assessment of Noise
• Noise and Vibration Control Engineering
• Acoustics in Buildings
• Environmental Noise: Measurement, Prediction and Control.

You'll be assessed by both coursework and examination. Coursework will include laboratory reports and a small number of assignments set by the IOA.
The General Principles of Acoustics module provides a foundation for further study and deals with the nature and behaviour of sound and vibration, its measurement, response of humans to sound and vibration, and basic noise control engineering. The project is an opportunity for you to carry out an individual study in the area of acoustics.

Read less
MA Fashion Management delivers an advanced understanding of the global fashion industry. The pathway caters for the increasing demand for highly skilled managers and executives in this sector and is equally suited to applicants from design, technological or business disciplines wishing to enhance their career prospects. Read more

About this course

MA Fashion Management delivers an advanced understanding of the global fashion industry. The pathway caters for the increasing demand for highly skilled managers and executives in this sector and is equally suited to applicants from design, technological or business disciplines wishing to enhance their career prospects. The pathway will develop entrepreneurial skills by examining case studies and live situations from industry.

See the website https://www.northumbria.ac.uk/study-at-northumbria/courses/fashion-management-fts-dtffmt6/

Your course in brief

This MA provides students with a comprehensive knowledge of how the fashion world works, by examining the processes, roles and objectives that define this complex industry, and by exploring how creative management is changing it.

Following intensive study of business management - including an industry-based project - and of the contemporary global fashion industry, students pursue research or a special project tailored to their career aspirations. The final major project is a master’s dissertation on an original topic, or a major management project such as a complex business plan. The subject will be proposed by the student, agreed by student and tutor, and developed under tutorial supervision.

The specialist modules cover essential subjects and are taught by a mixture of lectures, seminars, tutorials and workshops. These subjects include:
- Ethical and environmental values
- Design and product development
- Trend research and international trend prediction
- Buying and merchandising roles
- Retail strategy
- Sourcing and supply chain management
- Global luxury fashion brands

Entry Requirements

All applicants also require: a Personal Development Portfolio which demonstrates their the potential to meet the requirements of the Masters programme, Academic and/or professional references which must be provided in all cases to be computer literate and familiar with the use of internet technologies.

Who would this Course suit?

The MA Fashion Management course is designed for graduates or experienced professionals from design, technological or business disciplines who wish to enhance their career prospects in the fashion industry.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X