• University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Warwick Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Portsmouth Featured Masters Courses
"plm"×
0 miles

Masters Degrees (Plm)

We have 6 Masters Degrees (Plm)

  • "plm" ×
  • clear all
Showing 1 to 6 of 6
Order by 
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
Why this course?. Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. . Read more

Why this course?

Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. 

This newly-launched MSc course is the first one-year taught course dedicated to Biofluid Mechanics. It covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics.

The one-year full-time programme offers you a unique opportunity to lead the next generation of highly-skilled postgraduates that will form a new model worldwide for academia – with world-class research knowledge, industry – with highly-competitive skills in both biomedical engineering and fluid dynamics, and for society – with better training to work with clinicians.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the Faculty of Engineering and the wider University. You'll be supported throughout the course by a strong team of academics with global connections. You'll benefit from a unique training and an innovative teaching and learning environment.

You'll study

In Semesters 1 and 2, you'll take compulsory classes and a choice of optional classes. The remaining months are dedicated to project work, submitted as dissertation (Diploma students) or as a research thesis (MSc students).

Compulsory Classes

  •    Biofluid Mechanics
  •    Industrial Software
  •    Medical Science for Engineering
  •    Research Methodology
  •    Professional Studies in Biomedical Engineering 

Optional Classes

  •    Haemodynamics for Engineers
  •    Numerical Modelling in Biomedical Engineeirng
  •    Cardiovascular Devices
  •    The Medical Device Regulatory Process
  •    Entrepreneurship and Commercialisation in Biomedical Engineering
  •    Introduction to Biomechanics
  •    Finite Element Methods for Boundary Value Problems and Approximation
  •    Mathematical Biology and Marine Population Modelling
  •    Design Management
  •    Risk Management

Masters Research Project

The project provides MSc students with the opportunity to experience the
challenges and rewards of independent study in a topic of their own choice; the project may involve an extended literature review, experimental and/or
computational work.

Postgraduate Diploma Dissertation

The dissertation is likely to take the form of an extended literature review. Your project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.

Learning & teaching

Classes are organised in lectures, laboratory demonstrations, practical exercises and hands-on experience with industrial software on real biofluid mechanics problems. In addition to the classes, you'll benefit from invited academic and industrial speakers, departmental seminars and knowledge exchange events.

Assessment

Assessment methods include exams, coursework and the research project/thesis.

Careers

Graduates will be highly employable in the following markets and related sectors/companies, among others:

  •    Medical Devices
  •    Simulation and Analysis Software
  •    Academic Research
  •    Biosimulation market
  •    NHS and the Healthcare/Medical Simulation
  •    Life Science Research Tools and Reagents

Key providers have been identified in each of the above markets. Creating links with the relevant industry and monitoring the market and employability trends will enable us to tailor the course content appropriately, and to enhance graduates’ employability.

Industrial Partnerships

We've already established strong partnerships with industrial companies that have offered their support, eg through the provision of software licenses, teaching material and/or collaborative research projects, including:



Read less
Research opportunities. Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics. Read more

Research opportunities

Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics.

Our new MRes course covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics (CFD), focusing on research. The MRes differs from an MSc in that you'll have the opportunity to perform multidisciplinary research for a longer time, preparing you for a research career and equipping you with world-class research knowledge.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the faculty and the University.

During the course, you'll be supported by a strong team of academics with worldwide connections and you'll be offered a unique training and innovative teaching and learning environment.

What you'll study

This one-year programme consists of compulsory and optional classes in the first two semesters. Each class has timetabled contact hours, delivered mainly in lectures, laboratories and tutorials. The MRes research project will be chosen and started in semester one with guidance from a supervisor. Throughout the year you'll be working on your project.

Compulsory classes

  • Professional Studies in Biomedical Engineering
  • Research Methodology
  • MRes project

Elective classes

  • Biofluid Mechanics
  • Industrial Software
  • Medical Science for Engineering
  • Haemodynamics for Engineers
  • Numerical Modelling in Biomedical Engineering
  • Cardiovascular Devices
  • The Medical Device Regulatory Process
  • Entrepreneurship & Commercialisation in Biomedical Engineering
  • Introduction to Biomechanics
  • Finite Element Methods for Boundary Value Problems and Approximation
  • Mathematical Biology & Marine Population Modelling
  • Design Management
  • Risk Management

Support & development

The new MRes course aims to train students in the Biofluid Mechanics field, targeting primarily the academic research market, but also the Medical Devices and Simulation/Analysis software industries and other related and new emerging markets.

Our postgraduates will benefit from acquiring world-class training and competitive skills in both biomedical and fluid dynamics disciplines that will make them highly employable at the following markets and related sectors/companies:

  • academic research
  • medical device market
  • simulation & analysis software market
  • biosimulation market
  • NHS & the healthcare/medical simulation market
  • life science research tools & reagents market

We've identified the current key vendors in each of the above markets and aim to create links with the relevant industry and monitor the changing market and employability trends, in order to adjust teaching modules and approaches and to enhance employability of our graduates.

Industrial partnerships

We've already established strong partnerships with industrial companies that have offered their support, eg through the provision of software licenses, teaching material and/or collaborative research projects, including:



Read less
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Read more
This course focuses on the latest technology in modern CAD/CAM/CAE/PLM applications to enable students to acquire knowledge and understanding of rapid design and manufacture of a new product from a single computer terminal, without the need for lengthy prototype and test cycles. Implementing this technology is essential in today's global marketplace, where survival relies on being first to market.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices and the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This programme is structured to provide you with the latest developments in this still-evolving discipline, and focuses on providing you with hands-on experience of the latest computing applications throughout the entire product development cycle. The course covers a range of topics from 3D solid modelling and the techniques required to extend the capabilities of a 3D modelling system to gaining practical and theoretical knowledge of analytical computer tools by using finite element analysis (FEA) techniques. It also examines the importance of modern materials in advanced manufacturing processes, as well as computer-aided manufacturing (CAM) and application of rapid prototyping technologies. Additionally, the programme enables you to gain the entrepreneurship, management and business skills necessary to take on leadership roles in major product design engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and also to undertake a real-world product design problem-solving project.

Assessment

Coursework and/or exams, presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computer Integrated Product Development
-Advanced CAD/CAM Systems
-Engineering Individual Project

Option modules (choose one)
-Industrial Operation Management and Resources Simulation
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
Would you like to apply your arts or applied sciences background to the conservation of fine art?. Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper. Read more
Would you like to apply your arts or applied sciences background to the conservation of fine art?

Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper.

Integrating a mix of fine art, science and forensic techniques, you will study a range of subjects including studio and work-based practice, conservation theory, science, technical examination, -preventive conservation and research training skills.

In addition to the core modules studied, you will have the option to undertake a work placement during years one and two in the UK or abroad.

Learn From The Best

This course is taught by a team of specialist academics who have extensive experience in the field of conservation, science and the Fine Art sectors.

Applying their specialist knowledge to their day-to-day teaching, the members of our staff are actively involved in research and consultancy - activities which are helping to define this exciting and complex profession.

We also engage with the wider conservation sector to ensure that the content of this course is in-line with professional standards and employer expectations.

Throughout the duration of this course you will receive ongoing support from our teaching staff to ensure you leave equipped with - the necessary skills and knowledge to successfully pursue a career within conservation or a related discipline.

Teaching And Assessment

Offering the opportunity for you to specialise in either works of art on paper or easel paintings conservation, this course consists of modules that will explore a range of key areas including conservation theory and practice, conservation science, art history and preventive conservation

You will leave with the technical skills required to undertake examinations, cleaning, structural repairs and stabilisation of works of art, in addition to an in-depth understanding of the historic significance artistic practice and materials play-in understanding artworks.

Significant emphasis is also placed on ethics and developing your skills in research development.

This course is primarily delivered through practical workshops where you will develop a wide range of skills using especially prepared materials and case studies selected from our unique archive collection. These activities inform and run parallel with work conducted on project paintings and other challenging artefacts.

Assessment methods focus on you applying your practical skills, academic concepts and theories to your project documentation and the authentically constructed materials that mirror real life scenarios. You will also undertake a dissertation to further demonstrate your knowledge and understanding of this subject.

Learning Environment

When studying the MA Conservation of Fine Art course you will be housed in a Grade II listed building in the heart of Newcastle city centre. You will be able to utilise techniques such as x-ray, infra-red reflectography, and ultraviolet florescence and false colour infrared photography to examine materials and artworks spanning centuries, in addition to gaining access to intriguing archives and cutting edge technology.

You may also have access to other advanced technologies such as UV fluorescence microscopy, polarised light microscopy (PLM), UV/VIS spectrophotometry, fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), x-ray fluorescence (XRF) spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM/EDX).

You will also receive ongoing support through our innovative e-learning platform, Blackboard, which will allow you to access learning materials such as module handbooks, assessment information, online lectures, reading lists and virtual gallery tours.

Research-Rich Learning

Research-rich learning is embedded throughout all aspects of this course and our staff are continuously involved and informed by fast-moving emerging developments in conservation research and ethical debates.

All of our staff possess individual specialisms, in areas such as the development and evaluation of conservation treatments for paintings, characterisation of artists’ materials and techniques, studies in material deterioration and comprehensive documentation of works of art.

Our team also collaborate with national and international research organisations.

When studying this master’s degree, you are encouraged to develop your own individual research skills to ensure you graduate with confidence in your own practical and academic experience. These skills are further enhanced when you undertake your dissertation under the guidance of your assigned tutor.

Give Your Career An Edge

This course has been developed to reflect national guidelines and ensure that you graduate with the necessary skills and knowledge to kick-start your career within this profession. There are also many additional opportunities available to further enhance your career edge whilst you study.

Throughout the duration of this course you will create a professional portfolio, which will include examples of practical work and displays of your intellectual achievement to provide a demonstration of your skills and enhance your performance at interviews.

In addition to completing a placement to further enhance your development you will also have the opportunity to present research papers at an organised symposium.

We actively encourage you to engage with professional bodies and attend key conferences to allow you to network with professionals who are already working within the profession, and you may also have the opportunity to advantage of our partnership with Tyne and Wear Archives and Museums, whose collection supports a number of activities. Our long standing links with the National Trust, Tate Britain and the estate of Francis Bacon have created exciting projects for our MA and PhD students.

Your Future

This course will equip you with a deep understanding of both the skills and knowledge required to work effectively in fine art conservation laboratories or conservation jobs across the world.

You may choose to work in galleries or museums, or progress your research to PhD level.

Recent illustrious alumni list, include Virginia Lladó-Buisán Head of Conservation & Collection Care Bodleian Libraries, Britta New, Paintings Conservator at the National Gallery in London and Eleanor Hasler, Head of Paper Conservation at Kew Gardens.

As your professional development is in-line with the current postgraduate professional standards for the Conservation of Fine Art, your access to postgraduate professional jobs within the conservation sector is likely to be enhanced.

Read less
This programme has been developed in cooperation with University-Consortium in Science and Technology, BALTECH, and is simultaneously running in 4 universities in Sweden, Latvia, Lithuania and Estonia. Read more

This programme has been developed in cooperation with University-Consortium in Science and Technology, BALTECH, and is simultaneously running in 4 universities in Sweden, Latvia, Lithuania and Estonia.

The programme focuses on the following topics: supply chain management, quality management, rapid product development, production planning and management, e-manufacturing and innovation. The key words of the present situation worldwide are production globalization, international and local cooperation and dynamic market. For those reasons, concepts as design, development and management of integrated systems of people, knowledge, equipment and materials are included in the curriculum.

 Key features

  • Covers the main engineering and business management areas; technical courses are combined with economical and social courses
  • Teaching staff includes lecturers from the industry and international professors
  • On site visits to manufacturing firms and lots of area-related associations for students (ABB, Ericsson, Bestnet, Cybernetica, etc.)
  • Different interactive games for Lean production, 5S and production management and optimisation skills development
  • Students can use different equipment in Protolab (3D scanners, 3D printers and laser sintering units) and Product Modelling and Material dynamical testing Laboratory
  • Different ERP, PLM, CAD and CAE software is used in the study process
  • Master’s theses are commonly based on real-life problems of the industry/company and therefore possess a practical value on top of an academic one. Many graduates proceed to work for the companies after graduation.
  • The background of the students is very diverse. In addition to a variety of former educational paths there is also a significant proportion of working professionals who are able to enrich the learning process with their practical experience. That also enables valuable networking opportunities for foreign students.

Course outline

The increasing competitiveness in global market highlights the importance of rapid product development, design quality, multi-company collaboration, optimal price levels and predictability.

This program aims to prepare engineers who will be experts not only in a particular field on engineering, but also have required skills for company management. Such concepts as design, development and managements on integration with people, knowledge, equipment and material are included in the curriculum of the program.

Graduates can work in every field, starting from manufacturing and ending with retail.

Curriculum

Structure of curriculum

Future career options

This programme aims to prepare engineers who will be experts in a particular field of engineering and have the required skills for company management. Graduates can work in every field, starting from manufacturing and ending with retail. Possible positions include Production Manager, Project Manager, Quality Manager and CEO.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X