• University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of Leeds Featured Masters Courses
"population" AND "genetic…×
0 miles

Masters Degrees (Population Genetics)

We have 91 Masters Degrees (Population Genetics)

  • "population" AND "genetics" ×
  • clear all
Showing 1 to 15 of 91
Order by 
Application period/deadline. November 1, 2017 - January 24, 2018. A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues

• The study programme is a combination of field work in the arctic and subarctic and in old-growth boreal forests and mires as well as molecular lab work

• Prepares the students for future leadership positions in conservation biology and environmental ecology

International master’s degree programme in Ecology and Population Genetics (ECOGEN) is a two-year programme concentrating on conservation issues and population genetics of endangered animals and plants. The programme will give you relevant skills and core knowledge of the latest methods and tools in:

• Molecular ecology

• Microbial ecology

• Metagenomics and microbiomes of organisms

• Conservation genomics of large mammals

• Distribution history of plants and their phylogeography

• Bioinformatics

The two-year programme has two specialisation options:

• Ecology

• Genetics

Optional courses make it possible to widen your expertise into:

• Aquatic ecology

• Microbial ecology

• Conservation ecology

• Restoration ecology

• Plant evolutionary genomics

The master’s programme is based on high quality and productive research in the fields of evolutionary ecology and genetics. Field research stations in natural reserves as well as Biodiversity Unit offer great opportunities for courses and research. Study environment is multicultural. ECOGEN provides positions as a trainee or a master’s thesis student, and an excellent background for PhD studies.

The skills gained in the master’s programme offer you a solid academic training and essential knowledge on wildlife conservation ecology and genetics, as well as their management. After graduation you are capable of evaluating risks, conducting management on small populations of endangered species, and doing research in the field and in lab. You are able to use molecular and bioinformatic tools.

Possible titles include:

• Project manager

• Researcher

• Planning coordinator of conservation issues

• Conservation biologist

Students applying for the programme must have a B.Sc. degree in biology or in closely related fields.

Email Now



Read less
Population genetics studies the genetic variation that exists in wild populations, and the forces, such as selection, mutation and genetic drift, that shape this variation. Read more
Population genetics studies the genetic variation that exists in wild populations, and the forces, such as selection, mutation and genetic drift, that shape this variation. Particular interests in the School involve the molecular genetic variation of humans, and variation in wild populations of molluscs, foraminiferans and Drosophila. Projects may include studies on molecular evolution and phylogenetics using computer analysis of DNA and protein sequences; the genetic changes that are associated with speciation; evolution of transposable elements; and the population genetics of genome structure.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. Read more

The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.

Why This Programme

  • This is a fully up-to-date Clinical Genetics degree delivered by dedicated, multi-award-winning teaching and clinical staff of the University, with considerable input from hospital-based Regional Genetics Service clinicians and clinical scientists.
  • The full spectrum of genetic services is represented, from patient and family counselling to diagnostic testing of individuals and screening of entire populations for genetic conditions: eg the NHS prenatal and newborn screening programmes.
  • The Clinical Genetics MSc Teaching Staff won the 2014 UK-wide Prospects Postgraduate Awards for the category of Best Postgraduate Teaching Team (Science, Technology & Engineering). These awards recognise and reward excellence and good practice in postgraduate education. 
  • The close collaboration between university and hospital staff ensures that the Clinical Genetics MSc provides a completely up-to-date representation of the practice of medical genetics and you will have the opportunity to observe during clinics at the new Queen Elizabeth University Hospital laboratory medicine building.
  • The Clinical Genetics degree explores the effects of mutations and variants as well as the theoretically basis of current techniques used in NHS genetics laboratory diagnostics and recent developments in diagnostics (including microarray analysis and the use of massively parallel [“next-generation”] sequencing).
  • New developments in genetics are incorporated into the lectures and interactive teaching sessions very soon after they are presented at international meetings or published, and you will gain hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenesis of DNA sequence variants.
  • You will develop your skills in problem solving, evaluation and interpretation of genetic data, literature searches, scientific writing, oral presentations, poster presentations and team working.
  • This MSc programme will lay the academic foundations on which some students with prior MBChB or MBBS may build in pursuing careers in Clinical Genetics.
  • The widely used textbook “Essential Medical Genetics” is co-authored by a member of the core teaching team, Professor Edward Tobias.
  • For doctors: The Joint Royal Colleges of Physicians’ Training Board (JRCPTB) in the UK recognises the MSc in Clinical Genetics (which was established in 1984) as counting for six months of the higher specialist training in Clinical Genetics.

Programme Structure

Genetic Disease and Clinical Practice

This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.

Distress or Disorder: Reactions to a medical diagnosis

This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.

Patient Empowerment: Supporting decisions relating to new diagnoses

This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.

Effective listening and communication skills

With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.

Case Investigations in Medical Genetics and Genomics

Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.

Clinical Genomics

This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.

Disease Screening in Populations

This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.

Dissertation

The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.

Teaching and Learning Methods

A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.

Career Prospects

This programme would be beneficial for anyone with a previous MBChB or similar degree, and would facilitate a career as a Clinical Geneticist.



Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Statistics and Data Analysis
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of evolutionary genetics
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which include Animal Breeding & Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Linkage and Association in Genome Analysis
  • Genetics of Human Complex Traits
  • Quantitative Genetic Models
  • Statistics and Data Analysis
  • Research Project Proposal
  • Dissertation.

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Quantitative Genetic Models
  • Functional Genomic Technologies
  • Animal Genetic Improvement
  • Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to practical problems in the biomedical industry, and to undertake research in quantitative and population genetics and genome analysis.

  • A thorough understanding of general concepts in population and quantitative genetics and genomics
  • In-depth knowledge of complex trait genetics in humans
  • A solid grounding in the statistical methods required for quantitative biology
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
Modern genetics has today evolved beyond its traditional boundaries to become a fundamental part of biology and medicine. Read more
Modern genetics has today evolved beyond its traditional boundaries to become a fundamental part of biology and medicine. The Department reflects this pervasiveness, with research interests encompassing several high impact themes, including functional genomics and systems biology, developmental genetics, epigenetic Inheritance, evolution and population genetics, microbial genetics, and cell biology. The Department of Genetics hosts between 50 and 65 postgraduate students across 25 research groups, researching a wide range of biological problems, from population genetics and ecology, to the detailed analysis of genome sequence. The Department is based in a historic building on the Downing Site but has research groups located in the Gurdon Institute, Cambridge Systems Biology Centre and Sainsbury Labs as well as an impressive range of local, national and international collaborations.

MPhil students in the Department will undertake a 1-year project under the supervision of one of our Group Leaders, where they will develop an original research question and address this through laboratory or computer based research. They will receive training in appropriate research methods and in literature research skills to prepare them for writing an MPhil thesis within the year.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blgempmbs

Course detail

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical
- understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

- Supervision meetings once every one or two weeks.

- Weekly Departmental seminars.

- Annual Research In Genetics day with poster sessions

Assessment

Thesis required of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography. The examination will include an oral examination on the thesis and on the general field of knowledge within which it falls.

Continuing

Candidates wishing to progress to the PhD degree after successful completion of an MPhil will be considered by the Departmental Graduate Education Committee on a case by case basis. Candidates will be expected to have identified a suitable research group to host the PhD research and identify an appropriate source of funding.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Goal of the pro­gramme. Life Sciences.  is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (. Read more

Goal of the pro­gramme

Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE).

The Master's Programme is offered by the Faculty of Science. Teaching is offered in co-operation with the Faculty of Medicine and the Faculty of Biological and Environmental Sciences. As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics. As a graduate of the LSI programme you will:

  • Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors
  • Competence to work as a member of a group of experts
  • Have understanding of the regulatory and ethical aspects of scientific research
  • Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting
  • Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme
  • Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information
  • Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge
  • Have the ability to report results in a clear and understandable manner for different target groups
  • Have good opportunities to continue your studies for a doctoral degree

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic bioinformatics with the Genome-scale algorithmicsCombinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied bioinformaticsjointly with The Institute of Biotechnology and genetics.Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics with the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group. 

Biostatistics and bioinformatics is offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational GeneticsComputational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.  

Eco-evolutionary Informatics with ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems biology and medicine with the Genome-scale Biology Research Program in BiomedicumThe focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.



Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Read more
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Projects in genetics cover a wide spectrum from population and evolutionary genetics through to molecular and biochemical genetics. They have the common aim of understanding how the genetic material achieves its functions and how it is passed down through generations. Some of the research involves classic genetic approaches including the isolation of mutants with specific phenotypes and the study of their behaviour in genetic crosses. These studies involve model organisms that include bacteria, yeasts and other fungi, Xenopus, zebrafish and mice. Other research in Genetics at Nottingham employs molecular techniques and bioinformatics to address fundamental evolutionary problems such as the evolution of AIDS viruses, the genetic changes that are associated with speciation and the evolution of transposable elements and genome structure. There also projects available in Genetics research groups who are focussing on the systems responsible for maintaining gene and genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Genetic counsellors work in a multidisciplinary team with clinical geneticists, nurses, social workers, dietitians, communicating complex genetic information to individuals and families to facilitate decision making. Read more

Genetic counsellors work in a multidisciplinary team with clinical geneticists, nurses, social workers, dietitians, communicating complex genetic information to individuals and families to facilitate decision making. Genetic counsellors are employed in clinical genetics units and work in many areas including: cancer genetics, predictive testing, paediatric genetics, prenatal genetics, adult genetics. Genetic counsellors increasingly are involved in qualitative and quantitative clinical genetic research.

The Master of Genetic Counselling constitutes the professional qualification for entry into employment as an associate genetic counsellor, and for Board Eligible certification, awarded through the Board of Censors in Genetic Counselling (Human Genetics Society of Australasia).

The 2 year Master of Genetic Counselling is designed to build and increase skills and breadth in clinical practice and research, utilising the expertise of tutors who are clinicians, genetic counsellors, scientists, people with a disability and community members. The Masters is taught within the Victorian Clinical Genetics Services at the Royal Childrens Hospital Parkville Victoria. Students are encouraged to attend educational activities within Genetic Health including seminars, clinic meetings and journal club.

The Graduate Diploma is an exit point after 1 year of study in the Masters.

Internationally, genetic counselling is taught within a 2 year clinical Masters. The Masters program aims to increase research and employment opportunities for graduates through developing reciprocity with other countries. With well established links to overseas training programs there are international opportunities for students, through an active exchange program for clinical placements and research collaborations. Past graduates are employed throughout the world -including in Singapore, Malaysia, New Zealand. It is expected that graduates of the Melbourne Masters will be eligible to register to practise as genetic counsellors in the UK and Canada, further increasing employment opportunities.

The Master of Genetic Counselling will fulfil the requirements for certification and employment as a genetic counsellor in Australia and reciprocity with training overseas. The program teaches counselling skills, research skills and clinical genetics knowledge in small interactive student groups. Problem Based Learning is one mode of teaching in the genetics tutorials. This mode of teaching facilitates independent learning which equips the student to continue to develop professionally throughout their career. Students will complete a minor thesis with supervision, and have extensive counselling skills practice in varied clinical genetics and community settings. Assessment tasks mirror the skills needed in genetic counselling practice and for professional certification by the HGSA(Part 2)

Teaching staff are primarily practicing genetic counsellors, scientists and clinicians within the clinical genetics service.

Research and Evaluation Skills:

  • Understand the ethics committee process and develop an ethics proposal;
  • Undertake a critical literature review relevant to a particular topic of research;
  • Develop original research arising from clinical practice;
  • Present findings from an original research project at a professional forum;
  • Understand the principles of qualitative research, including research design and process in an ethical framework OR
  • Understand biostatistical concepts and methods and their application in the assessment and management of health conditions OR
  • Develop an understanding of the nature and purposes of health program evaluation.

Critical Reflection and Cognition Skills:

  • Develop counselling skills through application of models of practice, in supervised clinical placements;
  • Critically evaluate different models of practice through theory, observation and participation in genetic counselling interviews;
  • Respect differences in cultural, religious and socioeconomic beliefs in clients, through developing a critical understanding of difference through the literature and personal contact with clients;
  • Develop self-awareness through reflection and active participation in the process of supervision.

Communication Skills:

  • Analyse the genetic counselling process and the impact on families from a cultural, ethical and psychosocial perspective;
  • Understand and critically analyse the process of transference and countertransference in an interview;
  • Critically analyse the process of communication.

Ethical Skills:

  • Understand the ethical principles that guide and inform genetic counselling practice;
  • Consider personal, cultural and moral values which may impact on the individual practice of genetic counselling;
  • Recognise the ethical challenges that may confront clients;
  • Understand and identify the potential for ethical challenges in emerging genetic technologies;
  • Identify possible challenges to facilitating informed consent and maintaining patient confidentiality.

Genetics Knowledge:

  • Understand the principles of inheritance;
  • Understand chromosomal disorders and the genetic basis of disease;
  • Understand clinical genetic risk assessments for patients and families;
  • Elicit and document a family history and family pedigree, convey genetic information and discuss risk;
  • Understand the normal stages of human embryo development and have an awareness of how this can be disrupted;
  • Understand the role of genetics as the underlying cause of various disorders of the human body;
  • Understand the role of genetics in cancer;
  • Have an appreciation for the range of molecular, cytogenetic and biochemical laboratory tests utilised in clinical genetic practice;
  • Understand the genetic testing approach taken for specific genetic disorders;
  • Understand the treatment approach taken for specific genetic disorders;
  • Understand the issues relating to population based screening;
  • Understand the role of prenatal screening and testing in pregnancy management and care, and the options available when fetal abnormality is detected;
  • Understand the organisational and economic aspects of health care in Australia;
  • Understand the role of the genetic counsellor in the context of the multidisciplinary approach to clinical genetic health care;
  • Understand the principles of the legal and professional duties and the responsibilities of genetic counsellors as health professionals and members of a health care team.


Read less
Within conservation science there is increasing recognition of the value of genetic data to support management decisions, however scientists and managers with the skills and knowledge to apply population genetic theory to conservation practice are lacking. Read more

Within conservation science there is increasing recognition of the value of genetic data to support management decisions, however scientists and managers with the skills and knowledge to apply population genetic theory to conservation practice are lacking. Within this arena, wildlife forensics is an exciting new field that is attracting increasing global attention in the fight against the illegal wildlife trade.

The Cert/Dip/MSc in Applied Conservation Genetics with Wildlife Forensics aims to provide a blend of theoretical and practical education in the application of genetic data to wildlife management and conservation law enforcement. The programme will cover all essential aspects, from population genetic theory, through data analysis, to the considerations involved in the interpretation and transfer of scientific findings to management, policy and criminal investigation.

Students will have the choice to specialise in either applied conservation genetics or wildlife forensics, with both options providing transferable scientific skills relating to knowledge acquisition and application, problem solving, science communication and decision making. The overall aim of the programme is to equip current and future wildlife professionals with the knowledge, skills and global networks to address modern challenges in conservation management and law enforcement.

The programme is designed as an institutional collaboration between the University of Edinburgh and SASA (Science and Advice for Scottish Agriculture), a government facility which houses the UK wildlife DNA forensics laboratory. Students will have a unique opportunity to learn from internationally recognised specialists in the application of genetic analysis to conservation management and wildlife forensics.

In addition, individual courses will engage a number of external tutors from local and international organisations with specific expertise in the subject matter. Course materials will based on actual examples from wildlife management projects and forensic casework.

Suitable participants include wildlife professionals interested in learning how DNA analysis can be applied to conservation management, from captive breeding programmes to reintroductions and natural population management.

The programme will also be appropriate for those working in wildlife law enforcement or wildlife policy sectors who want to understand how genetic data is now relied upon to inform conservation decision-making, trade regulation and criminal investigations.

As a comprehensive introduction to the fields of conservation genetics and wildlife forensics, the programme is will also provide a valuable stepping stone to students seeking to pursue an advanced scientific career in these fields.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh's excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Learning outcomes

Beyond gaining factual knowledge of the immediate subject matter, programme participation is designed to achieve a series of key learning outcomes:

Knowledge and Understanding

The student will be able to demonstrate a critical understanding of practical and ethical issues relating to the application of conservation genetics and wildlife forensics.

Practice: applied knowledge, skills and understanding

The student will be able to demonstrate how to plan, apply and interpret the outputs of appropriate research and forensic techniques.

Generic cognitive skills

The student will be able to analyse complex issues and identify solutions, even in the absence of complete or consistent information.

Communication, ICT, Numeracy Skills

The student will be able to communicate relevant scientific concepts and results, using appropriate methods, to a range of audiences with different levels of knowledge and expertise.

Autonomy, accountability and working with others

The student will be able to manage complex wildlife conservation and law enforcement issues and make or contribute to informed judgements that address current challenges in these fields.



Read less
Research profile. Read more

Research profile

The Usher Institute of Population Health Sciences & Informatics supervises postgraduate research students in a wide range of population health disciplines, including epidemiology, genetic epidemiology, health promotion, health services research, medical statistics, molecular epidemiology and sociology and on a wide range of topics including allergic and respiratory disease, clinical trial and statistics methodology, eHealth, ethnicity and health, genetic epidemiology of complex diseases, global health, palliative care and cancer, society and health and families and relationships.

A principal aim is to foster interdisciplinary research involving quantitative and qualitative approaches via effective collaboration with biomedical scientists, epidemiologists, social scientists and clinical researchers throughout the University and beyond.

Training and support

Students will be integrated within the existing student-led approach at the Usher Institute, where structures are already in place to ensure a high-quality student experience.

University Quality Assurance monitoring and reporting processes will be adhered to. All supervisors will satisfy University requirements in terms of training and mentoring.

Expectations on the students, including assessment guidelines, will be clearly communicated by multiple channels (e.g. at interview, during induction, in the Postgraduate Research Student and Supervisor Handbook, by supervisors, at annual review meetings and on relevant web pages). All students will have at least two supervisors who will also give pastoral care and career advice in addition to student services provision.

Students will attend appropriate training, including transferrable skills, at appropriate courses (e.g. from the Institute of Academic Development) identified in consultation with the supervisors.

Facilities

The Usher Institute of Population Health Sciences & Informatics brings together researchers active in population health science research, including public health and primary care.

Within the school the Usher academic staff play a large role in research project supervision.

There are also links with the Institute of Genetics and Molecular Medicine and the Queen's Medical Research Institute.



Read less
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Read more
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Study factors affecting animal behaviour, conservation, welfare and their interactions, as well as international zoo management and collaboration. Our partnership with Paignton Zoo gives you regular access to their connections, research and expertise – so you’re primed to make a difference.

Key features

-Delivered in conjunction with the staff at Paignton Zoo and its parent body, the Whitley Wildlife Conservation Trust which also owns Newquay Zoo and Living Coasts.
-Develop your scientific knowledge, professional and technical skills as a conservation biologist. Learn how to manage animal collections for the purpose of education, conservation and wildlife research.
-Study aspects of animal behaviour and ecology, as well as how welfare, housing, nutrition and health all have a part to play in species management.
-Learn to troubleshoot problems at the level of a social group within a particular zoological collection, right up to the level of a species globally. Explore how breeding programmes for endangered species are international in scope.
-Benefit from the knowledge and guidance of Plymouth University’s expert staff with specialisms including the behaviour of captive animals, animal nutrition, the welfare of captive birds and the application of population genetics to captive and natural fish populations.
-Find out how the science of zoos is used to inform government policy. Two of our teaching team are the only academic representatives on the government’s Zoos Expert Committee.
-Get behind-the-scenes insight with a day of study each week with our partners at Paignton Zoo Environmental Park. Deepen your understanding of the business and conservation work of zoos, and how networks and collaborations work between them.
-Access the latest research and information from the Whitley Wildlife Conservation Trust, including information on their co-ordinated breeding programmes for endangered species.
-Be inspired by opportunities to visit a range of zoos in the region – including Dartmoor, Bristol and Newquay – and to travel abroad for research projects. A recent student travelled to Louisiana Zoo for her research project on golden tamarin monkeys.
-Graduates work in zoos as educators, researchers, managers and keepers. Many go on to PhD study or work in further education. Other employers include the European Association for Zoos and Aquaria; the Natural History Unit (BBC); national and international conservation organisations.

Course details

As a full-time student, you’ll study seven modules taking in everything from genetics to environmental enrichment, preventative health to budgeting. We update modules to reflect current thinking and you can specialise within them. If you’re interested in working with tigers, for example, this can be reflected across your work. You’ll be assessed through coursework with practical tasks focused on your future career. Core modules include introduction to zoo organisation, animal conservation, applied animal behaviour and management, animal metabolism and nutrition, animal health and welfare and business management. You’ll then do a final three-month research project of your choice. Previous investigations have included everything from female mate choice in white faced saki monkeys to how peripheral and/or invasive activity affects the behaviour and enclosure use of captive sand tiger sharks.

Core modules
-BIO505 Research Project
-ANIM5006 Contemporary Zoo Management
-BIO5131 Postgraduate Research Skills & Methods
-ANIM5005 Zoo Animal Behaviour and Welfare
-ANIM5007 Small Population Conservation
-ANIM5008 Conservation Ecology and Society
-ANIM5009 Zoo Animal Health, Nutrition and Management

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Research Proposal
  • Dissertation

Option courses (selected according to degree specialisation):

  • Quantitative Genetic Models
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Animal Genetic Improvement
  • Functional Genomic Technologies
  • Molecular Phylogenetics
  • Bioinformatics
  • Evolutionary Quantitative Genetics

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The MSc DNA Profiling is a Forensic Science Society UK (FSSoc) accredited course that aims to instruct in current concepts in molecular biology techniques and laboratory management as applied in the field of Forensic DNA Profiling. Read more
The MSc DNA Profiling is a Forensic Science Society UK (FSSoc) accredited course that aims to instruct in current concepts in molecular biology techniques and laboratory management as applied in the field of Forensic DNA Profiling. The various interpretational skills taught in the course follow International Society of Forensic Genetics (ISFG) and SWGDAM guidelines. The course syllabus exceeds the recommendation of the Scientific Working Group on DNA Analysis Methods (SWGDAM) USA for the educational requirements for a DNA laboratory technical leader. Intellectually challenging and highly rewarding, the MSc provides excellent hands-on practical learning in various laboratory techniques. It also builds the capabilities to plan and execute a research project. You’ll be well prepared for the forensic DNA profiling sector, including relevant areas like molecular biology, genetics and population genetics.

INDUSTRY LINKS

We have a wide variety of links with local, national and international laboratories and academic institutions, all of which provide valuable contacts for students wishing to enter professions related to DNA profiling. Further details and contacts are available from members of the teaching team.

PROFESSIONAL ACCREDITATION

Masters in DNA profiling has received the prestigious accreditation from the Chartered Society of Forensic Sciences.

LEARNING ENVIRONMENT AND ASSESSMENT

You will, on average, attend fifteen hours of lectures/seminars/practicals per week and may participate in both workshops and tutorials. Personal study also forms an integral part of the programme. The students are required to complete challenging assessments that are mostly course work, group projects, presentations, moot court and practical assessments. There is only one theory based examination in the course.

We do our best to give our students key employability and transferable skills which will serve them in the various scientific and non-scientific fields thus our students emerge as well rounded individuals.

Read less

Show 10 15 30 per page



Cookie Policy    X