• Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University College London Featured Masters Courses
Newcastle University Featured Masters Courses
"prediction"×
0 miles

Masters Degrees (Prediction)

We have 61 Masters Degrees (Prediction)

  • "prediction" ×
  • clear all
Showing 1 to 15 of 61
Order by 
The Global Environmental Change and Policy course focuses on 4 key questions. What are the nature and causes of global environmental change (GEC)?. Read more

The Global Environmental Change and Policy course focuses on 4 key questions:

  • What are the nature and causes of global environmental change (GEC)?
  • What do we know and not know about GEC - and why?
  • What are the biological, physico-chemical and human implications of GEC?
  • What can and should be done about mitigating and adapting to GEC?

Structure and Objectives

By addressing those four questions the overall aim of the course is to provide students with a comprehensive and broad understanding of the scientific, legal and policy concerns informing the GEC field, and to guide students towards applying, independently, the necessary tools to address GEC questions, analytically and critically. This is done through small group seminars, lectures and case studies arranged into four main strands:

Strand I - Climate Change Science, Environmental and Health Impacts and Adaptation 

This strand explores the analysis and prediction of change in the earth's physical and chemical systems and their impact based on scientific evidence. Sessions include analysis, prediction and impact of changes such as climate change and acidification in the atmosphere, oceans, the water cycle and global land cover and use. In light of the projections of scientific bodies such as the UN Intergovernmental Panel on Climate Change (IPCC), students become acquainted with different global warming scenarios and their likely impact on water management, vegetation, soil, health and other relevant sectors, and the correlated adaptation policies required in different parts of the globe in order to manage environmental change. It also addresses specific adaptation policies necessary in areas that are most likely to be affected by climate change, such as in Africa.

Strand II – Climate Change Mitigation, Business Strategies and Innovation

This strand focuses on climate change mitigation (non-LULUCF) and related business strategies and the development of technologies in the transition towards a low-carbon economy. A number of greenhouse gas mitigation and alternative energy policies – including renewable energy deployment and Carbon Capture and Storage (CCS) - are selected for analysis. It examines the social and economic causes of the environmental changes with respect to population, urbanisation, energy policy, and pollution and addresses the policy options to mitigate climate change. It includes a study of international and regional schemes, carbon markets and alternative policies such as carbon or fuel taxes. In addition, this strand assesses the broader question of quantifying the costs and benefits of mitigation and adaptation in light of the developmental priorities of different regions of the globe, as well as possible business solutions towards low carbon economic growth.

Strand III – Biodiversity, Land Use Change and Forestry, and Conservation Strategies

This strand explores biodiversity loss, conservation strategies, the monitoring and prediction of change in the earth's ecosystems and their response to a range of environmental changes including climate change, and the impact of these changes on humans, ecosystems and the management of natural resources. The different mechanisms proposed or already applied to protect biodiversity broadly and in relation to climate change are covered in this part of the course. Among other things, we may critique mitigation policies applicable to the agricultural sector and look at the sustainability of biofuels as cleaner sources of energy.

Strand IV – Law and Governance 

The strand draws together some of the issues outlined above. The role of international law and policy in developing innovative solutions for global environmental problems, such as climate change and biodiversity loss, is emphasised. It addresses the law and politics behind the negotiation of, inter alia, global climate change agreements, the international framework for climate change, environmental governance, examines the role of compliance and monitoring, asks bigger philosophical questions related to rights, equity and justice in an environmental context and looks at the fundamental principles and norms of the international environmental law regime and their utility in going forwards. 

Learning and Teaching

The course structure, individual seminars and activities are designed to enable each student to attain the following:

Understanding of:

  • the current state of knowledge about GEC and the uncertainties surrounding it;
  • the similarities and differences between the problems raised by GEC and other environmental problems;
  • the key processes, drivers and interrelationships involved;
  • the principal impacts of GEC on natural and human systems; and the principal ethical, legal and socio-economic issues raised;
  • particular problems faced by developing countries;
  • interregional and regional institutional mechanisms and scientific organisations;
  • the social, economic and environmental objectives for the global environment.

Skills in:

  • the analysis of the global dimension of environmental problems, and the extent to which GEC raises distinctive challenges;
  • the location, handling, critical evaluation, interpretation and analysis of GECP information;
  • the application and appraisal of selected analytical techniques;
  • the design and execution of a GEC-related project; communicating clear, unambiguous information, evidence or advice.

Capabilities in:

  • applying global perspectives to complex environmental problems; 
  • analysing the key drivers of GEC and their interrelationships;
  • developing independent judgement in relation to GEC-related issues and evidence;
  • participating in the formulation, implementation or evaluation of GEC-related policies;
  • participating effectively in competent consultancy or advisory work.

Coursework

Understanding, skills and capabilities are developed and assessed through active participation in coursework which comprises research and presentation, negotiation and conflict management and a panel group exercise. Panel Meetings run throughout the option term. The aims of these sessions are to establish and coordinate research, discussion, presentation and negotiation in respect of selected global environmental change issues, leading ultimately to the formal conclusion or agreed policy and scientific statement on one or more aspects of GECP.

Examples of GECP Student Destinations

  • UK Department for Business, Energy and Innovation
  • Greenstone
  • Royal Borough of Greenwich
  •  Natural Capital Partners
  • ERM
  • ShareAction
  • Ricardo Energy & Environment
  • UK Department for Transport
  • PwC


Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Intelligent Mobile Robots
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment. Read more
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment.

This programme provides comprehensive training in understanding, modelling and prediction of atmospheric processes; as well as the collection, management, supply and application of atmospheric data for the needs of a variety of public and private sectors. The course also demonstrates how these create opportunities or pose problems for the successful operation of natural and human systems. Our aim is that upon graduation you will be able to compete for careers in Meteorology and Climatology.

This well-established programme was developed in response to industry and research institution requirements for applied meteorologists and climatologists. This demand continues, partially due to the growing attention of the society to climate change, its mitigation and adaptation to it.

Skills gained

The programme aims to:

- Provide training in theoretical and applied aspects of atmospheric physics and dynamics, quantitative modelling techniques, -weather forecasting, climate prediction and observation of atmospheric processes
- Equip you with the skills of quantitative and statistical analysis with regards to atmospheric data processing and management
- Enable you to apply theoretical concepts and analytical techniques to the resolution of environmental and socio-economic problems that have an atmospheric origin
- Develop your independent research ability
- Convert participants with non-environmental backgrounds to applied meteorologists and climatologists
- Develop your communication skills using traditional and IT-based media

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Data Mining
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

Academic expertise

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you will gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The MSc Fashion Marketing Management degree at Cardiff Met is a dynamic and exciting course that blends fashion, marketing and management principles to equip you for a career within the global fashion industry. Read more

The MSc Fashion Marketing Management degree at Cardiff Met is a dynamic and exciting course that blends fashion, marketing and management principles to equip you for a career within the global fashion industry. The overall aim of the programme is to develop fashion marketers who can run and successfully integrate at a managerial level in a broad range of fashion organisations and marketing environments. 

The course will be ideal for graduates motivated by the desire to launch or develop an existing career in the fashion industry. Central to our MSc Fashion Marketing Management degree is the opportunity to integrate marketing theory with and principles with practice, especially in relation to your own career needs.

You will gain critical insights into the needs and desires of fashion consumers, understand the importance of brand marketing in fashion and the international scope of the fashion industry. You will explore aspects such as fashion buying and merchandising including trend prediction, supply chain management and fashion forecasting.

You will discover the art of effectively communicating with a variety of fashion customers using both digital and traditional methods through our Multi-Channel Fashion Marketing module. Finally you will apply your knowledge and understanding to creating marketing strategies within International Fashion and Brand Management focusing on all levels of the industry, from fast fashion to luxury brands.

Achieving all of this means our approach to teaching goes beyond merely presenting you with sets of theories and principles of marketing. Instead it extends to you being able to evaluate the usefulness of these theories and principles in practice through the use of case studies and 'live' projects. We believe this programme will give the skills and knowledge to excel within the fashion industry by being equipped with the insights, education and critical understanding needed to operate in what is a dynamic and ever-changing global industry. 

Course Content

The programme is comprised of three distinct stages, Postgraduate Certificate (PGCert) Fashion Marketing, Postgraduate Diploma (PGDIP) Fashion Marketing, and MSc Strategic Fashion Marketing, with a range of compulsory taught modules (120 credits), and a non-taught element (60 credits). The MSc will be awarded on successful completion of 180 credits.

Term 1: (Certificate = Completing 60 credits):

• Multi-channel Fashion Marketing (20 credits) • Strategic Fashion Buying and Product Management (20 credits) including Trend Prediction, Supply Chain and Fashion Forecasting • Modern Marketing Research for Fashion (20 credits) 

Term 2: (Diploma = Completion of stage 1 and an additional 60 credits): 

• Understanding the Fashion Consumer (20 credits) • International Fashion and Luxury Brand Management (20 credits) • Academic Research for Business (20 credits) 

Term 3: (Masters = Completion of stages 1 & 2) and: 

• Dissertation (60 credits) or • Fashion Marketing Plan (60 credits)

•Or Optional Creativity, Marketing and Enterprise (20 credits) and International Fashion Research Project (40 Credits) 

Learning & Teaching

The course is delivered with a mixture of lectures and seminars. Many of the assessments will be based on real world cases and therefore specialist guest speakers and visits to businesses will also form part of the learning journey. At Master’s level, self-management and independent research and study is expected with students being directed and encouraged to deepen their understanding of particular areas of Marketing. Moodle is used as an interactive VLE but the development of a learning community is particularly prevalent at Cardiff Metropolitan with excellent student support. 

Assessment

Assessment on the programme is mixed and will include a variety of formats. You are assessed throughout the course on the basis of coursework and presentations, many of which are focused on real-life cases studies. 

Employability & Careers

The MSc Fashion Marketing Management degree has been designed for people wanting a successful and rewarding marketing career in the Fashion Industry. Expected career paths include but are not limited to:

  • Buying and Merchandising  
  • Positions in Advertising  
  • Fashion Brand Management  
  • Public Relations and Publicity  
  • Fashion Writing  
  • Fashion Marketing and Consumer Research  
  • Sales and Brand Development  
  • International Fashion Marketing Strategy

Additionally the course is excellent preparation for continuing your study at MPhil or PhD at Cardiff Metropolitan University. 



Read less
Get professional training in Meteorology and explore the fundamental concepts of dynamic meteorology, radiation and thermodynamics. Read more

Get professional training in Meteorology and explore the fundamental concepts of dynamic meteorology, radiation and thermodynamics.

Taught in conjunction with New Zealand's leading weather forecasting organisation—MetService—you'll learn about cloud physics, satellites, climatology and numerical weather prediction. Gain an expert understanding of mid-latitude weather systems, particularly weather systems in New Zealand and the Tasman Sea region.

You'll also do a practical project based on one of the research topics arising from the work of MetService. Gain new knowledge along with expertise in independent research, critical thinking and scientific rigour.

Choose to study the Master of Meteorology (MMet) or you can opt for the shorter Postgraduate Diploma in Meteorology (PGDipMet).

The MMet is only offered on alternate years.

International recognition

Your Meteorology qualification will be recognised throughout the world and complies with the standards of the World Meteorological Organization.

Duration and workload

The 180-point Master of Meteorology will take you three trimesters of full-time study or six trimesters when studied part time.

The 120-point Postgraduate Diploma in Meteorology takes two trimesters of full-time study or four trimesters part time.

If you are studying full time, you can expect a workload of 40–45 hours a week for much of the year. Part-time students doing two courses per trimester will need to do around 20–23 hours of work a week. Make sure you take this into account if you are in employment.

What you'll study

You'll learn through coursework and an independent project based on a real-world meteorological research objective.

PGDipMet students will complete seven courses and MMet students will do nine.

Both qualifications start with five core 400-level Geophysics (Meteorology) courses—covering mid-latitude weather systems, radiation and thermodynamics, cloud physics and weather prediction. You'll add another 400-level Geophysics course of your choice or an approved course of your choice that can be from another discipline, and complete the 500-level research project. If you're doing the Master's, you'll take an additional two 500-level courses.

The 30-point project gives you the opportunity to work on current meteorological issues, with data supplied by New Zealand's MetService. You'll be guided and supported by staff from both the MetService and Victoria.



Read less
Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Read more

Process systems engineering deals with the design, operation, optimisation and control of all kinds of chemical, physical, and biological processes through the use of systematic computer-aided approaches. Its major challenges are the development of concepts, methodologies and models for the prediction of performance and for decision-making for an engineered system.

Who is it for?

Suitable for engineering and applied science graduates who wish to embark on successful careers as process systems engineering professionals. 

The course equips graduates and practising engineers with an in-depth knowledge of the fundamentals of process systems and an excellent competency in the use of state-of-the-art approaches to deal with the major operational and design issues of the modern process industry. The course provides up-to-date technical knowledge and skills required for achieving the best management, design, control and operation of efficient process systems. 

Why this course?

Process systems engineering constitutes an interdisciplinary research area within the chemical engineering discipline. It focuses on the use of experimental techniques and systematic computer-aided methodologies for the design, operation, optimisation and control of chemical, physical, and biological processes, e.g. from chemical and petrochemical processes to pharmaceutical and food processes. 

A distinguished feature of this course is that it is not directed exclusively at chemical engineering graduates. Throughout the years, the course has evolved from discussions with industrial advisory panels, employers, sponsors and previous students. The content of the study programme is updated regularly to reflect changes arising from technical advances, economic factors and changes in legislation, regulations and standards.

By completing this course, a diligent student will be able to: 

  • Evaluate the technical, environmental and economic issues involved in the design and operation of process plants and the current practice in process industries.
  • Apply effectively the knowledge gained to the design, operation, optimisation and control of process systems via proper methodologies and relevant software.
  • Apply independent learning, especially via the effective use of information retrieval systems and a competent and professional approach to solving problems of industrial process systems.
  • Apply and critically evaluate key technical management principles, including project management, people management, technology marketing, product development and finance.
  • Apply advanced approaches and use effectively related tools in more specialised subjects related to process industries (for example risk management, biofuels or CFD tools).
  • Integrate knowledge, understanding and skills from the taught modules in a real-life situation to address problems faced by industrial clients; creating new problem diagnoses, designs, or system insights; and communicating findings in a professional manner in written, oral and visual forms.
  • Define a research question, develop aim(s) and objectives, select and execute a methodology, analyse data, evaluate findings critically and draw justifiable conclusions, demonstrating self-direction and originality of thought.
  • To communicate his/her individual research via a thesis and in an oral presentation in a style suitable for academic and professional

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the MSc in Process Systems Engineering is delivered from October to February and is comprised of six compulsory taught modules. There are four optional modules to select the remaining two modules from.

Group project

The Group Project, which runs between February and April, enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. The group project is usually sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. Potential future employers value this experience. This group project is shared across the MSc in Process Systems Engineering and other courses, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. At the end of the project, all groups submit a written report and deliver a presentation to the industrial partner. This presentation provides the opportunity to develop interpersonal and presentation skills within a professional environment.

It is clear that the modern engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is very common for our industrial partners to put forward real-world problems or areas of development as potential research topics.

The individual research project component takes place between April/May and August for full-time students. For part-time students, it is common that their research projects are undertaken in collaboration with their place of work under academic supervision; given the approval of the Course Director.

Individual research projects undertaken may involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual Research Project 40%

Funding

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.



Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
The research degrees in corrosion and protection benefit from one of the world's largest academic based activities dedicated to corrosion and its control. Read more
The research degrees in corrosion and protection benefit from one of the world's largest academic based activities dedicated to corrosion and its control. We work closely with the world's leading companies, consultancies and industrial research groups to create a forward-looking and strategic research activity.

Industry driven

Corrosion science and technology are key to the development of new materials and innovative production processes for use in industries driven by the need to improve their capital productivity, operational reliability, efficiency, performance and health and safety of the world's physical assets.

Our industry-driven, fundamental and strategic research is organised into four overlapping themes: corrosion mechanisms, prediction and control; environmental degradation and protection by coatings; high-temperature protection; performance of light alloys.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery). Read more
This course gives you an understanding of marine engineering and its practice. It covers topics associated with Naval Architecture (hull and propulsor) and Marine Engineering (machinery).

The course develops your practical skills to enable you to:
-Design, select, analyse and install marine propulsion and transmission systems
-Produce mathematical and computer modelling of marine machinery and engineering systems
-Design and analyse control systems for marine machinery
-Use mathematics and physics appropriate to marine technology
-Develop engineering solutions to practical problems
-Test design ideas through laboratory work or simulation with technical analysis
-Critically evaluate results
-Integrate and analyse information from a variety of sources

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in marine engineering.

You will choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of marine engineering systems. It can include ships' propulsion and power transmission systems. Our research strengths include:
-Design of diesel-electric hybrid propulsion configurations
-Engine emission prediction and simulation
-Online ship performance monitoring and optimisation
-Ballast water management

You benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Six taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is delivered by the School of Marine Science and Technology.

It is also available with a preliminary year if you do not meet the entry criteria for the one year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject:

- Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
- Engineering geology and site investigation
- Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
Engineering geology and site investigation
Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The IOA Diploma is a sought after accredited qualification which enables you to become an Associate Member of the Institute of Acoustics. Read more

Why choose this course:

• The IOA Diploma is a sought after accredited qualification which enables you to become an Associate Member of the Institute of Acoustics.
• The programme is regarded as the leading specialist qualification for the professional practitioner in acoustics.
• We're the leading centre in the Midlands for this one year part time course.

About the course:

This course is perfect for you if you're looking for a specialist qualification as a professional practitioner in acoustics. You'll become a member of the Institute of Acoustics (IOA) which will help to set you apart from other professionals in this field.

It also means that if you went on to further study, for example the MSc Applied Acoustics course, you could miss out the Postgraduate Certificate level and go straight onto the Postgraduate Diploma.

The course only takes one year to complete and you'll study on a Tuesday afternoon and evening starting in September. The examinations are held in June and you'll need to complete a project which usually takes place over the summer months.

Because the course is part time it means you can fit it around your work and life commitments, but if you are in employment you'll need to ensure that you can come in to Derby on a Tuesday afternoon to study.

You'll be taught by a dedicated and friendly team who are experienced acousticians with most having full membership of the IOA. And you'll study at the leading centre in the Midlands for this course.

Everyone must take the following modules:

• General Principles of Acoustics
• Laboratory Module
• Project.

You will then take a further two specialist modules from:

• Regulation and Assessment of Noise
• Noise and Vibration Control Engineering
• Acoustics in Buildings
• Environmental Noise: Measurement, Prediction and Control.

You'll be assessed by both coursework and examination. Coursework will include laboratory reports and a small number of assignments set by the IOA.
The General Principles of Acoustics module provides a foundation for further study and deals with the nature and behaviour of sound and vibration, its measurement, response of humans to sound and vibration, and basic noise control engineering. The project is an opportunity for you to carry out an individual study in the area of acoustics.

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more

The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

About this degree

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules

All students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.

  • Literature Project

Optional modules

Students choose four optional modules from the following:

  • Advanced Topics in Energy Science and Materials
  • Advanced Topics in Physical Chemistry
  • Biological Chemistry
  • Concepts in Computational and Experimental Chemistry
  • Frontiers in Experimental Physical Chemistry
  • Inorganic Rings, Chains and Clusters
  • Intense Radiation Sources in Modern Chemistry
  • Microstructural Control in Materials Science
  • Numerical Methods in Chemistry
  • Pathways, Intermediates and Function in Organic Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Simulation Methods in Materials Chemistry
  • Stereochemical Control in Asymmetric Total Synthesis
  • Structural Methods in Modern Chemistry
  • Synthesis and Biosynthesis of Natural Products
  • Topics in Quantum Mechanics
  • Transferable Skills for Scientists

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Further information on modules and degree structure is available on the department website: Chemical Research MSc

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Recent career destinations for this degree

  • Project Manager, Jiang Clinic
  • Secondary School Teacher (Chemistry), Loyang Secondary School
  • PhD in Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X