• Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Cardiff University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Leeds Featured Masters Courses
"preclinical"×
0 miles

Masters Degrees (Preclinical)

  • "preclinical" ×
  • clear all
Showing 1 to 15 of 17
Order by 
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

Degree information

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time) is offered. A Postgraduate Certificate (60 credits, full-time) is offered. There are no optional modules for this programme.

Core modules
-Advanced Biomedical Imaging Techniques I & II
-Practical Preclinical Research (including Home Office Personal Licence)
-Translational Biomedical Imaging of Disease and Therapy I & II
-Science Communication for Biomedicine
-Statistical Methods in Research
-Ethics and Regulation of Research

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability
This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects.

Students will foster an awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications using imaging. Our learning methods will prepare students for careers in academic or industrial science, as well as providing transferable skills in presentation, writing, organisation and team work.

The first cohort of students on the Advanced Biomedical Imaging MSc are due to graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

The MSc is linked to University College London Hospitals (UCLH), including Great Ormond Street Hospital, the UCH Macmillan Cancer Centre and National Hospital for Neurology and Neurosurgery. This will provide an ideal training for further research and applications for a PhD at UCL Centre for Doctoral Training in Medical Imaging.

Read less
Before any new therapy can be used, a thorough identification of its toxicity and safety is required. Therefore, drug toxicology and safety pharmacology are central to the chemical and pharmaceutical industries, and demand for 'pre-trained' employees is extremely high. Read more
Before any new therapy can be used, a thorough identification of its toxicity and safety is required. Therefore, drug toxicology and safety pharmacology are central to the chemical and pharmaceutical industries, and demand for 'pre-trained' employees is extremely high.

Hosted by the Institute of Cancer Therapeutics, the course addresses key aspects of preclinical drug evaluation through the study of drug discovery and development; safety pharmacology; mechanisms of drug-induced toxicities; regulatory affairs and bioanalytical sciences.

It will provide you with state-of-the-art training in the area of preclinical toxicology with an emphasis on the molecular and in vivo aspects of toxicological assessment.

It is designed for individuals with a first degree in a scientific disciple who want to specialise in new medicines development or undertake employment in the pharmaceutical industry.

Why Bradford?

-Includes seminars by scientists from regulatory agencies and pharmaceutical companies
-This course is designed to meet the demand of employers and provide you with a comprehensive overview of the drug safety discipline within the drug development process

Modules

-Critical Appraisal of a Current Topic in Safety Pharmacology
-Preclinical Models for Drug Evaluation
-Research and Analytical Methods in Pharmacology
-Toxicology and Safety Pharmacology
-Experimental Design
-Molecular Mechanisms of Toxicity
-Research Project (Safety Pharmacology)

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
The programme disseminates imaging knowledge, skills and understanding, in order to enable effective and efficient use of imaging, clinically, in research and in industry. Read more

Programme description

The programme disseminates imaging knowledge, skills and understanding, in order to enable effective and efficient use of imaging, clinically, in research and in industry.

Our flexible, intermittent, part-time, online distance learning (OLDL) programme aims to:
•provide an understanding of imaging theory, techniques, analysis and applications
•develop research planning and designing skills, incorporating imaging
•enable interpretation and analysis of relevant imaging data
•relate imaging research to clinical applications

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

You may choose to study to Certificate, Diploma or Masters level.

Year 1: Certificate
You will complete the compulsory courses:

Techniques & physics (core – 20 credits)
Practicalities & safety (core – 10 credits)

You will complete 30 credits from the following options:

Applications in disease research (optional – 10 credits)
Clinical applications (optional – 10 credits)
Digital image processing & analysis (optional – 20 credits)
Image interpretation & evaluation (optional – 20 credits)

Year 2: Diploma
You will complete the compulsory courses:

Statistics (core - 10 credits)
Study design (core - 10 credits)

You will complete 40 credits from the following options:

Biomechanics (optional - 10 credits)
Light microscopy (optional – 10 credits)
Preclinical imaging (optional - 10 credits)
Neuro-anatomy (optional – 10 credits)
Body anatomy (optional – 10 credits)
Translational imaging (optional – 10 credits)
Cardiovascular imaging (optional – 10 credits)
Oncologic imaging (optional – 10 credits), and


Year 3: Masters
You will complete practical work (a project) and assessed activities.

Postgraduate Professional Development

If you are looking for a shorter course option, we offer online credit-bearing courses which run for 11 weeks at a time. These lead to a University of Edinburgh postgraduate award of academic credit.

You may take a maximum of 50 credits worth of courses through our Postgraduate Professional Development scheme. These credits will be recognised in their own right at postgraduate level, or may be put towards gaining a higher award, such as a Postgraduate Certificate, Postgraduate Diploma or MSc.

Career opportunities

Clinical graduates will exit the programme with improved clinical image management skills, and will also be better able to advise companies and businesses which develop tools and techniques for their specialties, where imaging is required. For pre-clinically focused students, an imaging skill set expands academic possibilities and is more likely to assist with translational techniques necessary to bridge the preclinical and clinical sciences.

The degree will also be attractive as a preliminary qualification before undertaking career training in hospital Medical Physics (for physicists and engineers), as well as a preliminary qualification before taking a PhD or research scientist post involving medical physics, medical imaging, biomechanics in academia or industry.

Read less
The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. Read more
The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. From the basic biology of neurons through to complex processes of perception and decision-making behaviour, we address how the mind, brain, and body work together and translate this knowledge into clinical applications for patient benefit.

We offer MPhil supervision in the following research areas:

Motor systems development, plasticity and function

We conduct clinical and preclinical studies of normal and abnormal development and plasticity of the motor system. We run functional studies and computer modelling of motor system activity throughout the neuraxis. We also research the development and assessment of novel therapies for motor disorders/lesions including stem cell and brain-machine interface.

Visual system development, plasticity and repair]]
We research the development and assessment of novel neuro-technological approaches to retinal dystrophy repair including brain-machine interface and stem cells. We use in vitro approaches to look at retinal development and visual system wiring.

[[Neural computation and network systems
We conduct experimental and theoretical (computational) studies aimed at understanding how neurones throughout the brain interact in localised networks to compute complex tasks. Our research looks at the role of network activity in a wide range of neurological, neurodegenerative and psychiatric disorders.

Auditory neuroscience

We conduct clinical and preclinical studies aimed at understanding the brain mechanisms involved in detection, discrimination and perception of sound. We are interested in how these mechanisms are affected in individuals with brain disorders, including dementia, autism and stroke.

Pain

Our research focuses on:
-Understanding mechanisms underlying pain, analgesia, and anaesthesia
-The development of methods to assess pain and to alleviate pain in animals and humans

Psychobiology

We conduct studies in laboratory animals, healthy volunteers and patient populations investigating the mechanisms underlying mood, anxiety and addiction disorders and their treatment. Allied research looks at normal neuropsychology, and the physiology and pharmacology of neurotransmitter and endocrine systems implicated in psychiatric disorders.

Neurotoxicology

Our research focuses on delineating the effects and understanding the mechanisms of action of established and putative neurotoxins, including environmental and endogenous chemicals, and naturally occurring toxins.

Forensic psychiatry and clinical psychology

Our research covers:
-The assessment, treatment and management of sex offender risk
-Development and assessment of cognitive models
-Cognitive behavioural therapy (CBT) treatment for bipolar disorder, psychosis, anxiety and developmental disorders
-Developmental disorders of perception and cognition

Systems and computational neuroscience

We conduct theoretical (computational) and experimental studies aimed at understanding the neuroanatomy, neuropharmacology of vision, visual attention and episodic memory.

Behaviour and evolution

Many research groups take an evolutionary and comparative approach to the study of brain and/or behaviour, comparing brain function and behaviour among such disparate groups as insects, birds and mammals, and studying the ecological and evolutionary functions of behaviour. Much of our work is at the forefront of the fields of neuroethology, behavioural ecology and comparative cognition, and has important implications for the study and practice of animal welfare.

Visual perception and human cognition

We research:
-Colour and depth perception - perception of natural scenes
-Psychophysics and attention - memory
-Word learning in children
-Body image dysfunction
-Visual social cognition and face processing
-Advertising and consumer behaviour

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
Programme description. Over the last 30 years healthcare research and drug development have been transformed from peripheral activities carried out on an ad hoc basis to a core activities that requires trained, professional, staff. Read more
Programme description
Over the last 30 years healthcare research and drug development have been transformed from peripheral activities carried out on an ad hoc basis to a core activities that requires trained, professional, staff. We have developed a modular postgraduate programme in healthcare research, designed to give you the necessary academic background and specialist skills to carry out healthcare research in a contract research organisation, pharmaceutical industry or health service environment.

If you are a graduate, nurse, medical doctor or other health professional working in contract research organisations, the pharmaceutical industry and healthcare, this programme has been designed for you.

Programme outline
This postgraduate programme share a common spine with our Clinical Drug Development programme, which also covers the key areas of expertise needed for a successful clinical research programme. The Healthcare Research Methods programme places an emphasis on health management.

The modular nature of the programme is designed to fit in with full-time employment. The taught elements of the modules are delivered in three-day blocks every six weeks.

Core modules

Clinical Study Design
Practical Aspects of Clinical Research and Early Drug Development
Ethics and Regulation
Data Management and Statistics
Specific Topics in Clinical Trial Design
Elective Dissertation
Health Outcomes and Pharmacoeconomics
Marketing Healthcare
Research Project/Dissertation
Health and the Human Body
Healthcare Organisation and Decision-Making
Module options include:

Drug Discovery and Preclinical Research and Development
Toxicology

Read less
The programme is run by the Department of Pharmacology & Therapeutics in conjunction with the pharmaceutical industry. Subjects covered include. Read more
The programme is run by the Department of Pharmacology & Therapeutics in conjunction with the pharmaceutical industry. Subjects covered include:

- Drug discovery case histories
- Target/lead identification
- Preclinical studies
- Clinical studies
- Regulatory affairs
- Intellectual property
- Pharmacokinetics/metabolism
- Practical skills.

The standard and focus of the programme is maintained through an advisory board containing several representatives from industry.

Key benefits

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- Close links and regular speakers from pharmaceutical companies give students insights and up-to-the-minute knowledge of drug discovery

- Five-six month industry-based research project

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/drug-discovery-skills-msc.aspx

Course detail

- Description -

The Drug Discovery Skills course is run by the Department of Pharmacology & Therapeutics in conjunction with several pharmaceutical companies. The programme consists of three main taught modules and an industry-based research project. Graduates of the course mainly progress to careers in the pharmaceutical industry or further study for a PhD.

- Course purpose -

To equip biomedical/life science graduate students with value-added skills which will enhance their understanding of, and technical expertise in, the drug discovery process. To enhance employability in the pharmaceutical industry.

- Course format and assessment -

Teaching methods include: seminars, practicals, workshops, and a drug discovery research project usually in industry. The standard and focus of the programme is maintained through an advisory board containing several industry representatives. Assessment is via oral test/poster; essay; presentations; practical reports; written exam; written diary; and a dissertation.

Career prospects

Our graduates mainly gain employment in the pharmaceutical industry, or go on to study for a PhD.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The course combines an introduction to the theory behind and technologies currently used in drug discovery, pharmacokinetics, role of biomarkers and surrogate endpoints, preclinical safety assessment, first-time-in-human studies, clinical investigation paradigms, research governance and medical statistics. Read more
The course combines an introduction to the theory behind and technologies currently used in drug discovery, pharmacokinetics, role of biomarkers and surrogate endpoints, preclinical safety assessment, first-time-in-human studies, clinical investigation paradigms, research governance and medical statistics.

Suitable for all medical disciplines, but of particular interest to Cardiovascular/Respiratory, Neuroscience, Oncology, and Metabolic medicine, the programme is highly suitable for graduates in medicine who wish to pursue a career as clinical academics and for medical professionals in industry.

Read less
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Read more
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Dramatic developments in imaging both anatomy and molecular processes, especially using Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI). Research and development in the field is highly multi-disciplinary with key roles played by computing scientists and mathematicians, chemists, pharmacists, physicists, biologists, and of course clinicians. The Division of Imaging Sciences & Biomedical Engineering hosts a multidisciplinary team of academics directing a wide range of cutting-edge research projects, with an emphasis on translation “from bench to bedside”.

Key benefits

- Access to state of the art preclinical and clinical imaging facilities

- Clinically applied modules

- Two 4 month research projects within the Imaging Sciences’ Wellcome/EPSRC Medical Engineering Centre or CRUK/EPSRC Comprehensive Cancer Imaging Centre

- Research facilities based within a hospital environment enabling basic imaging science to be translated quickly into the clinic

- May constitute first year of a 4-year PhD

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/medical-imaging-sciences-mres.aspx

Course detail

- Description -

Medical Imaging Sciences aims to provide graduates of chemistry, physics, computing, mathematics, biology, pharmacy or medicine, with advanced training in the imaging field. Intended mainly as preparation for a PhD, but also serves as training for employment in hospitals and industry. Key components are two research projects, which may be linked around different aspects of a single research area in medical imaging.

- Course purpose -

Medical imaging is a rapidly expanding field that needs input from team members with knowledge and skills in these different areas (chemistry, physics, computing, mathematics, biology, pharmacy, medicine) to achieve its promise in improving patient care. The aim of this MRes programme is to provide students who have graduated in any of these subject areas with advanced training to prepare them to apply their specialist graduate skills in the imaging field. The programme is intended mainly as a preparation for a PhD in the field, at King's or elsewhere, but it also serves as training for employment in hospitals and industry.

- Course format and assessment -

Taught modules are presented in a variety of formats, including lectures, workshops, laboratory practicals, site visits etc. Assessment is based on coursework and examination.

Both research projects are carried out under the supervision of academics within the Division’s five departments (Biomedical Engineering; Cancer Imaging; Cardiovascular Imaging; Imaging Chemistry and Biology and Perinatal Imaging and Health). Some research projects may take place in a collaborating laboratory elsewhere in King's or at a collaborating institution.

Career prospects

Expected destinations are study for PhD, employment (research or service) in the NHS and commercial nuclear medicine services, the pharmaceutical or medical engineering industry.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
A master's in Clinical Pharmacology will enable you to gain the knowledge and skills to evaluate the safety of new medicinal products for human studies, write a clinical protocol, and obtain appropriate ethical and legal approval. Read more
A master's in Clinical Pharmacology will enable you to gain the knowledge and skills to evaluate the safety of new medicinal products for human studies, write a clinical protocol, and obtain appropriate ethical and legal approval. One of three modular programmes in Pharmaceutical Medicine designed for working physicians, clinical scientists and allied health professionals interested in the clinical development process.

Key benefits

- King's is ranked 4th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2016)

- Flexible programmes with a part-time option that allows you to fit the modules in with your work schedule.

- Teaching given by leading experts from the academic staff of King’s College London, from the biopharmaceutical sector and the regulatory authorities.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/clinical-pharmacology-msc-pg-dip-pg-cert.aspx

Course detail

- Description -

Pharmaceutical Medicine is the medical scientific discipline concerned with the discovery, development, evaluation, registration, monitoring and medical aspects of the marketing of medicines for the benefit of patients and the health of the community.

In this rapidly expanding field of medicine there is a need for high quality education programmes that are compliant with the PharmaTrain initiative of the European Commission, but also with the Bologna process. The programmes at King’s will be the first in the UK that meet both of these requirements. This, plus the opportunity to study at a world class university makes King’s the ideal place at which to study for one of these MSc subjects.

Clinical Pharmacology is the study of how drugs influence human physiology and the way the body handles drugs. It is a vital part of the early clinical development of new medicines. It requires an understanding of preclinical science, ethical and legal requirements for clinical research programmes and how to design and interpret individual clinical trials. A well designed clinical pharmacology programme informs the final regulatory of a new medicine. Generating skilled clinical pharmacologists is therefore vital to ensure that new medicines are efficiently developed.

- Format and assessment -

Each taught module is delivered as a distinct intensive four or five day taught course, accompanied by distance learning and written assessments.

Core modules:

- ADME, Pharmacokinetics & Pharmacodynamics
- Advanced Clinical Pharmacology
- Clinical Drug Development
- Clinical Pharmacology Research Project
- Drug Development Pharmacology
- Exploratory Drug Development
- Practical Clinical Pharmacology

3 assignments plus 1 online multiple choice test for each module.

- Course purpose -

This programme is for those working in or seeking to work in the field of clinical drug development. It covers all aspects of the clinical development process through from the earliest studies to post marketing activities. It will enhance knowledge and skills in all aspects of clinical research, drug regulation and drug safety.

Career prospects

It is expected that students who complete this programme will be able to work in the clinical research arena at a higher level and this will open up job opportunities that might have previously been beyond their reach and enhance their value to their employers.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Neuroimaging MSc course will provide you with training in all the scientific and methodological aspects of Neuroimaging. It has a strong focus on applied Neuroimaging, including practical experience of scanning techniques and analysis methodologies. Read more
The Neuroimaging MSc course will provide you with training in all the scientific and methodological aspects of Neuroimaging. It has a strong focus on applied Neuroimaging, including practical experience of scanning techniques and analysis methodologies. You will develop the broad set of skills that are essential to anybody wanting to work in the competitive world of Neuroimaging.

Key benefits

- Interdisciplinary research environment, which specialises in a world-leading combination of application-oriented brain imaging and analysis techniques. Neuroimaging is today one of the most successful research fields within the Institute of Psychiatry, Psychology & Neuroscience.
- Breadth of applications, including psychiatry, neurology, psychology, clinical neuroscience, neuroscience and beyond.
- Based in the state-of-the-art Centre for Neuroimaging Sciences, with direct access to five MR scanners (one 1.5T, three 3T and one preclinical 7T) and to an EEG lab.
- Strong partnerships with sister hospitals, industries and other research centres hosting complementary technologies, such as PET, MEG, CT, Ultrasound and Stem Cell Imaging.
- World-class team of academic physicists and methodologists, as well as leading psychiatrists, neurologists, psychologists and clinical psychologists.
- Extensive collaboration within King’s and with other universities and industries.
- Lectures given by experts in their field providing students with in-depth knowledge of their subject areas.
- Strong practical and experiential course components aimed at immersing students in all aspects of day-to-day neuroimaging techniques and their applications.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/neuroimaging-msc.aspx

Course detail

- Description -

The Neuroimaging course aims to train the neuroimaging researchers of tomorrow by focusing on teaching you the scientific and methodological aspects of neuroimaging techniques in parallel to their application to psychiatry, neurology, psychology, clinical psychology, neuroscience, and beyond.

In addition to theoretical approaches, our course has a strong applied element, which will allow you to gain practical experience of scanning techniques, with a focus on the skills needed to run a scanning session and to analyse and interpret the data produced. It also includes visits to other centres providing PET, MEG and NIRS among other imaging techniques

- Course purpose -

Through this programme, the Department of Neuroimaging aims to apply its collective expertise to the development of the next generation of Neuroimaging specialists through the teaching of both the scientific and methodological aspects of neuroimaging techniques and applications. The programme is aimed at an inclusive audience, but would be of particular interest to mathematicians, engineers, physicists, psychologists, radiographers, and medical professionals.

- Course format and assessment -

The first three modules, "Introduction to Neuroimaging", "Neuroimaging Acquisition and Analysis" and "Applications of Neuroimaging", are each assessed by a written examination and a coursework essay.

The fourth module, "Practical Neuroimaging", is assessed by an examination designed to test the candidate's skill in abstract writing and by an oral presentation associated to a mini Neuroimaging project and to its report.

In the first four modules, students' practical skills are also evaluated through computer-lab assessments.

The fifth module "Neuroimaging Research Project" is assessed by a research report, a lab book and a poster presentation.

Career prospects

Those who successfully complete the programme will have a solid understanding of the techniques and applications of Neuroimaging and will be well equipped to work in Neuroimaging or related professions. Students may also wish to use the programme as preparation for PhD study in either Neuroimaging or a related research area.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/ioppn/study/prospective-students/Masters-Scholarships.aspx

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This new taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce and is being developed in conjunction with the industrial partners of the Stratified Medicine Scotland Innovation Centre (SMS-IC). It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

-Students will be given the unique opportunity to undertake an industry placement as their main project. This fantastic opportunity will be offered by partner commercial organisations/companies and universities.
-The programme will cover aspects of commercial innovation and entrepreneurial skills, together with the principles which underpin the emerging science at the interface between genetics and pharmacology.
-Students on the programme will undergo theoretical and practical training in state-of-the-art research processes, enabling an appreciation of how to applynovel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
-Students will also gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments, and direct experience of how all of these techniques are applied by academic and industrial researchers in the development of new medicines.
-Following successful completion of the programme a joint master’s degree will be awarded.
-The five stakeholder universities, Glasgow, Aberdeen, Strathclyde, Dundee and Edinburgh are internationally recognised as leaders in biomedical research, hosting highly collaborative and productive groups with the requisite expertise in pharmacology, clinical trial methodology, pharmacogenomics, and life sciences. This vibrant environment, coupled with Scotland’s tradition of excellence in clinical research and significant recent investment in the new science of Stratified Medicine make it the ideal place to acquire the transferrable skills required for a successful and fulfilling career in 21st century biomedicine.

Programme structure

This MSc degree is awarded jointly by the Universities of Glasgow, Aberdeen and Strathclyde. Courses included in this programme are delivered by these three institutions as well as the Universities of Dundee and Edinburgh. Students will be offered a choice of base institution, either Glasgow or Aberdeen. Each base campus has its own programme structure; however students from both campuses will study courses covering three themes totalling 120 credits. Sample course are included below. For the most up to date information on the courses available at each campus please contact

Scientific basis of stratified medicine
-Small molecule drug discovery
-Biological drug discovery
-Pharmacogenomics and molecular medicine.

Commercialisation of science
-Introduction to bio-business
-Advanced bio-business
-New venture creation
-Regulation and governance of new therapies

Application of research and evaluation of new technologies
-Clinical trials: principles and methods
-Applied statistics with routine health datasets
-Spatial epidemiology
-Applied health economics

Project and Assessment
The project will account for the remaining 60 credits. All projects will either have an industrial placement or a project which addresses an industrial need. The programme will include an opportunity for all students to present the outcomes of their projects to an audience of other students, academics and industry representatives. Assessment will consist of submission of a dissertation and presentation.

Career prospects

Graduates will be able to pursue careers in a variety of academic and industrial areas including clinical research, preclinical lab-based research, business development with expert knowledge in life sciences and bioinformatics/biostatistics.

Read less
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration. Read more
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration.

Degree information

The programme combines theoretical and practical teaching on both the breadth of, and complexity in conducting clinical research. Topics include clinical pharmacology, pharmacokinetics, research governance, medical statistics and the fundamental principle for using the correct enabling technologies within the context of medical research and drug development.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), and a dissertation/report (120 credits). There are no optional modules for this programme.

Core modules
-Cellular & Molecular Mechanisms of Disease (15 credits)
-Experimental Neurology (30 credits)
-Research Skills & Statistics (15 credits)
-MRes Translational Neurology Research Project (120 credits)

Dissertation/report
Students will have the opportunity to work with internationally recognised researchers from the UCL Institute of Neurology, and the Leonard Wolfson Experimental Neurology Centre as they undertake their research projects, which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme will combine lectures, workshops and tutorials. Practicals will focus on the role of surrogate markers and emerging technologies in drug development e.g. pre-clinical discovery, first time in man studies, and early phase clinical trials in healthy volunteers and patients. Assessment is through short answer unseen exams, coursework, simulated grant applications and written clinical abstract as well as a small component with a short answer exam.

Careers

The programme is designed to cater to graduates in medicine and biomedical sciences who wish to gain valuable training in clinical research before embarking on a clinical PhD programme, medical training, or professional work in clinical trials. The successful completion of the MRes should also enhance opportunities for graduates to enter medical school or for MBBS graduates to progress to specialist medical training.

Employability
Whatever your chosen career pathway, the MRes in Translational Neurology will equip graduates to either get a first step on the ladder, change career directions or help to become more experienced with a specific expertise in your chosen career.

Why study this degree at UCL?

The programme is delivered by the UCL Institute of Neurology, a specialist postgraduate institute and a worldwide centre of excellence in clinical research across neurological diseases, including movement disorders (e.g. Parkinson’s disease), multiple sclerosis, neuro-inflammation, epilepsy, stroke, cognitive dysfunction, Alzheimer’s Disease and other dementias.

Students will be taught by experts in the field and have the opportunity to network with internationally recognised opinion leaders in neurology and neurodegeneration.

By the end of the programme students will gain a thorough understanding of the challenges involved in setting up research projects, and learn how to design, implement, analyse and report clinical studies. Undertaking an extended piece of primary research in a clinical trials setting is particularly attractive to students wishing to pursue doctoral or clinical research. The focus on translational neurology, from within the specialist research setting of the Leonard Wolfson Experimental Neurology Centre, is also of note.

Read less
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research. Read more
Designed with industry input, and with industry placement opportunities available, this programme prepares you for a career in the pharmaceutical industry or in academic research.

About the programme

The programme – which reflects the approaches taken by modern pharmaceutical companies – provides theoretical and practical training in the strategies and techniques by which novel drugs are designed. This involves the study of synthetic chemistry, medicinal chemistry, pharmacology, and chemical analysis. The latest strategies and technologies involved in the discovery and testing of novel
drug candidates are explored.

Practical experience

You may take a work-based learning module involving industry placement for approximately one day per week during the second trimester. Placements will be with pharmaceutical, chemical or bioscience companies.

Your learning

The MSc consists of six taught modules over two trimesters followed by a substantial research project.

Core modules include:
• Drug Discovery and Development
• Drug Research Methods
• Computer-Aided Drug Design
• Preclinical Drug Testing
• MSc Science Research Project
• Pharmaceutical Synthesis

Optional modules:
• Placement Learning
• Drug Design and Development

MSc

You will conduct a research project to complete the MSc, involving the application of knowledge and practical techniques covered in the modules. There are various exciting research projects ongoing in this area, including testing of potential anti-tumour agents, and enkephalin analogs, design and synthesis of opioidmimetics, and compounds used against Alzheimer’s disease.

Our Careers Adviser says

UWS graduates possess expert knowledge and practical experience of the most relevant techniques used in drug design and discovery, preparing you for a career in the pharmaceutical industry. Graduates will find employment in drug synthesis, computer-aided drug design, drug formulation and regulatory affairs.

Financial support

In session 2015/16 the Postgraduate Diploma element of this programme carried SAAS postgraduate loan funding for eligible students. Check http://www.saas.gov.uk for 2016/17 loan info.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
What causes a disease? What can be done about obesity and diabetes? Why does one person become depressed and another does not? What are the underlying mechanisms of diseases?. Read more
What causes a disease? What can be done about obesity and diabetes? Why does one person become depressed and another does not? What are the underlying mechanisms of diseases?

During the Master's degree programme in Biomedical Sciences you will learn how to find answers to these questions. The programme is strongly oriented towards the scientific background of health and disease and preclinical research. You will study life processes, and their abnormalities within the intact organism. The field in Groningen is wide and the choice is up to you – you can specialize in molecular biology or conduct research at the level of population groups.

At least 60% of the master's programme consist of independent research projects. As such, you are participating actively in all aspects of the research, from designing an experiment and conducting it, to writing an international scientific publication. Within the degree programme Biomedical Sciences students can follow the specialisation Biology of Ageing which provides training as a researcher mainly in the field of ageing and age-related pathologies.

Why in Groningen?

- Studying life processes, and their abnormalities, in the intact organism
- At least 60% of the master's programme consist of independent research projects
- Specialisation in Biology of Ageing

Job perspectives

Your career prospects are:

Researcher in a variety of organizations such as
- Universities
- Academic and general hospitals
- Biomedical, pharmaceutical or food industries

Positions linking biomedical sciences to a business or policy strategy in a social organization, such as the Heart Foundation and the Diabetes Fund. You can also work for the government in an advisory position.

At least 60% of the Master's Programme is conducting Independent Research
Within the Master's degree programme Biomedical Sciences you can conduct research in the following areas of expertise:
- The mechanisms of inflammation and immunity, allergies and tumours;
- The transplantation applications of embryonic stem cells;
- Diseases of the brain and nervous system;
- The biological aspects of emotional and affective disorders such as depression, anorexia nervosa and obesity;
- The molecular cellular biology underlying age-related pathologies.

Read less
How does a disease develop in a patient or model system? Which substances can influence this process? How is effective medication designed and tested? Can you cure diseases with stem cells?. Read more
How does a disease develop in a patient or model system? Which substances can influence this process? How is effective medication designed and tested? Can you cure diseases with stem cells?

You study the causes and pathophysiology of diseases and intervention with drugs. The programme is interdisciplinary covering the whole range of drug development disciplines. From basic drug target discovery to molecular modeling of targets. And from synthesis andanalysis, pharmacology, toxicology and biopharmacy to clinical pharmacoepidemiology and post marketing surveillance.

The main feature of the programme are research projects in which you will learn about conducting research by actually doing it. You will independently perform experiments and go through the whole process of conducting science developing skills such as studying scientific literature, formulating hypotheses, designing and performing experiments, and interpreting and presenting your results. The programme therefore is a good preparation for a PhD programme or for independent practice of science in a future job.

You can either choose to design your programme tailored to your individual research interest or choose a specialisation. Available specialisations:Toxicology and Drug Disposition, with focus on adverse drug reactions and toxicokinetics of drugs, or Pharmacoepidemiology which studies intended and unintended effects of drugs in daily life.

Why in Groningen?

- Groningen drug research is among the best in the world
- Unique interdisciplinary cooperation between clinical, preclinical and pharmaceutical research fields
- Specialisations: Toxicology and Drug Disposition | Pharmacoepidemiology

Job perspectives

When you have finished the Master's programme in Medical Pharmaceutical Sciences you have multiple career options. You are optimally prepared to start a research career but you can also choose for a position that links science to business and policy.

Researcher (usually as a PhD) in a variety of organisations:
- Universities
- Academic and general hospitals
- Pharmaceutical, biomedical industries and food industries

Positions linking medical pharmaceutical sciences to a business or policy strategy in:
- Governmental and semi-governmental institutions such as the Medicines Evaluation Board or the Ministry of Health and Welfare
- Societal and patient organisations

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X