• University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
Cardiff University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"power" AND "electronic"×
0 miles

Masters Degrees (Power Electronic)

  • "power" AND "electronic" ×
  • clear all
Showing 1 to 15 of 203
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers
Energy and Power Electronics Laboratory
Power Semiconductor Devices
Advanced Power Electronics and Drives
Wide Band-Gap Electronics
Power Generation Systems
Modern Control Systems
Advanced Power Systems
Signals and Systems
Digital Communications
Optical Communications
Probing at the Nanoscale
RF and Microwaves
Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
COURSE AIMS. This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
COURSE AIMS
This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. This programme aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, regulation and management of the power systems and networks of the future.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

Power system engineering – using state-of-the-art computational tools and methods;
Design of sustainable electrical power systems and networks;
Regulatory frameworks for, and operation of, power systems and electricity markets.
Who should Study this Course?
This newly designed M.Sc. programme is appropriate for those seeking an in-depth knowledge of sustainable electrictrical power including:

Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry;
Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

COURSE MODULES

Sustainable Power Generation

Generation costing of solar, geo-thermal, bio-mass, wind, hydro, tidal, and wave.
Storage technologies and energy conversion: practical understanding and limitations.
Embedded renewable generation: technical challenges, opportunities and connection in electrical transmission and distribution grids.

Energy Economics and Power Markets

Principles, objectives, regulation, computational methods, economic procedures, emissions trading, and operation of electricity markets.
Restructuring and deregulation in generation, transmission, and distribution.
Concepts of transmission congestion and demand side management.

Power System Analysis and Security

Capabilities and limitations of modern power systems design.
Accurate use of power systems modelling and analysis of secure operation.
Computational techniques for power systems modelling, optimal power flow, mathematical programming, heuristic methods, artificially intelligent methods.

Power System Operation and Management

Business drivers and technical requirements for operational management.
In-depth knowledge of operational management software.
Energy balance and intermittency in sustainable electrical power system operation and management.

Power Electronics and FACTS

Practical understanding of how to design advanced power electronic circuits.
Modern power electronic integration techniques and state-of-the-art Flexible AC Transmission Systems.
Capabilities and limitations of different power electronic circuits.
Integration of power electronic circuits into Flexible AC Transmission Systems.

Power System Stability and Control

How to ensure effective power system stability and control power system operation using computational methods.
Power system stability problems, static and dynamic, relaying and protection, stability control and protection design, excitation and power system stabilisers.

Project Management

Formal methods and skills to function effectively at high levels of project management.
Development of skills to achieve practical business objectives.

Sustainable Electrical Power Workshop
You will gain experience and expertise with industry relevant tools and techniques through hands-on workshop environments. These practical sessions involve individual and group work. Typical assignments include:

Sustainable generation scheduling.
Integration of renewable energy sources.
Computer simulation of active power filters.
Phase-controlled rectifiers.
Power network security.
Sustainable electrical power system stability control.
Electricity market auctions.
Sustainable electrical power system investment and planning.

Project
This provides a stimulating and challenging opportunity to apply your knowledge and develop deep understanding in a specialised aspect of your choice. Projects can be university or industry and company sponsored students have the opportunity to develop their company’s future enterprise. Industrial projects often lead to the recruitment of the student by the collaborating company.

Read less
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation.

Who is it for?

This course is suitable for both practicing engineers and those considering a career in engineering.

The course has been designed to provide an in-depth insight into the technical workings, management and economics of the electrical power industry.

Objectives

This programme has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. The aims are to produce graduates of a high calibre with the right skills and knowledge who will be capable of leading teams involved in the operation, control, design, regulation and management of power systems and networks of the future.

The programme aims to:
-Provide you with the ability to critically evaluate methodologies, analytical procedures and research methods.
-Provide an advanced education in electrical power engineering.
-Give you the education, knowledge and the skills you need to make sound decisions in a rapidly changing electricity supply industry.
-Provide a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Provide a foundation in power systems principles for graduates with an engineering background.
-Demonstrate the practical relevance of these principles to the operation of successful enterprises in the broad field of electrical power engineering.
-Familiarise professional engineers and graduates with the theory and application of new technologies applied to power systems.

Academic facilities

Students in City's Department of Electronic and Electrical Engineering benefit from a recent lab equipment upgrade worth £130,000. This includes photovoltaic trainers, three phase synchronous machines, AC motor speed control machines, single and three phase transformers, thryistor controllers, a power systems mainframe and power systems virtual instrumentation.

The equipment is essential in training students to be highly skilled professionals in the energy industry.

The photovoltaic trainer, for instance, is a desk-top instrument which teaches the fundamental principles of photovoltaic energy. The 'photovoltaic effect' is a method of energy generation which converts solar radiation into an electrical current using semiconductors arranged into solar cells.

Teaching and learning

Modules are delivered by academics actively involved in energy related research, as well as visiting lecturers from the power industry who provide a valuable insight into the operation of energy companies.

Industry professionals give several seminars throughout the year. At least two industrial trips are organised per academic year.

Modules

The modules for this course are delivered over two semesters, with weekly lessons scheduled over two days a week. The third semester is spent completing a project that involves writing a dissertation and presenting findings. This course is organised into eight modules provided on a weekly basis.

Course content
-Introduction to Power Systems & Energy Management EPM874 (15 credits)
-Systems Modelling EPM744 (15 credits)
-Renewable Energy Fundamentals and Sustainable Energy Technologies EPM879 (15 credits)
-Transmission and Distribution Systems Management EPM875 (15 credits)
-Power Systems Design and Simulation EPM423 (15 credits)
-Power Electronics EPM501 (15 credits)
-Power Systems Protection and Grid Stability EPM990 (15 credits)
-Economics of the Power Industry EPM101 (15 credits)
-Dissertation EPM949 (60 credits)

Career prospects

Graduates are prepared for careers that encompass a variety of roles in the power industry, from technical aspects to management roles. Previously graduates have found jobs as engineers, managers and analysts in the power sector, with companies such as:
-OFGEM
-National Grid
-UK Power Networks
-EON
-EDF
-Vattenfall
-Caterpillar
-Railroad
-Graduates may also wish to further their research in the energy field by considering a PhD

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course. The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

-Provide an advanced education in electrical power engineering.
-Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
-Give a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:
-Electrical Power Fundamentals
-Analysis of Electrical Power and Energy Conversion Systems
-Power System Plant, Asset Management and Condition Monitoring
-Power System Operation and Economics
-Power System Dynamics and Quality of Supply
-Power System Protection
-Smart Grids and Sustainable Electricity Systems
-Techniques for Research and Industry

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

This course also provides the students with additional research skills necessary for starting a PhD degree or entering an industrial research and development career.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Electronic and Electrical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors
- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors
- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK
With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

See the website http://www.lsbu.ac.uk/courses/course-finder/electrical-electronic-engineering-msc

Modules

- Digital signal processing
This module introduces the theory behind digital signal processing and how DSP can be implemented in real-time. You will gain an understanding of how to program hardware to perform fundamental DSP algorithms such as filtering and spectral analysis. You will gain a fundamental understanding of DSP algorithms and how to implement them in hardware for real-time applications.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based assignments to inculcate the basics of machine learning and classification. The module covers the fundamentals of pattern recognition and provides the essential background to machine learning and classification.

- Advanced instrumentation and control
This module develops advanced techniques in data acquisition and manipulation required for instrumentation and control applications. Further, it consolidates lectures with experimental computer-based assignments using industry standard hardware and software (NI DAQ and LabView). The module develops your knowledge and experience in data acquisition and virtual instrumentation used in Industry for control purposes.

- Advanced power electronics and renewable energy systems
The material in this module is divided into two parts. The first part covers the analysis and operation of power electronics and machines and their application in the areas of power conversion, power conditioners and electrical machine drives mostly, found on the 'load' side of the electrical power system but sometimes integrated into the supply network. This part will also include elements of computer control systems that are designed to produce non-sinusoidal waveforms and methods of dealing with undesirable harmonics and their effects on the power network. The second part of the module will focus on renewable energy and sustainability. This will include: solar cells, biomass, wind and wave power; intelligent environmental sensing and feedback (in areas of pollution, petroleum, energy consumption, etc.); and renewable design and effectiveness (solar, wind and wave).

- Technology evaluation and commercialization
In this module you will follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you will conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you will develop the appropriate commercialisation strategy and write the business plan for their high-tech start-up company.

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the module teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- MSc engineering project
This module requires you to undertake a major project in an area that is relevant to their MSc course. You will chose your project and carry it out under the guidance of your supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
This course covers the key components needed to design and implement modern electronic systems; the use of modern embedded systems for single chip solutions and higher power electronics; and links to renewable energy systems, fuel cells and hybrid vehicles. Read more

Description

This course covers the key components needed to design and implement modern electronic systems; the use of modern embedded systems for single chip solutions and higher power electronics; and links to renewable energy systems, fuel cells and hybrid vehicles.

You will study the application of electronic systems and examine possible future uses. The course will improve your skills in the integration and control of electronic systems and link to image processing, the study of which is delivered by our world-leading imaging group. A project completes the MSc, allowing you to specialise in your chosen area of interest.

Core units

- Embedded Systems and Systems on Chip
- MSc Engineering Project
- Embedded Systems Development

Option units

- Computer Engineering and CPU Design
- Digital Signal Processing
- Sustainable Energy Systems
- Sensing and Imaging
- Industrial Communication Systems
- Smart Technologies for Power Management
- Advanced Control and Instrumentation
- Management Practice
- Manufacturing Systems Management
- Rail Infrastructure and Engineering Strategy
- Industrial control, automation and communication
- Sustainable integrated power systems

Assessment is through a combination of written reports, oral presentations, practical assignments and written examinations.

Career prospects

The broad field of skills in electronic engineering will allow graduates to embark on a career in electronics systems engineering, design and development in electronic engineering and electronic power engineering. Power electronics are at the heart of the global energy problem.

Employers in nuclear power, renewable energy and transport need electronic engineering graduates who can implement efficient electronic power conversion systems. Electronic engineering graduates are also sought after to work in companies where the latest FPGA technologies are used to further minimise electronic components.

You will also be well placed to pursue a placement with partners or further study such as a PhD or an Engineering Doctorate.

Careers support is available from the moment you join us, throughout your time here, and for up to three years after the completion of your course. We have a range of services available through the School of Engineering and the University Careers Service including dedicated careers and employability advisors.

Read less
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry. Read more
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry.

The course builds on a long-term involvement with the power industry, the education of power engineers and extensive research work and expertise within the Department of Electronic & Electrical Engineering.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

The MSc will equip you with the ability to make an immediate engineering contribution to industry in electrical power systems analysis, planning, operation and management.

You will be able to perform in-depth engineering work on defined tasks requiring research, personal project management and innovative thinking.

The course provides its graduates with the underpinning knowledge of business operation and project team working that leads to maximised impact within the industrial setting.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/power/index.html

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ee/ee-proglist-pg.html#C) for more detail on individual units.

Semester 1 (October-January):
- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects Covered

Professional skills for engineering practice
Power system plant
Power quality
Electrical energy systems & analysis
Control of power systems
Power electronics & machines
Power system protection

Career Options

Recent recruiters include:

- Guam Power Authority
- Scottish and Southern Energy
- Central Electricity Board
- Barbados Light & Power Co. Ltd.
- First Hydro
- National Grid
- British Power International
- Buro Happold

We also encourage the best of our MSc students to continue their studies with us to PhD level.

Accreditation:
Our course is accredited by the Institution of Engineering and Technology (IET) (http://www.theiet.org/academics/accreditation/). Individuals with awards from accredited programmes will avoid some or all of the detailed assessment of the educational requirements necessary for Incorporated Engineer (IEng) or Chartered Engineer (CEng) registration, making the registration process more straightforward.

About the department

The Department of Electronic & Electrical Engineering offers a broad spectrum of research expertise supported by state-of-the-art facilities. Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

91% of our research activity was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014 (http://www.bath.ac.uk/research/performance/).

Postgraduate facilities:
The postgraduate laboratories are well-equipped with state-of-the-art equipment and instrumentation. Postgraduate facilities include PCs and powerful workstations which also give direct and ready access to the University’s central computer system and the internet. Additional specialist research facilities are available within the department’s three research centres.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. Read more
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. It also covers important electrical power themes such as renewable energy systems and electric vehicles.

The Electrical Power MSc covers the following key subject areas:
-Electrical Machines
-Power Electronics
-Electric Drives
-Power System Operation
-Control of Electrical Power

A feature of the course is design of electrical systems for transportation and renewable energy applications. This is a particular specialisation of researchers in the School of Electrical and Electronic Engineering.

You will develop a knowledge of industry standard computer aided design and analysis techniques appropriate to electrical power such as the use of software packages such as MagNet, MATLAB, Simulink, PSpice and ERACS.

Throughout the course you use industry standard test and measurement equipment, experimental hardware, and software packages relevant to the field of electrical and power engineering.

The course comprises a mixture of lectures, tutorials, coursework and practical laboratory classes. You will research a specialist topic of your choice through an in-depth project. Innovative educational techniques are designed to equip you with practical design skills and research methodologies.

As a graduate of this course you are equipped with the knowledge and practical experience to embark on a career as an engineer in the field of Electrical Power. You will also have skills in research and knowledge acquisition and a solid foundation for further postgraduate studies in the field of electrical engineering and power engineering.

Delivery

You take modules to a total value of 180 credits over three semesters. Taught modules, worth 120 credits, take place during the first and second semesters with exams held in January and May/June. An individual project, worth 60 credits, is undertaken over semesters two and three.

Background reading and design work take place during the second semester. The majority of experimental work and preparation of your dissertation takes place during the semester three.

Teaching takes place in lecture theatres equipped with audio visual equipment. Blackboard, a web based Virtual Learning Environment (VLE) supports your taught modules. Practical sessions are in small groups with experts in the field of Power Electronics, Electric Drives, Machines, and Power Systems and in modern laboratory and computing facilities.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Read less
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world. Read more
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course covers a number of contemporary topics, including power electronics, signal processing, renewable systems, holistic modeling of electronic systems and image processing. Building on your previous experience, and with developed practical skills, you’ll leave with the expert knowledge and understanding to practice safely and effectively in a wide range of environments.

Cambridge is home to the Silicon Fen, Europe’s largest high-technology commercial research and development centre. We have excellent, established links with many employers in the sector including:

- ARM Ltd
- British Computer Society
- Cambridge Network
- Cambridge Silicon Radio
- E2V
- Ford Motor Company
- Selex Sensors and Airborne Systems
- South East Essex PCT

Our specially equipped laboratories provide you with the essential tools you need in the field of industrial electronics and microelectronics. Among other features they are equipped with wind and solar energy systems, development boards with FPGA circuits and power electronics modules. You’ll also have access to our CAD laboratories with the very latest software.

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course is designed to address the challenges of the modern industrial world. It focuses on power electronics, renewable systems, signal processing, holistic modelling of electronic systems and image processing. The main aims of the course are to:
• Meet a local, national and international demand for skilled electronic and electrical engineers.
• Provide an opportunity for students to gain in-depth relevant specialist knowledge in electronics systems design.
• Synthesise formal solutions through the application of specialist knowledge to design and create innovative electronic and electrical circuits.
• Perform and develop objective and critical analysis skills necessary to synthesis effective solutions when presented with a set of specifications.
• Equip you with the appropriate depth in understanding of electronic engineering development tools and techniques.

Upon completion of the course you will be able to:
• Exercise an in-depth understanding of the design mechanisms which can be used to create electronic and electrical designs and critically evaluate their effectiveness.
• Demonstrate an ability to deal with complex and interdependent design issues both systematically and creatively in a sustainability context.
• Analyse and devise strategies to design, evaluate and optimise microelectronics based systems.
• Critically evaluate the tools and techniques required to create microelectronics circuits which satisfy specifications.
• Analyse current research and technical problems within the discipline for further reflection for evaluation and critique.
• Recognise your obligations to function in a professional, moral and ethical way.
• Synthesise original circuit design from a knowledge of current tools, methodologies and strategies.
• Critically survey current and recent practice in the field of electronic and electrical engineering, in a sustainability context, in order to identify examples of best practice and to propose new hypotheses.
• Develop the ability to act autonomously to plan and manage a project through its life cycle, and to reflect on the outcomes.
• Define the goals, parameters and methodology of a research and development activity.

Careers

The possibilities that are open to you range from design or systems engineering, to medical electronics, environmental monitoring, sound technology biophysics or microelectronics. Across industry, whether it’s in process control, construction and building or services, teaching and beyond, there’ll be opportunities to find your own specialist niche.

Core modules

Sustainable Technologies
DSP Applications and ARM® Technology
Digital Systems Design with VHDL and FPGAs
Power Conversion Systems
Remote Sensing and the Internet of Things
Research Methods
Major Project

Assessment

You’ll be assessed through exams and written assignments based on case studies and scenarios.

Facilities

Our Department has specialist laboratories for electronics and microelectronics, equipped with wind and solar energy systems, power electronics modules, development boards with FPGA circuits and more. Our laboratories are designed, maintained, and operated by an in-house team of technical experts. Students also benefit from access to a wide range of central computing and media facilities.

We also operate modern electronic Computer Aided Design labs loaded with the latest software that includes Integrated Synthesis Environment Design Suite, Matlab, Simulink and other relevant software.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?. Read more
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?

The Power Electronics, Machines and Drives (PEMD) is a 1 year degree course that provides its students with the knowledge to design, construct and analyse integrated networks of power electronic converters, electrical machines, actuators, energy storage devices, and control systems. As a result of recent technical advances, PEMD technology is becoming commonplace and can be found for example in more-electric aircraft and ships, electric vehicles, railway systems, renewable power generation, active management of power distribution systems, automation systems for factories and industrial processes. The adoption of PEMD technology is being driven by the need to increase energy efficiency, and controllability, whilst reducing system weight and maintenance costs.

This MSc course has been designed to equip electrical engineers with the knowledge and skills that are required to design modern PEMD systems, it includes the fundamentals of electrical machine and power electronics design, system integration, control, energy management and protection. The teaching team of eight academic staff belong to the Power Conversion Group and are all actively involved in researching new aspects of machines, drives, power electronics and electrical systems, particularly for applications in transport and sustainable electricity supply. The Group's research activities and industrial links inform the course content and enrich the student experience.

Aims

-To enable you to gain experience in the design and analysis of systems in electrical engineering, for example renewable energy, more-electric aircraft, vehicles, and next-generation electric power transmission
-To enable you to critically evaluate electrical machine and converter technology applied in manufacturing, power systems and transport industries
-To employ recent developments in these research areas and to prepare students who wish to continue on to research studies
-To develop your ability to integrate strands of machines, power electronics, drives and their control

The MSc course begins with an introduction to the fundamentals of converters, machines, actuators and relevant control systems. The course will give you a high level of exposure to system integration and is illustrated by a broad range of high-technology activities related to industrial and other systems.

The next five course units give specialist tuition on advanced topics including machine design, systems analysis, converter circuits and applications. In addition to lectures, tutorials, design exercises and enquiry-based learning, you will attend industrial seminars and practical laboratories which employ mainly industrial equipment. The course will include a `mechatronic' emphasis in examining how system blocks interact and ensuring that electrical and mechanical systems work together.

The summer is spent on this individual dissertation project, which is strongly supported by the Power Conversion Research Group's research base (including the Rolls-Royce University Technology Centre) and extensive industrial contacts. Cutting-edge research areas include versatile power and conversion systems for a variety of applications, including more-electric aircraft and ships, electric and hybrid vehicles, automation systems and autonomous/micro-grid power systems.

Career opportunities

Graduates of the course will have acquired in-depth education in modern design, broad exposure to the expanding range of applications, hands-on experience and integration into state-of-the-art systems. These comprise the special knowledge and skills needed for a professional career in energy conversion systems, an area in which engineers are in demand for key power electronic/drives/automation industries.

Industry's competitive edge relies on high-technology drives and in the integration of systems to provide superior overall performance. Applications include the `more electric aircraft', electric transport and high-reliability systems.

Our students have been employed by companies such as:
-ABB
-BAE Systems
-Cummings Turbo Technologies
-GE Energy
-National Instruments
-Rolls-Royce
-Siemens

Opportunities also exist for further study to doctoral level (PhD) in the Power Conversion Group's recently re-equipped and expanding research laboratories.

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Aerospace is a priority research area for the University, the Faculty of Engineering launched it's Institute for Aerospace Technology in 2010. Read more
Aerospace is a priority research area for the University, the Faculty of Engineering launched it's Institute for Aerospace Technology in 2010. This will drive development of cutting-edge technology in this key research area, with the aim of radically improving all aspects of air transport.

This programme aims to science and engineering graduates from a diversity of backgrounds, with a solid grounding in current aerospace technologies, together with options to develop an emphasis in manufacturing, advanced materials and structures, and power electronic systems.

This programme aims to provide science or engineering graduates from a diversity of backgrounds, with a solid grounding in current aerospace technologies, together with options to develop an emphasis in manufacturing, advanced materials and structures, and power electronic systems.

The MSc comprises of three distinct "aerospace" streams; Aerospace Manufacturing, Aerospace Materials and Structures and Aerospace Power Electronics Systems. Students will choose which stream they wish to study. 60 credits of core compulsary modules will be studied and then a further 60 credits of modules will be taken in the chosen stream.

As part of the MSc students will complete an individual research project which will be undertaken over the summer term.

Read less
The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Read more
The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

Control concepts and methods
Advanced energy conversion systems and power electronic applications
Advanced power electronic technologies for electrical power networks – HVDC and FACTS
Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks;
Economic analysis of electrical power systems and electricity markets.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X