• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Kent Featured Masters Courses
University of London International Programmes Featured Masters Courses
"power" AND "system"×
0 miles

Masters Degrees (Power System)

  • "power" AND "system" ×
  • clear all
Showing 1 to 15 of 234
Order by 
COURSE AIMS. This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
COURSE AIMS
This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. This programme aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, regulation and management of the power systems and networks of the future.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

Power system engineering – using state-of-the-art computational tools and methods;
Design of sustainable electrical power systems and networks;
Regulatory frameworks for, and operation of, power systems and electricity markets.
Who should Study this Course?
This newly designed M.Sc. programme is appropriate for those seeking an in-depth knowledge of sustainable electrictrical power including:

Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry;
Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

COURSE MODULES

Sustainable Power Generation

Generation costing of solar, geo-thermal, bio-mass, wind, hydro, tidal, and wave.
Storage technologies and energy conversion: practical understanding and limitations.
Embedded renewable generation: technical challenges, opportunities and connection in electrical transmission and distribution grids.

Energy Economics and Power Markets

Principles, objectives, regulation, computational methods, economic procedures, emissions trading, and operation of electricity markets.
Restructuring and deregulation in generation, transmission, and distribution.
Concepts of transmission congestion and demand side management.

Power System Analysis and Security

Capabilities and limitations of modern power systems design.
Accurate use of power systems modelling and analysis of secure operation.
Computational techniques for power systems modelling, optimal power flow, mathematical programming, heuristic methods, artificially intelligent methods.

Power System Operation and Management

Business drivers and technical requirements for operational management.
In-depth knowledge of operational management software.
Energy balance and intermittency in sustainable electrical power system operation and management.

Power Electronics and FACTS

Practical understanding of how to design advanced power electronic circuits.
Modern power electronic integration techniques and state-of-the-art Flexible AC Transmission Systems.
Capabilities and limitations of different power electronic circuits.
Integration of power electronic circuits into Flexible AC Transmission Systems.

Power System Stability and Control

How to ensure effective power system stability and control power system operation using computational methods.
Power system stability problems, static and dynamic, relaying and protection, stability control and protection design, excitation and power system stabilisers.

Project Management

Formal methods and skills to function effectively at high levels of project management.
Development of skills to achieve practical business objectives.

Sustainable Electrical Power Workshop
You will gain experience and expertise with industry relevant tools and techniques through hands-on workshop environments. These practical sessions involve individual and group work. Typical assignments include:

Sustainable generation scheduling.
Integration of renewable energy sources.
Computer simulation of active power filters.
Phase-controlled rectifiers.
Power network security.
Sustainable electrical power system stability control.
Electricity market auctions.
Sustainable electrical power system investment and planning.

Project
This provides a stimulating and challenging opportunity to apply your knowledge and develop deep understanding in a specialised aspect of your choice. Projects can be university or industry and company sponsored students have the opportunity to develop their company’s future enterprise. Industrial projects often lead to the recruitment of the student by the collaborating company.

Read less
The MSc in Electrical Power Systems Engineering aims to keep pace with the rapidly evolving electricity industry. Read more
The MSc in Electrical Power Systems Engineering aims to keep pace with the rapidly evolving electricity industry. The programme includes the latest developments in the electricity industry and delivers up-to-date topics on electrical power system plants, advanced power system analysis as well as on the structure and regulatory aspects of the industry.

The course starts with a review of the fundamentals of power systems and progresses through to advanced topics incorporating the latest smart grid technologies as well as techniques applied in the planning, design and operation of modern power systems within both regulated and liberalised environments. All course units include laboratory sessions or practical exercises to bring theory into practice. Every student will also be allocated an individual dissertation project in a specialised topic of research with industrial relevance.

Course aims:

Provide an advanced education in electrical power engineering.

Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.

Give a sound understanding of the principles and techniques of electrical power engineering.

Give a broad knowledge of the issues and problems faced by electrical power engineers.

Give a solid working knowledge of the techniques used to solve these problems.
Module details:

Course units include:

Introduction to Power Systems, Power Systems Modelling, Power System Analysis, Power System Plant, Power Engineering Project Management, Economic Operation of Power Systems, Sustainable Electricity Supply, Power System Dynamics, Renewable Generation, Integration of Distributed Generation, Economics of Power Systems, Power Quality and Insulation co-ordination and HV testing.

Further information about this course can be found on the Electrical Power Systems Engineering web pages using the link button.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
NOTE Are you a student from outside the EU?. If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electrical Engineering. Read more
NOTE Are you a student from outside the EU?
If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electrical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About this course
The modern power system is evolving with increasing use of power electronics, integration of renewable sources such as wind and solar development of embedded generation and microgrids. The MSc Electrical Engineering award is designed to produce engineers who are capable of engineering such a system. .

Core modules are:
-Research Methods & Project Management
-Power Electronics in Electrical Utility Systems
-Advanced Power Systems Analysis
-Power System Protection
-Flexible AC Transmission Systems and Custom Power
-MSc Project

Option Modules are:​
-Energy Management
-Control Systems
-Photovoltaic Technology

Course content

The theme of the award is Power Electronics in Electrical supply industry. The module content and the award structure are designed so that this theme permeates through the award. The key modules, which have industrial input are "Power Electronics in Electric Utility Systems" , "Flexible AC Transmission systems" and "Power System Protection" . The option modules such as Energy Management and Control systems provide the students with the additional knowledge and skills for the formation of a true power electronics engineer. You will study 4 modules in the first semester.

In the second semester you will study 4 further modules. Upon successful completion of the project you will be awarded the MSc. Your study length can be variable depending on how much time you spend in industry which could include vacation work.

Employment opportunities

Career prospects are excellent. There is a severe shortage of Electrical Engineers worldwide. In particular the renewable energy sector is expanding and it is predicted that 1.5 million jobs will be available worldwide. The worldwide investment in renewable energy was $270 billion in 2014 according to UNEP's 9th "Global Trends in Renewable Energy Investment 2015. Best students are being offered jobs even before they complete the award.

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry. Read more
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry.

The course builds on a long-term involvement with the power industry, the education of power engineers and extensive research work and expertise within the Department of Electronic & Electrical Engineering.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

The MSc will equip you with the ability to make an immediate engineering contribution to industry in electrical power systems analysis, planning, operation and management.

You will be able to perform in-depth engineering work on defined tasks requiring research, personal project management and innovative thinking.

The course provides its graduates with the underpinning knowledge of business operation and project team working that leads to maximised impact within the industrial setting.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/power/index.html

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ee/ee-proglist-pg.html#C) for more detail on individual units.

Semester 1 (October-January):
- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects Covered

Professional skills for engineering practice
Power system plant
Power quality
Electrical energy systems & analysis
Control of power systems
Power electronics & machines
Power system protection

Career Options

Recent recruiters include:

- Guam Power Authority
- Scottish and Southern Energy
- Central Electricity Board
- Barbados Light & Power Co. Ltd.
- First Hydro
- National Grid
- British Power International
- Buro Happold

We also encourage the best of our MSc students to continue their studies with us to PhD level.

Accreditation:
Our course is accredited by the Institution of Engineering and Technology (IET) (http://www.theiet.org/academics/accreditation/). Individuals with awards from accredited programmes will avoid some or all of the detailed assessment of the educational requirements necessary for Incorporated Engineer (IEng) or Chartered Engineer (CEng) registration, making the registration process more straightforward.

About the department

The Department of Electronic & Electrical Engineering offers a broad spectrum of research expertise supported by state-of-the-art facilities. Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

91% of our research activity was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014 (http://www.bath.ac.uk/research/performance/).

Postgraduate facilities:
The postgraduate laboratories are well-equipped with state-of-the-art equipment and instrumentation. Postgraduate facilities include PCs and powerful workstations which also give direct and ready access to the University’s central computer system and the internet. Additional specialist research facilities are available within the department’s three research centres.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering. To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. Read more

Why this course?

This is the UK’s first two-year full-time MSc in Advanced Electrical Power Engineering.

To be an effective power engineer you need a good knowledge of underpinning technologies and user and application requirements. You also require a firm understanding of the business and regulatory landscape that national and multinational power and utility companies must work within.

This course brings together advanced expertise in all aspects of electrical energy and power systems, complemented by studies in electricity markets and power systems economics.

The course is designed to provide the advanced training you need for a career in the dynamic power and energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedelectricalpowerengineering/

You’ll study

- Year 1
You'll take a selection of compulsory and optional taught classes. This is combined with training in business and project management skills and research methodologies and techniques.
Potential Year 2 research projects are explored during this year through completion of a mini-project, with a final topic agreed for the start of Year 2.

- Year 2
You'll undertake a major research project within the electrical power and energy disciplines. You'll also select a number of advanced taught modules designed to broaden your understanding of your chosen topic.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Guest lectures

Guest presentations are a regular feature of the courses. These are often done by industry partners or department alumni. Speakers will share with you how they have put their knowledge and learning into practice in the world of work.

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules in Year 1. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the Year 2 research project consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the high growth power and energy sectors.

Employment prospects are excellent, with recent graduates working in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as Iberdrola, EDF Energy and China State Grid. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*Information is intended only as a guide.

Read less
This MSc programme has been specially designed by the Power Conversion Group to meet the growing demand for electrical engineers who have the knowledge and skills to design integrated electrical systems. Read more
This MSc programme has been specially designed by the Power Conversion Group to meet the growing demand for electrical engineers who have the knowledge and skills to design integrated electrical systems. These systems comprise multiple energy sources, power electronic converters and motor drives, examples include:
Traction, energy storage and power management systems for electric vehicles
Electric actuation, generation and power distribution systems for aircraft
Actively controlled, land-based power distribution systems
Industrial automation schemes

Environmental concerns, the desire to use energy more efficiently and the pressure to reduce operating costs are driving the rapid development and application of these new forms of electrical system. Designers require an understanding of electrical machine fundamentals and power electronics, coupled with a thorough knowledge of control, modelling and system integration techniques.

The individual projects, working with one of the course lectures, are often related to one of our many research projects. So you get to work in our research labs alongside PhD students and research assistants, and benefit from their advice and experience.

Course aims

To develop your ability to integrate strands of power electronics, drives, vehicle systems and small power utilities with the control of these systems.

To enhance your experience through learning in a research-rich environment and through contact with leading researchers in the application of electrical energy conversion technology.

To encourage you to evaluate critically drive and supply technologies applied in manufacturing and transport industries

To enable you to gain experience in analysis and design of systems employing recent developments in research area and to prepare students who wish to continue on to research studies.

Further information about this course can be found on the Power Electronics, Machinesand Drives web pages using the link button.

Read less
This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. Read more

Why this course?

This course recognises the need for skilled graduates to address the world’s major issues in electrical energy and power systems. It offers an integrated programme focusing on:
- the design, operation and analysis of power supply systems
- power plant
- renewables and industrial electrical equipment relating to a liberalised power supply industry
- globalised markets and environmental drivers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/electricalpowerengineeringwithbusiness/

You’ll study

There’s two semesters of compulsory and optional classes, followed by a three-month summer research project in your chosen area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners, including ScottishPower, Smarter Grid Solutions and SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces, including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies, including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET).

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.
Each module comprises of approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.
The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.
You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Iberdrola, National Grid, ScottishPower, SSE, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 to 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

The course provides the advanced level of knowledge and understanding required for challenging, well paid and exciting careers in the dynamic and high growth electrical power and renewable energy sectors.
Employment prospects are excellent, with recent graduates operating in power engineering consultancy, global power utilities (generation, supply and distribution), the renewable energy sector and manufacturing. They've taken up professional and technical positions as electrical engineers, power systems specialists, distribution engineer and asset managers in large energy utilities such as ScottishPower Energy Networks, Aker Solutions, National Grid & EDF Energy. Graduates have also taken up roles in project management and engineering consultancy with companies such as Arup, Atkins Global, Ramboll, Moot MacDonald and AMEC.

How much will I earn?

Salaries for electrical engineers start at around £20,000 to £25,000. Experienced or incorporated engineers can earn between £28,000 and £40,000. A chartered electrical engineer can earn higher salaries of £40,000 to £55,000 or more.*

*information is intended only as a guide. Figures taken from Prospects.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
We are living through an era of tumultuous change in how politics is conducted and communicated. The great digital disruption of the early 21st century continues to work its way through media systems around the world, forcing change, adaptation, and renewal across a whole range of areas. Read more
We are living through an era of tumultuous change in how politics is conducted and communicated. The great digital disruption of the early 21st century continues to work its way through media systems around the world, forcing change, adaptation, and renewal across a whole range of areas: political parties and campaigns, interest groups, social movements, activist organisations, news and journalism, the communication industries, governments, and international relations.

In the New Political Communication Unit at Royal Holloway, University of London, we believe the key to making sense of these chaotic developments is the idea of power—how it is generated, how it is used, and how it shapes the diverse information and communication flows that affect all our lives.

This unique new Masters degree, which replaces the MSc in New Political Communication, is for critically-minded, free-thinking individuals who want to engage with the exciting intellectual ferment that is being generated by these unprecedented times. The curriculum integrates rigorous study of the very best academic research with an emphasis on making sense of political communication as it is practiced in the real world, in both "old" and "new" media settings.

While not a practice-based course, the MSc Media, Power, and Public Affairs is perfect for those who wish to build a career in the growing range of professions that require deep and critical insight into the relationship between media and politics and public communication more generally. These include advocacy, campaign management, political communication consultancy, journalism, government communication, policy analysis, public opinion and semantic polling, and public diplomacy, to name but a few. Plus, due to its strong emphasis on scholarly rigour, the MSc in Media, Power, and Public Affairs is also the perfect foundation for a PhD in political communication.

You will study a mixture of core and elective units, including a generous choice of free options, and write a supervised dissertation over the summer. Teaching is conducted primarily in small group seminars that meet weekly for two hours, supplemented by individual tuition for the dissertation.

This course is also offered at Postgraduate Diploma level for those who do not have the academic background necessary to begin an advanced Masters degree. The structure of the Diploma is identical except that you will not write a dissertation. If you are successful on the Diploma you may transfer to the MSc, subject to academic approval.

See the website https://www.royalholloway.ac.uk/politicsandir/coursefinder/mscpgdipmediapowerandpublicaffairs.aspx

Why choose this course?

- be taught by internationally-leading scholars in the field of political communication

- the curriculum integrates rigorous study of the very best academic research with an emphasis on making sense of political communication as it is practiced in the real world, in both "old" and "new" media settings

- perfect for those who wish to build a career in the growing range of professions that require deep and critical insight into the relationship between media and politics and public communication more generally

- a unique focus on the question of power and influence in today’s radically networked societies.

On completion of the programme, you will have:
- advanced knowledge and critical understanding of key concepts, theoretical debates, and developments in the field of political communication

- advanced knowledge of the texts, theories, and methods used to enhance understanding of the issues, processes, and phenomena in the field of political communication

- advanced knowledge and critical understanding of research methods in the social sciences

- a solid foundation for a career in the growing range of professions that require deep and critical insight into the relationship between media and politics and public communication more generally, or for a PhD in any area of media and politics.

Department research and industry highlights

- The New Political Communication Unit’s research agenda focuses on the impact of new media and communication technologies on politics, policy and governance. Core staff include Professor Andrew Chadwick, Professor Ben O’Loughlin, Dr Alister Miskimmon, and Dr Cristian Vaccari. Recent books include Andrew Chadwick’s The Hybrid Media System: Politics and Power (Oxford University Press, 2013), Cristian Vaccari’s Digital Politics in Western Democracies: A Comparative Study (Johns Hopkins University Press), and Alister Miskimmon, Ben O’Loughlin, and Laura Roselle’s, Strategic Narratives: Communication Power and the New World Order (Routledge, 2013). Andrew Chadwick edits the Oxford University Press book series Oxford Studies in Digital Politics and Ben O’Loughlin is co-editor of the journal Media, War and Conflict. The Unit hosts a large number of PhD students working in the field of new political communication.

Course content and structure

You will study four core course units (chosen from a total of six options), two elective units, and write a dissertation over the summer. Course units include one of three disciplinary training pathway courses, a course in research design, analysing international politics, and specialist options in international relations.

Students studying for the Postgraduate Diploma do not undertake the dissertation.

Core course units:
Media, Power, and Public Affairs: You will examine the relationship between media, politics and power in contemporary political life. This unit focuses on a number of important foundational themes, including theories of media effects, the construction of political news, election campaigning, government communications and spin, media regulation, the emergence of digital media, the globalisation of media, agenda setting, and propaganda and the role of media in international affairs. The overarching rationale is that we live in an era in which the massive diversity of media, new technologies, and new methodologies demands new forms of analysis. The approach will be comparative and international.

Internet and New Media Politics:
 Drawing predominantly, though not exclusively, upon specialist academic journal literatures, this course focuses on a number of important contemporary debates about the role and influence of new technologies on the values, processes and outcomes of: global governance institutions; public bureaucracies; journalism and news production; representative institutions including political parties and legislatures; pressure groups and social movements. It also examines persistent and controversial policy problems generated by digital media, such as privacy and surveillance, the nature of contemporary media systems, and the balance of power between older and newer media logics in social and political life. By the end of the course students will have an understanding of the key issues thrown up by the internet and new media, as well as a critical perspective on what these terms actually mean. The approach will be comparative, drawing on examples from around the world, including the developing world, but the principal focus will be on the politics of the United States and Britain.

Social Media and Politics: This course addresses the various ways in which social media are changing the relationships between politicians, citizens, and the media. The course will start by laying out broad arguments and debates about the democratic implications of social media that are ongoing not just in academic circles but also in public commentary, political circles, and policy networks—do social media expand or narrow civic engagement? Do they lead to cross-cutting relationships or self-reinforcing echo chambers? Do they hinder or promote political participation? Are they useful in campaigns or just the latest fashion? Do they foster effective direct communication between politicians and citizens? Are they best understood as technologies of freedom or as surveillance tools? These debates will be addressed throughout the course by drawing on recent empirical research published in the most highly rated academic journals in the field. The course will thus enable students to understand how social media are used by citizens, politicians, and media professionals to access, distribute, and co-produce contents that are relevant to politics and public affairs and establish opportunities for political and civic engagement.

Media, War and Conflict:
The post-9/11 global security situation and the 2003 Iraq war have prompted a marked increase in interest in questions concerning media, war and conflict. This unit examines the relationships between media, governments, military, and audiences/publics, in light of old, new, and potential future security events.

Introduction to Qualitative Research Methods in Politics and International Relations:
 You will be provided with an introduction to core theories and qualitative approaches in politics and international relations. You will examine a number of explanatory/theoretical frameworks, their basic assumptions, strengths and weaknesses, and concrete research applications. You will consider the various qualitative techniques available for conducting research, the range of decisions qualitative researchers face, and the trade-offs researchers must consider when designing qualitative research.

Dissertation (MSc only): The dissertation gives you the opportunity to study an aspect of Media, Power, and Public Affairs in depth. You will be assigned a dissertation supervisor and the length of the piece will be 12,000 words.

Elective course units:
Note: not all course units are available every year, but may include:
- Politics of Democracy
- Elections and Parties
- United States Foreign Policy
- Human Rights: From Theory to Practice
- Theories and Concepts in International Public Policy
- Contemporary Anglo-American Political Theory
- Transnational Security Studies
- Conflict and Conflict Resolution in the Middle East
- The Law of Cyber Warfare
- Comparative Political Executives
- European Union Politics and Policy
- International Public Policy in Practice
- Sovereignty, Rights and Justice
- Theories of Globalisation
- Introduction to Quantitative Research Methods in Politics and International Relations

Assessment

Assessment is carried out by coursework and an individually-supervised dissertation.

Employability & career opportunities

Advocacy, campaign management, political communication consultancy, journalism, government communication, policy analysis, public opinion and semantic polling, public diplomacy, PhD research.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Your smartphone is probably the most well-known example of an advanced embedded system; a handheld low-power device that carries out signal processing at the same time as it is able to entertain its user with computer games, internet sessions, and streaming audio/video. Read more
Your smartphone is probably the most well-known example of an advanced embedded system; a handheld low-power device that carries out signal processing at the same time as it is able to entertain its user with computer games, internet sessions, and streaming audio/video. What makes a system embedded is that system functionality must be implemented in hardware and software within very challenging constraints, such as performance, power consumption, real-time demands, reliability, and size.

The aim of this programme is to educate engineers that can design, implement and verify advanced embedded electronic systems based on hardware and software. The programme graduates will gain knowledge and skills in a variety of areas, such as integrated circuit technology, computer design, industrial design methodologies and industrial design software suites. Programme graduates will be qualified to work as productive engineers in industrial teams designing state-of-the-art embedded products or intellectual property, or to undertake graduate studies leading to a doctorate in the field of electronic system design.

Who should apply

As far as study background, most of our students have a Bachelor’s degree in Electrical Engineering or in Computer Science and Engineering. In particular, you need skills in electronic and computer fundamentals, including digital system design using VHDL/Verilog and basic programming.

Why apply

This programme is designed to address the entire design challenge of embedded systems. During the first fall semester three compulsory courses will give you a solid design platform in preparation for the spring design project, when all students will participate in a programme-wide embedded system design project; here, the knowledge and skills acquired during the fall are put to use in the design of a prototype embedded system. By adding elective courses from one of the three main profiles - System Design, Computer Systems and Electronics Production - each student can combine breadth with a certain depth.

An overarching idea of the programme is to facilitate progression of key knowledge and skills throughout the courses that lead up to the big spring project. The programme makes use of progressive educational methods such as small projects, hands-on design exercises, flipped classroom teaching and scientific writing. Also, examination is adapted to the learning outcomes which means that the traditional written exam is complemented by, for example, report and log book writing, project demonstrations and oral examinations.

Read less
Electrical power systems continue to advance and develop across industrial and domestic applications,with almost half of global electrical energy thought to be consumed by electric motors ad motion devices. Read more
Electrical power systems continue to advance and develop across industrial and domestic applications,with almost half of global electrical energy thought to be consumed by electric motors ad motion devices.

As technology continues to develop in these sectors, the need for engineers with relevant, contemporary skills to work with these systems continues to grow. To reflect this demand,this course focuses on subjects in system modelling and simulation, control engineering,plus electrical power systems design and analysis.

Featured specialisms include modern power electronics and drive systems,combined with their controlling mechanisms and modelling using MATLAB software and state space models.

Key Course Features

-Specialism's within this programme feature modern power electronics and drive systems combined with their controlling mechanisms and modelling using MATLAB and state space models.
-The MSc in Electrical Power Engineering is accredited by Institute of Engineering and Technology (IET) and Energy Institute (EI), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME MODE (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits. The six taught modules will have lectures and tutorials/practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study three specialist modules first during the second trimester from January to May. Other three common modules the students will study in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will be progressed to the Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered in two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year.

The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis. The dissertation element (i.e. Part Two) will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Control Systems Engineering
-Electrical Power Systems Analysis & Design
-Power Electronics & Drive Systems
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course by a variety of methods including practical work, portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X