• University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Leeds Beckett University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Leeds Featured Masters Courses
"power" AND "electric"×
0 miles

Masters Degrees (Power Electric)

We have 57 Masters Degrees (Power Electric)

  • "power" AND "electric" ×
  • clear all
Showing 1 to 15 of 57
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Power Engineering and Sustainable Energy at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives

Power Semiconductor Devices

Advanced Power Systems

Energy and Power Engineering Laboratory

Power Generation Systems

Modern Control Systems

Wide Band-Gap Electronics

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?. Read more
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?

The Power Electronics, Machines and Drives (PEMD) is a 1 year degree course that provides its students with the knowledge to design, construct and analyse integrated networks of power electronic converters, electrical machines, actuators, energy storage devices, and control systems. As a result of recent technical advances, PEMD technology is becoming commonplace and can be found for example in more-electric aircraft and ships, electric vehicles, railway systems, renewable power generation, active management of power distribution systems, automation systems for factories and industrial processes. The adoption of PEMD technology is being driven by the need to increase energy efficiency, and controllability, whilst reducing system weight and maintenance costs.

This MSc course has been designed to equip electrical engineers with the knowledge and skills that are required to design modern PEMD systems, it includes the fundamentals of electrical machine and power electronics design, system integration, control, energy management and protection. The teaching team of eight academic staff belong to the Power Conversion Group and are all actively involved in researching new aspects of machines, drives, power electronics and electrical systems, particularly for applications in transport and sustainable electricity supply. The Group's research activities and industrial links inform the course content and enrich the student experience.

Aims

-To enable you to gain experience in the design and analysis of systems in electrical engineering, for example renewable energy, more-electric aircraft, vehicles, and next-generation electric power transmission
-To enable you to critically evaluate electrical machine and converter technology applied in manufacturing, power systems and transport industries
-To employ recent developments in these research areas and to prepare students who wish to continue on to research studies
-To develop your ability to integrate strands of machines, power electronics, drives and their control

The MSc course begins with an introduction to the fundamentals of converters, machines, actuators and relevant control systems. The course will give you a high level of exposure to system integration and is illustrated by a broad range of high-technology activities related to industrial and other systems.

The next five course units give specialist tuition on advanced topics including machine design, systems analysis, converter circuits and applications. In addition to lectures, tutorials, design exercises and enquiry-based learning, you will attend industrial seminars and practical laboratories which employ mainly industrial equipment. The course will include a `mechatronic' emphasis in examining how system blocks interact and ensuring that electrical and mechanical systems work together.

The summer is spent on this individual dissertation project, which is strongly supported by the Power Conversion Research Group's research base (including the Rolls-Royce University Technology Centre) and extensive industrial contacts. Cutting-edge research areas include versatile power and conversion systems for a variety of applications, including more-electric aircraft and ships, electric and hybrid vehicles, automation systems and autonomous/micro-grid power systems.

Career opportunities

Graduates of the course will have acquired in-depth education in modern design, broad exposure to the expanding range of applications, hands-on experience and integration into state-of-the-art systems. These comprise the special knowledge and skills needed for a professional career in energy conversion systems, an area in which engineers are in demand for key power electronic/drives/automation industries.

Industry's competitive edge relies on high-technology drives and in the integration of systems to provide superior overall performance. Applications include the `more electric aircraft', electric transport and high-reliability systems.

Our students have been employed by companies such as:
-ABB
-BAE Systems
-Cummings Turbo Technologies
-GE Energy
-National Instruments
-Rolls-Royce
-Siemens

Opportunities also exist for further study to doctoral level (PhD) in the Power Conversion Group's recently re-equipped and expanding research laboratories.

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course. The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

-Provide an advanced education in electrical power engineering.
-Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
-Give a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:
-Electrical Power Fundamentals
-Analysis of Electrical Power and Energy Conversion Systems
-Power System Plant, Asset Management and Condition Monitoring
-Power System Operation and Economics
-Power System Dynamics and Quality of Supply
-Power System Protection
-Smart Grids and Sustainable Electricity Systems
-Techniques for Research and Industry

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

This course also provides the students with additional research skills necessary for starting a PhD degree or entering an industrial research and development career.

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Core modules that run throughout the year will allow you to take part in different lab-based projects and explore different forms of renewable energy as well as how they can be integrated into electricity systems. You’ll also consider how renewable source-powered generations can be integrated into the grid and analysis and design of control systems.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

You’ll complete your studies with three optional modules, selecting one from each of three pairs that cover different topics. If you have no experience of c-programming you’ll take a module that develops those skills, or another focusing on software development. You’ll choose between Power Electronics and Drives and Electric Drives and take another module from Energy Management and Conservation and Energy in Buildings.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in power electronics, power engineering and control and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electrical Engineering and Renewable Energy Systems module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Control Systems Design 15 credits
  • Main Project 45 credits

Optional modules

  • Energy Management and Conservation 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electrical Engineering and Renewable Energy Systems MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students on this programme have included:

  • Power Flow Control of a Distribution Network using FACTS Devices
  • Module Integrated Converters for Photovoltaic Energy Systems
  • Modelling and Control of Parallel Connected Inverters
  • Power Regulation in the Power System using an Energy Storage Device
  • Application of Current Source Converters to Power Flow Control in a Power System
  • Control of a Renewable Energy System based Microgrid having an Energy Storage System as Backup
  • Control of a Grid Connected Wind Energy System under Abnormal Operating Conditions
  • DC-AC Inverter for grid-side connection of an induction generator
  • Modelling and control of a DC motor simulating a wind turbine

Career opportunities

Renewable energy and efficient power conversion systems are of immense importance worldwide and graduates of this course can expect to find jobs in a wide variety of industries including the electronics, automotive, transport, construction, industrial automation, power utility, energy, oil and environmental sectors.

You’ll be well-placed to develop practical solutions to the problem of integrating renewable energy systems into established electricity distribution networks. You should be able to contribute to strategic planning, systems implementation and operation of sustainable power generation systems.

This programme is also excellent preparation for PhD study. 



Read less
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. Read more
This course delivers a broad coverage of all major disciplines in Electrical Power, including power electronics, electric drives, electrical machine design and power systems. It also covers important electrical power themes such as renewable energy systems and electric vehicles.

The Electrical Power MSc covers the following key subject areas:
-Electrical Machines
-Power Electronics
-Electric Drives
-Power System Operation
-Control of Electrical Power

A feature of the course is design of electrical systems for transportation and renewable energy applications. This is a particular specialisation of researchers in the School of Electrical and Electronic Engineering.

You will develop a knowledge of industry standard computer aided design and analysis techniques appropriate to electrical power such as the use of software packages such as MagNet, MATLAB, Simulink, PSpice and ERACS.

Throughout the course you use industry standard test and measurement equipment, experimental hardware, and software packages relevant to the field of electrical and power engineering.

The course comprises a mixture of lectures, tutorials, coursework and practical laboratory classes. You will research a specialist topic of your choice through an in-depth project. Innovative educational techniques are designed to equip you with practical design skills and research methodologies.

As a graduate of this course you are equipped with the knowledge and practical experience to embark on a career as an engineer in the field of Electrical Power. You will also have skills in research and knowledge acquisition and a solid foundation for further postgraduate studies in the field of electrical engineering and power engineering.

Delivery

You take modules to a total value of 180 credits over three semesters. Taught modules, worth 120 credits, take place during the first and second semesters with exams held in January and May/June. An individual project, worth 60 credits, is undertaken over semesters two and three.

Background reading and design work take place during the second semester. The majority of experimental work and preparation of your dissertation takes place during the semester three.

Teaching takes place in lecture theatres equipped with audio visual equipment. Blackboard, a web based Virtual Learning Environment (VLE) supports your taught modules. Practical sessions are in small groups with experts in the field of Power Electronics, Electric Drives, Machines, and Power Systems and in modern laboratory and computing facilities.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
The control and conversion of electric power using solid-state techniques are now commonplace in both the domestic and industrial environments. Read more
The control and conversion of electric power using solid-state techniques are now commonplace in both the domestic and industrial environments. A knowledge and understanding of the diverse disciplines encompassed by Power Electronics: devices, converters, control theory and motor drive systems, is now essential to all power engineers. Power electronics, driven by the need for greater energy efficiency and more accurate control of a wide range of systems, is developing rapidly.

This course aims to provide specialist education in power electronics and drive techniques, covering key fundamental principles along with modern applications and current practices. It provides a specialist education in power electronics and drives techniques, covering key fundamental principles along with modern applications and current practices.

Students will develop:

the analytical and critical powers for the development of hardware and software required for power electronics and drives
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
the technical skills to equip them for a leading career in power electronics or electrical machine drive systems
an understanding of how power electronics are applied within key industries such as aerospace and power supply

Following the successful completion of the taught modules, an individual research project is undertaken during the summer term.

Previous research projects on this course have included:

Development of a microprocessor controlled variable speed permanent magnet motor for an aerospace application
Experimental determination of induction motor torque-speed curves under variable speed
Evaluation of stray reactance in a current source rectifier for marine propulsion motor drives and wind power generators
Design, build and testing of a DSP-controlled switched reluctance motor for an automotive power assisted steering application

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. Read more
The Power Systems Engineering MSc is designed to provide students with the necessary knowledge and skills to work at a professional level in industries involved in the production, distribution and consumption of energy and power. This wide range of industries includes transport, conventional and renewable power generation.

Degree information

Students study analysis and design of conventional and renewable machinery systems and the use of computers in their advanced engineering analysis. Students gain knowledge of electrical and mechanical engineering principles, quantitative methods, and mathematical and computer modelling alongside an awareness of the codes of practice, standards and quality issues within the modern industrial world. They also take modules in project management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), one optional module (15 credits) and a research project (75 credits).

Core modules
-Power Transmission and Auxiliary Machinery Systems
-Electrical Machines and Power Electronic Drives
-Electrical Power Systems and Electrical Propulsion
-New and Renewable Energy Systems
-Project Management
-Group Project

Optional modules
-Applied Thermodynamics and Turbomachinery
-Vibrations, Acoustics and Control
-Advanced Computer Applications in Engineering

Dissertation/report
All students undertake an independent research project which culminates in a project report and oral presentation. In many cases the work has some input from industry.

Teaching and learning
This dynamic programme is delivered through lectures, tutorials, individual and group projects, practical laboratory work and coursework assignments, (including computational analysis). Assessment is through written, oral and viva voce examinations and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, computational and modelling skills and oral presentations).

Careers

The Power Systems Engineering MSc has been accredited by the Engineering Council as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.

Top career destinations for this degree:
-Junior Project Manager, Pinnacle Developments Ltd
-Electrical Engineer, BP
-Traction Power Specialist, Mott MacDonald
-PhD High Power Engineering, University of Leicester
-Power Engineer, General Electric (GE)

Employability
Delivered by leading research and academic staff from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas through cross-fertilisation with collaborating companies and governmental bodies such as BAE Systems, Rolls Royce, Lloyds Register and TfL who provide specialised lectures and are key to our research success. We will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: EPSRC, EU, Wellcome Trust, the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAe Systems, Cosworth Technology, Ebara, Jaguar Cars, Shell, and BP.

The Power Systems Engineering MSc is accredited under UK-SPEC by the Institution of Mechanical Engineers (IMechE), Institute of Engineering and Technology (IET), and the Institute of Marine Engineering Science and Technology (IMarEST). This programme also constitutes in part the requirement to obtain Chartered Engineering status.

UCL Mechanical Engineering has seen, in recent years, unprecedented activity in refurbishing and re-equipping our laboratories. Highlights of this include an extensive workshop, four engine test cells of the highest specification, a fuel cell laboratory, an electrical power laboratory and a new fluid mechanics laboratory.

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Power engineering is the study of power systems, specifically electric power generation, electric power transmission and electric power distribution, power conversion, and electromechanical devices. Read more
Power engineering is the study of power systems, specifically electric power generation, electric power transmission and electric power distribution, power conversion, and electromechanical devices.

The Master of Professional Engineering (Power) is a 3 year full-time course delivering technical and professional outcomes that will allow you to be recognised as an Australian graduate engineer in this field. This degree has been given full accreditation at the level of Professional Engineering by the industry governing body, Engineers Australia http://www.engineersaustralia.org.au/

If your bachelor's degree included foundational engineering units, you may be given advanced standing and be eligible to enrol either in a reduced length graduate certificate or directly into the Master of Professional Engineering. Entry pathways are available for students with widely varying backgrounds.

In this course you will engage in areas of study including electricity networks, high voltage engineering, sustainable energy systems, and power systems analysis and protection. You will also have the opportunity to complete either an engineering project or research at the end of the course.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. These programmes will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

During the summer, your MSc dissertation project gives you a chance to develop your research skills and to explore in depth one of the topics discussed during the course.

Aims

-Provide an advanced education in electrical power engineering.
-Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
-Give a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of course work only. The summer research project is assessed on the basis of a dissertation of about 50 pages.

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

Read less
Electricity is playing an increasing role as we look to develop low carbon sources of energy. The design of electrical power systems is becoming increasingly complex, to manage intermittent sources of generation, and increased levels of demand from new types of load such as electric vehicles. Read more
Electricity is playing an increasing role as we look to develop low carbon sources of energy. The design of electrical power systems is becoming increasingly complex, to manage intermittent sources of generation, and increased levels of demand from new types of load such as electric vehicles.

The Distance Learning MSc in Electrical Power Systems Engineering allows engineers working in the sector to enhance their skills. It provides them with the tools and techniques to keep pace with the rapidly evolving electricity industry. The course covers the latest developments in the electricity industry and delivers up-to-date training in all aspects of electrical power systems.

Aims

The course will develop your understanding of how these future electrical networks will be designed and operated. It will provide you with a solid understanding of the characteristics of components such as generators, lines, cables, transformers and power electronics devices. It will provide you with the skills you need to carry out power flow and fault calculations, learning how these techniques are used to study the behaviour of large systems. The course also covers a range of other topics such as HVDC, how renewable generation is integrated into a power system, the increasing importance of smart grids, and how to assess and remedy power quality problems.The course is based on the long-running MSc in Electrical Power Systems Engineering delivered by The University of Manchester. On graduation you will be a member of a network of global alumni, many in senior positions in the electricity supply industry.

The course has been designed to support those working in industry. Multiple entry points exist and the course can be completed in a timescale that suits your needs. Your dissertation project will ideally be based on a problem you and your company need to resolve, ensuring the programme delivers value for both you and your employer.

Read less
Gain IET accreditation on this Electrical Power and Control Engineering Masters at Liverpool John Moores University. This course meets Chartered Engineer requirements and the demand for postgraduates in this growing global industry. Read more
Gain IET accreditation on this Electrical Power and Control Engineering Masters at Liverpool John Moores University. This course meets Chartered Engineer requirements and the demand for postgraduates in this growing global industry

•Complete this masters degree in one year full time
•Study at one the UK’s leading Engineering Schools
•Programme informed by internationally-acclaimed research from LJMU’s Electrical and Electronic Engineering Research Centre
•Postgraduates of this course highly sought after by major UK and international employers

This MSc degree programme provides an excellent progression point from undergraduate courses in the area of electrical engineering. You can also complete the course as development and to specialise in the Electrical Power and Control Engineering field.

Did you know that there is growing demand for electrical power engineers in the energy, automotive, and process industries? You could be involved in the design and development of electrical systems, such as those found in hybrid vehicles, cooling systems and aircraft actuators or the generation, distribution, regulation and conversion of electrical power.
You’ll develop advanced analytical and experimental skills to design new power and control systems and learn how to critically analyse designs, their functionality and expected reliability.
It will also be important for you to gain a strong understanding of the capabilities and limitations of modelling and simulation tools.

The expertise and laboratories available are aligned to the new sources of energy, green energy and the energy saving industry. LJMU specialist facilities support investigation into wind power electricity generation, where wider penetration of remote off-shore wind farm installations is expected in near future and multi-phase systems have many advantages.
The programme design provides opportunities to practice communication skills at Chartered Engineer level. You’ll gain the professional behavioural traits to prepare you for technical and management roles in power and control engineering.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Modelling and Control of Electric Machines and Drives
Control Systems
Dynamic Systems Simulation
Digital Control Power Systems Modelling
Analysis Alternative Energy Systems Modelling with Matlab and Simulink
MSc Project
Operations Research
Safety Reliability
Project Management
Programming for Engineering
LabVIEW
Professional and Leadership Skills

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The MSc Power Electronics, Machines and Drives is a flexible study programme designed for UK industrially-based, part-time students. Read more
The MSc Power Electronics, Machines and Drives is a flexible study programme designed for UK industrially-based, part-time students. It enables you to combine traditional classroom-based study with modern web-based distance learning.
This part-time MSc was originally set up with EPSRC funding to provide a training programme in power electronics, machines and drives, and their applications. The course material is regularly reviewed and updated to meet the needs of engineers in industry.

The control and conversion of electric power using solid-state techniques are now commonplace in both the domestic and industrial environments. A recent estimate suggested that over 40% of all electric power generated passes through silicon before reaching its final destination.

A knowledge and understanding of the diverse disciplines encompassed by power electronics, machines and motor drives - devices, converters, control theory and motor drive systems - is therefore essential to all power engineers.

This course aims to provide a specialist education in power electronics, machines and drives techniques, covering key fundamental principles along with modern applications and current practices.

Read less

Show 10 15 30 per page



Cookie Policy    X