• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Lincoln Featured Masters Courses
University of Birmingham Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cass Business School Featured Masters Courses
Loughborough University Featured Masters Courses
"powertrain"×
0 miles

Masters Degrees (Powertrain)

  • "powertrain" ×
  • clear all
Showing 1 to 9 of 9
Order by 
The aim of the Automotive Engineering programme is to provide students with a system perspective of automotive vehicles and depth within three focus areas. Read more

Programme aim

The aim of the Automotive Engineering programme is to provide students with a system perspective of automotive vehicles and depth within three focus areas: powertrain, vehicle dynamics and safety.

The programme is based on lectures, large assignments, simulations and experiments, and these are carried out as real case studies, or using other similar methods, with assistance from industrial tools.

Powertrain and vehicle dynamics are two essential disciplines in terms of understanding and designing the automotive vehicle system and its behaviour. The same is true of the field of safety, which is also a strong competence area at Chalmers; this brings a unique touch to the programme not found at many other universities.

Since all industrial automotive product development is carried out in a team-based project environment, the programme stresses the importance of project work. The aim of the projects is to provide a work environment that closely resembles that found in industry. Students work on a multi-cultural team composed of many different competencies. Project tasks derive from industry or academia, and they take technical aspects as well as the importance of communication, teamwork and project management into consideration.

Why apply

Skilled automotive engineers are required to meet the ever-increasing demands on high-quality individual mobility and transportation of people and goods, especially when considering global warming, environmental challenges and not least the vision of zero accidents. In the west coast region of Sweden, there has been a long tradition of research and development within manufacturing and assembly facilities for the automotive industry.

The Automotive Engineering Master’s Programme at Chalmers has the potential to provide students with the knowledge and competence needed to develop technologies for a sustainable mobile society that is in line with industry’s needs.

Learning objectives

Graduates will be able to:

- identify and discuss vehicles as complex systems from technical and social perspectives through a broad platform in automotive engineering
- analyze new technical challenges and create technical advancements in the automotive industry in three focus areas: powertrain, vehicle dynamics and safety
- synthesize and evaluate automotive systems and products in terms of direct use and lifecycle analysis and take environmental and economic aspects into consideration
- through applications and practice:
utilize automotive-related IT and product development tools
demonstrate the skills needed to manage and contribute to team-based engineering activities and projects in a multi-cultural environment.

Read less
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design
- Vehicle and Powertrain Functional Performance
- Vehicle Systems Analysis
- Project

Optional modules (select three)

- Body Engineering
- Powertrain Calibration Optimisation
- Sustainable Vehicle Powertrains
- Vehicle Dynamics and Control (for full time programme only)
- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities
The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.
The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research
The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects
Over 87% of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/

Read less
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems. Read more
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems.

Our graduates have the technical and managerial skills and expertise that are highly sought after by the automotive industry.

Our course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/automotive/index.html

Learning outcomes

By studying our MSc in Automotive Engineering you will:

- Understand the vehicle design process and the operation and performance of important sub-systems
- Analyse current and projected future environmental legislation and the impact this has on the design, operation and performance of automotive powertrain systems
- Analyse in detail the operation and performance indicators of transmission systems, internal combustion engines and after treatment devices.

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#B) for more detail on individual units.

Semester 1 (October-January):
The first semester of our course allows students to choose from a range of fundamental and more advanced lecture courses covering the analysis methods and modelling techniques that are used in the simulation, design and manufacture of modern vehicles and powertrains.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
The full time summer project gives students the opportunity to develop their understanding of aspects of the automotive material covered in the first semester, through a detailed study related to the research interests and specialisations of a member of the academic staff. The students will often be working as part of a larger group of researchers including postgraduates, research officers and undergraduates and as such have access to the state of the art automotive test facilities within the department.

- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects covered

- Heat transfer
- Engineering systems simulation
- Engine & powertrain technologies
- Professional skills for engineering practice
- Vehicle engineering
- Vehicle dynamics & aerodynamics

Career Options

Our MSc graduates now work all over the world in various industries, while a number of them pursue their Doctorates in universities worldwide. Recent graduates have secured jobs as:

- Calibration Engineer, Ford Motor Company Ltd
- Product Engineer, Renault
- Engineering Consultant, D'Appolonia

Companies which have hired our recent graduates include:

British Aerospace
Airbus UK
Intel
Ricardo
Cambstion
Panama Canal Authority
Moog Controls Ltd

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
In the modern world of vehicle design and manufacture, companies require engineers who are highly qualified and possess specialised skills. Read more
In the modern world of vehicle design and manufacture, companies require engineers who are highly qualified and possess specialised skills.

The course proposed here not only addresses the overall design of a vehicle but will also introduce participants to various specialised areas of Automotive Engineering.

WHY CHOOSE THIS COURSE?

-We have expertise in adopting an integrated multidisciplinary approach to engineering projects
-Take part in real engineering projects in conjunction with industry
-Achieve a better understanding of system design methodologies

WHAT WILL I LEARN?

The course has the following modules:
-Masters Project (Industry or Academic based)
-Engineering Project Management
-Computer Aided Engineering
-Noise Vibration and Harshness
-Engineering Analysis and Simulation
-Ground Vehicle Dynamics
-Powertrain and Engine Dynamics
-Ground Vehicle Aerodynamics
-Alternative Propulsion Systems

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

We prepare participants for productive careers as Automotive Engineering specialists in a wide range of engineering, manufacturing, and services organisations.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. Read more
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. The programme is designed to produce highly-skilled graduates who are ready to undertake advanced design roles with major engine manufacturers and their supply chain.

The UK is a world leader in motorsport and high performance engines industry - many of the world's most advanced high-performance engines are designed not far from our location in the UK motorsport valley. The department’s unrivalled access to motorsport industry informs and directs development and delivery of the programme.

In addition to the strong theory-based modules, graduates gain a comprehensive understanding of how winning engines are created. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work for most advanced high-performance engine manufacturers, such as Ferrari and Mercedes HPP, all of F1 teams and major suppliers to motorsport industry, such as Riccardo, Xtrac, Prodrive, and Hewland. Our programme has been developed with and delivered in collaboration with the automotive and motorsport industry: you will be taught by staff with many years of racing engine experience, from performance road cars, Rally, IRL, Kart and F3 right up to F1 and equipped with state-of-the-art equipment, that include four engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Industrial aspect of delivery is enhanced by our visiting speakers from business and industry, providing professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule.

Our close industry links can also be seen through research projects and consultancies that enable us to feed the latest technology and developments into our teaching as well as providing opportunities for students to undertake projects with neighbouring companies, also based in the UK Motorsport Valley, whilst our well-funded research programmes in areas of current concern such as vehicle end-of-life issues, modern composite materials and electric vehicles offer. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. You can put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. You will have an opportunity to work on our novel V-twin engine design and also select this as your dissertation topic, which may lead to the possibility of furthering their studies towards a PhD research degree.

Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology -- to get a flavour of the activities within our department see our 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Racing Engine Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules:
-Advanced Powertrain Engineering
-Computation and Modelling
-CAD/CAM
-Data Acquisition Systems

The Dissertation (core, triple credit) is an individual project on a topic from race engineering, offering an opportunity to specialise in a particular area related to high performance engines. In addition to developing your expertise in a highly specialised field, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. McLaren, AVL, VUHL etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation. .

Please note: As our courses are reviewed regularly, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work to demonstrate important aspects of theory or systems operation. Visiting speakers from business and industry provide valuable insights.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading motorsport companies, including directly into F1 teams and suppliers.

Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Automotive Materials & Manufacture
-CFD Techniques
-Computing for Business and Technology
-Dynamics
-Engineering Application of Mathematics
-Engineering Fundamentals
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-Integrated Product Engineering
-Operations Research

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Near STEM route is for admission of relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts (e.g., physics or maths).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Materials & Manufacture
-CFD Techniques
-Dynamics
-Operations Management
-Operations Research

Year 2
Core Modules
-Individual Masters Project

Read less
This first-of-its-kind, dual degree agreement allows graduate students from the University of Windsor and Politecnico di Torino in Italy to participate in cutting-edge research and development projects with Fiat Chrysler Automobiles while completing two master’s degrees in two countries. Read more
This first-of-its-kind, dual degree agreement allows graduate students from the University of Windsor and Politecnico di Torino in Italy to participate in cutting-edge research and development projects with Fiat Chrysler Automobiles while completing two master’s degrees in two countries.

The Windsor-Torino dual degree program offers a post-graduate level, international engineering education that addresses challenges and new strategies in the automotive sector. While earning a Master of Applied Science degree from the University of Windsor and a Laurea Magistrale degree from the Politecnico di Torino, students will receive solid professional training and the practical experience necessary to work in a competitive global environment.

After completing an undergraduate degree, students accepted into the program will begin with one year of graduate study in Windsor taking courses and working on a research thesis that is defined and supported by FCA Canada. Students will then travel to the Politecnico di Torino, where they will complete their master’s degree with an additional year of study and the completion of their thesis research with the support of FCA Italy. The entire program is conducted in English. The program starts in September and is typically completed over a two-year period.

The program has four (4) key areas of study:
-Vehicle Engineering
-Powertrain Engineering
-Manufacturing & Management
-Virtual Product & Process Engineering

The academic requirements are as follows:
-Completion of three (3) courses in the key topic areas listed above, plus a graduate seminar at the University of Windsor
-Completion of 30 ECTS (European Credit Transfer System) courses at Politecnico Di Torino
-A thesis on an R&D project developed in cooperation with FCA Italy and FCA Canada

Support will be provided through a combination of:
-Scholarships (NSERC/OGS)
-Graduate Assistantships (while in Year 1 at the University of Windsor, if eligible)
-Industrial Research & Development Internship (IRDI)/FCA Canada Internship (in the Spring/Summer)
-Research Assistantship from the University of Windsor supervisor (if eligible)
-Personal financial resources

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X