• Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Imperial College London Featured Masters Courses
University College London Featured Masters Courses
University of Leeds Featured Masters Courses
"plastics" AND "engineeri…×
0 miles

Masters Degrees (Plastics Engineering)

We have 20 Masters Degrees (Plastics Engineering)

  • "plastics" AND "engineering" ×
  • clear all
Showing 1 to 15 of 20
Order by 
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals. Read more

Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals.

You will develop practical, laboratory-based skills, combined with expertise in computing and simulation. You will be guided by internationally renowned experts in areas such as nanotechnology, carbon capture and storage, minerals and materials, natural gas processing, and solvent extraction. You will have the opportunity to complete an industry project in conjunction with a relevant industry partner.

The Master of Engineering (Chemical) will lead to a formal qualification in chemical engineering.

MASTER OF ENGINEERING (WITH BUSINESS)

The Master of Engineering (with Business) is designed to provide students with a formal qualification in engineering at the masters level, with a business specialisation that recognises the need for engineers to understand the management and workings of modern professional organisations.

Students who undertake the Master of Engineering (with Business) replace five advanced technical electives with five business subjects that have been tailored specifically for engineering students and co-developed with Melbourne Business School.

Graduates will have a grounding in financial, marketing and economic principles enabling them to work efficiently in any organisation, as well as the ability to apply the technical knowledge, creativity and team work skills learnt in their engineering training. This combination of knowledge and skills will be a powerful asset in the workplace.

Key features

  • Combine a technical specialisation with exposure to the business and management skills that can help fast-track your career.
  • Benefit from subjects co-developed by Melbourne Business School and tailored specifically for engineering students.
  • Tight integration of subjects ensures that you understand the business side of engineering applications.
  • Be empowered with strong technical skills, as well as the business skills to understand how organisations work.

CAREER OUTCOMES

Chemical Engineering Career Pathways [PDF]

Career opportunities in chemical engineering are extensive and exist in petrochemical, minerals processing, mining, chemical manufacturing, natural gas, explosives and fertiliser production and environmental consulting.

Our graduates are employed in a diverse range of industries, for companies including: ExxonMobil, BP, PETRONAS, Schlumberger, Nyrstar, BHP Billiton, Rio Tinto, Worley Parsons, ThyssenKrupp, WSP Parsons Brinckerhoff, Wood Group PSN, GHD, AECOM, Mars and Unilever.

PROFESSIONAL ACCREDITATION

This Master of Engineering (with Business) degree is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining. Read more
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining.

One of very few such courses offered at masters level in the UK. It's information rich but also provides a significant degree of hands-on practical work that utilises a wide range of manufacturing, testing and characterisation equipment. The limited number of graduates in this area, combined with the knowledge, expertise and practical skills developed in this specialised field, gives you a major advantage over other engineering graduates as you seek employment within the materials-related industries.

We have been successfully teaching a masters programme in materials engineering for more than 20 years, leading the way in the study of this field. Staff are very experienced and undertake both academic research and commercial projects, both of which support students’ learning experience.

See the website http://www.napier.ac.uk/en/Courses/MSc-Advanced-Materials-Engineering-Postgraduate-FullTime

What you'll learn

Gain exposure to the latest trends in design, materials, manufacturing processes, testing and advanced applications by taking full advantage of our modern technology and computing facilities.

You'll benefit from our first class research and knowledge transfer partnerships with local, national and international companies. Accredited by the Institute of Materials, Minerals and Mining, we have excellent industry links and encourage you to interact with industry too.

All projects are practically focused, with an emphasis on using industry standard manufacturing and testing equipment. Many projects are live, meaning you'll be working for real clients.

Modules

• Metallic Materials
• Plastics Materials
• Ceramics and Composites
• Smart Materials and Surfaces
• Forensic Materials Engineering and Energy Materials
• MSc Project – a focused piece of industrially relevant research, normally carried out on placement

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You'll have excellent job prospects with this pedigree of materials engineering skills, expertise and knowledge.

This will give you enhanced employment prospects in almost all engineering, science, design and manufacturing disciplines. In particular, you may find roles in:
• manufacturing
• design, energy engineering and renewables
• chemical engineering
• offshore engineering, materials testing
• advising and assuring companies
• regulatory authorities and automotive
• aerospace and defence industries

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Degree. Master of Science (two years) with a major in Mechanical Engineering. Teaching language. English. The Mechanical Engineering master's programme covers the entire product development cycle, from idea to the final product. Read more

Degree: Master of Science (two years) with a major in Mechanical Engineering

Teaching language: English

The Mechanical Engineering master's programme covers the entire product development cycle, from idea to the final product. With five specialisations and close industry collaborations, you will be qualified for work in any field of development, engineering or manufacturing.

Mechanical engineers are expected to be creative, have broad knowledge and work as members of multidisciplinary teams. With this programme, you will become a problem-solver with a holistic perspective, ready to take part in today’s product development to create tomorrow’s sustainable society.

Five specialisations

The first semester consists of mandatory courses in mechanical engineering, such as fluid power systems, computational mechanics, and deformation and fracture of engineering materials. They are combined with courses in product development and project management.

In the second semester, you may choose among five specialisations:

  • Applied Mechanics – classical and modern applied mechanics with a strong focus on the modelling and simulation of solid mechanics, fluid dynamics and thermodynamics
  • Engineering Design and Product Development – modern and advanced approaches in CAD, design optimisation and product development
  • Engineering Materials – deep knowledge about the behaviour of classical metallic engineering materials but also learn about plastics and new emerging materials
  • Manufacturing Engineering – covers aspects from supply chain level down to automation and manufacturing processes. Also learn about factories of the future
  • Mechatronics – how to design and analyse controlled mechanical systems such as hydraulic systems.

Project course and thesis

Each specialisation has a major project course in the third semester, where you work with industry-related problems and apply knowledge obtained from the specialisation courses. This course prepares you for the master thesis project in the final semester. The thesis is usually written together with a fellow student in close collaboration with a company, either a small local business or a global industrial corporation like Siemens or Scania. The thesis project can also be performed as part of a research project at LiU.

Welcome to the Institute of Technology at Linköping University



Read less
Materials underpin nearly all engineering applications. Materials engineering plays a significant role in a range of applications from developing new biomedical engineering devices, to creating sustainable energy solutions and better manufacturing processes and products. Read more

Materials underpin nearly all engineering applications. Materials engineering plays a significant role in a range of applications from developing new biomedical engineering devices, to creating sustainable energy solutions and better manufacturing processes and products.

By creating new materials or improving existing ones, materials engineers make a valuable contribution to the design of new products and devices and the improvement of existing ones. You will gain insight into the processing-structure-property relationships of a range of materials, such as metals, polymers, ceramics, electronic materials and composites.

You will learn the fundamental concepts of atomic bonding, atomic scale structure, phase equilibria and methods of characterisation from materials engineering experts who are conducting world leading research in areas such as biomaterials, tissue engineering, nanomaterials, polymers, ceramics, materials modelling and characterisation.

CAREER OUTCOMES

The Master of Engineering (Materials) will equip graduates for careers as metallurgists, plastics engineers, ceramists, adhesive scientists, process and quality control engineers and corrosion engineers. You will work in industrial design, manufacturing, processing and recycling, and select and design materials for: aerospace vehicles; ground transportation systems; automotive industry; solar energy and battery devices; tissue engineering and drug delivery; information and communication systems; electronic and magnetic devices and systems; and optical and opto-electronic components.

You will conduct failure analysis of materials in a variety of applications including those mentioned above.

Employment opportunities exist working in research and development, academia, national laboratories including the Defence Science and Technology Group and industry for companies such as: AECOM, Deloitte, Ford, GlaxoSmithKline, KPMG, Orica, BlueScope Steel, Morgan Advanced Ceramics, Austral Bricks and Qenos. Materials engineers are in demand and receive some of the highest salaries in the engineering industry.



Read less
This programme provides professional training in polymer science and technology for graduates of science, engineering and technology subjects. Read more

This programme provides professional training in polymer science and technology for graduates of science, engineering and technology subjects.

Lectures are supplemented by an extensive variety of laboratory exercises, spanning chemical and physical characterisation, and compounding and processing technology experiments on pilot-scale laboratory equipment.

Core study areas include polymer science, polymer process engineering, plastics and composites applications, polymer properties, polymer characterisation, polymerisation and polymer blends, plastics processing technology and a project.

Optional study areas include plastics processing technology, rubber compounding and processing, adhesive bonding, and sustainable use of materials.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/polymer-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Polymer Science (SL)

- Polymer Process Engineering (SL)

- Plastics and Composites Applications (SL)

- Polymer Properties (SL)

- Polymer Characterisation (OW)

- Polymerisation and Polymer Blends (SL)

- MSc Project

Optional Modules

- Biomaterials (SL)

- Rubber Compounding and Processing (OW)

- Adhesive Bonding (OW)

Part-time Modules:

Core Modules

- Polymer Science (DL)

- Plastics and Composites Applications (DL)

- Polymer Properties (DL)

- Polymer Characterisation (OW)

- Polymerisation and Polymer Blends (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Rubber Compounding and Processing (OW or DL)

- Adhesive Bonding (OW)

- Sustainable use of Materials (OW or DL)

Alternative modules:*

- Design with Engineering Materials (DL)

- Polymer Process Engineering (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further study

Typical careers span many industrial sectors, including plastics, rubber, chemical and additives industries and packaging.

Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing. Many of our best masters students who are interested in research stay with us to study for a PhD.

Bursaries and scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are

hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/polymer-science-tech/



Read less
Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals. Read more

Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals.

You will develop practical, laboratory-based skills, combined with expertise in computing and simulation. You will be guided by internationally renowned experts in areas such as nanotechnology, carbon capture and storage, minerals and materials, natural gas processing, and solvent extraction. You will have the opportunity to complete an industry project in conjunction with a relevant industry partner.

The Master of Engineering (Chemical) will lead to a formal qualification in chemical engineering.

CAREER OUTCOMES

Chemical Engineering Career Pathways [PDF]

Career opportunities in chemical engineering are extensive and exist in petrochemical, minerals processing, mining, chemical manufacturing, natural gas, explosives and fertiliser production and environmental consulting.

Our graduates are employed in a diverse range of industries, for companies including: ExxonMobil, BP, PETRONAS, Schlumberger, Nyrstar, BHP Billiton, Rio Tinto, Worley Parsons, ThyssenKrupp, WSP Parsons Brinckerhoff, Wood Group PSN, GHD, AECOM, Mars and Unilever.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.

Master of Engineering (Chemical) is also accredited by IChemE (Institution of Chemical Engineers). This accreditation has worldwide recognition.



Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more

This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Advanced Characterisation Techniques (SL)

- Surface Engineering (SL)

- Ceramics: Processing and Properties (SL)

- Design with Engineering Materials (SL)

- Sustainable Use of Materials (OW)

- Metals: Processing and Properties (SL)

- MSc Project

Optional Modules

- Plastics Processing Technology (OW)

- Industrial Case Studies (OW)

- Materials Modelling (SL)

Part-time Modules:

Core Modules

- Ceramics: Processing and Properties (DL)

- Design with Engineering Materials (DL)

- Sustainable Use of Materials (OW or DL)

- Metals: Processing and Properties (DL)

- Surface Engineering (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Industrial Case Studies (OW)

- Adhesive Bonding (OW)

- Rubber Compounding and Processing (OW or DL)

Alternative modules:*

- Polymer Properties (DL)

- Advanced Characterisation Techniques (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.

Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/



Read less
The Technology of Wood and Plastic international degree programme provides specialisation either in woodwork or plastic technology. Read more

The Technology of Wood and Plastic international degree programme provides specialisation either in woodwork or plastic technology. Teaching is organised into modules combining lectures, seminars and laboratory work in the recently renovated laboratory of Polymer Physics and Technology, which is equipped with state-of-the-art devices. The programme also emphasises the basic practical knowledge of CAD-engineering programmes and CAM-manufacturing technologies as they are extremely important in every industrial sector all over the world. The curriculum gives students the unique opportunity to implement their individual research projects in collaboration with various companies.

Key features

  • All courses are taught by using blended learning solutions (face-to-face + e-learning) which makes the learning process more flexible
  • Students have the opportunity to visit different wood-, plastic, and furniture products manufacturing companies, so they are getting familiar with production
  • Three hands-on scientific research or industrial projects develop students’ skills and provide a smooth transition from university studies to a professional career

Curriculum

Structure of curriculum

Future career options

This Master programme gives for students` vocational and professional preparation for working in the international engineering industry as a designer/constructor, specialist, industrial engineer or middle manager. This curriculum gives valuable knowledge and the practical experience necessary to work with customised furniture projects (hotels, restaurants, public sector buildings, cruise ships) or material selection and technology development for plastic products manufacturing. Skills in CAD/CAM engineering work in connection with knowledge about the technological properties of wood-, laminates, plywood, chipboard, medium density fibreboard, plastics, metals, leather, textiles and composite materials that might come in handy for different professions.



Read less
The masters course in Polymer Materials Science and Engineering, offered in partnership with the School of Chemistry, is multi-disciplinary. Read more

The masters course in Polymer Materials Science and Engineering, offered in partnership with the School of Chemistry, is multi-disciplinary: it provides Chemists, Materials Scientists and Engineers with a rich understanding of both traditional commodity plastics and speciality polymers with increasing applications in the biomedical and pharmaceutical fields, and in electronics and nanotechnology. The full range of issues, from fundamental polymer science, through polymer processing, to manufacturing are all covered.

Coursework and assessment

The taught part of the programme is based on discrete compulsory and optional taught course units.

Course unit details

Example of taught units on this course are:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Polymers and Polymer Composites
  • Control and Design of Polymerisation Reactions
  • Polymer Physics and Physical Properties
  • Advanced Composites
  • Soft Matter

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The majority of graduates of this programme go on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. Some advance to PhD programmes within the School.



Read less
With a particular focus on research and research methods, our Built Environment. Energy Demand Studies MRes is ideal for you if you wish to be at the cutting-edge of new developments in this important area. Read more

With a particular focus on research and research methods, our Built Environment: Energy Demand Studies MRes is ideal for you if you wish to be at the cutting-edge of new developments in this important area.

Our Built Environment: Energy Demand Studies MRes programme covers many topics that are essential to understanding building energy demand, including building simulation techniques, measuring real building performance, the economics of energy demand and statistical techniques for macro-level analyses. The knowledge you will gain on this programme is applied through the MRes dissertation, a major piece of academic work which takes place throughout the year and provides the opportunity to work closely with an experienced staff member on an in-depth research topic.

The Built Environment: Energy Demand Studies MRes programme aims are to:

  • establish understanding of the UK energy landscape and how energy and climate change challenges are interlinked through technical, environmental and behavioural factors
  • provide the skills necessary to support research practice, critical assessment, and the use of evidence on technical, environmental, social and economic factors influencing energy demand in buildings and building stocks
  • to develop students’ transferable skills enabling them to successfully manage, communicate, and lead complex research projects
  • provide real experience of research through the generation, development and implementation of a significant research-based dissertation

The School of Architecture, Building and Civil Engineering has a world leading reputation for its research and strong collaborations with industry and commerce. The School is one of four Royal Academy of Engineering Centres of Excellence in Sustainable Building Design, and one of the six most highly funded EPSRC-funded groups working on Built Environment topics.

In the UK Government’s 2014 Research Excellence Framework (REF 2014), the School was the highest ranked and most research intensive building energy research school in the UK. 87% of the School’s research was scored as ‘world leading’ or ‘internationally excellent’.

During your studies, you will gain access to 3000m2 of unrivalled laboratory and field-scale facilities that enable world-class research to be conducted. Our suite of full-scale test houses are unique in providing a ‘matched pair’ capability that allows high-quality comparative testing of home energy efficiency interventions. In the laboratory, a controllable environmental room combined with laser-based velocimetry equipment and heated breathing manikin allows investigations of the airflows around humans in rooms and the implications for inhaled air quality and thermal comfort for a range of ventilation options. A ‘salt bath’ water tank enables airflows through buildings to be visualised and a large scale indoor solar simulator can be used for testing the solar collection performance of new concepts for renewable energy collection by buildings. There are many questions about moisture flows in buildings, and our newly-completed hygrothermal chambers allow investigation of heat and moisture transfer through building structures. These large-scale facilities are complimented by a suite of workshops and supported by a team of technicians trained in wood-work, plastics, metal-work, mechanical systems and electronics.



Read less
Catalysis underpins a huge range of modern chemical transformations. From the megaton scale production of acetic acid to the polymers we use for plastics to automotive catalytic converters to key steps in pharmaceutical synthesis, the impact of catalysis upon our everyday life is enormous. Read more
Catalysis underpins a huge range of modern chemical transformations. From the megaton scale production of acetic acid to the polymers we use for plastics to automotive catalytic converters to key steps in pharmaceutical synthesis, the impact of catalysis upon our everyday life is enormous.

Companies such as BP, INEOS, Sasol, Johnson Matthey, Pfizer, AstraZeneca all have research and development facilities in the UK. Researchers from many of these companies will deliver taught elements of this course, and therefore the students will have the opportunity to learn from and network with future employers first hand.

Catalysis has traditionally been divided into homogenous (solution-based), heterogeneous (solid-liquid, solid-gas interface) and (reaction) engineering disciplines. However, this distinction is becoming increasingly blurred so this MRes course aims to provide students with a coherent overview of these areas.

At its conclusion students will be ideally placed to undertake PhD studies in collaborative research along the chemistry-engineering spectrum or to apply their knowledge in industry.

Read less
Chemistry plays a pivotal role in determining the quality of modern life. The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals. Read more
Chemistry plays a pivotal role in determining the quality of modern life.

The chemicals industry and other related industries supply us with a huge variety of essential products, from plastics to pharmaceuticals.

However, these industries have the potential to seriously damage our environment.

This has resulted in a growing demand from society for a reduced reliance on fossil fuels and for greener manufacturing processes.

There is also a need for future innovations to be built on more sustainable foundations.

Green chemistry therefore serves to promote the design and efficient use of environmentally benign chemicals and chemical processes.

This course is designed to introduce you to all aspects of sustainable chemical practices, with nine months dedicated to a research project in a green chemistry area.

Graduates of this course can expect to have all the necessary skills and experience to apply green chemical technologies in either commercial or academic laboratories, the research project in particular equipping them admirably for PhD studies.

Read less
If you have a feel for working in three dimensions, in a variety of materials, and have a creative flair you will find this course suits you. Read more
If you have a feel for working in three dimensions, in a variety of materials, and have a creative flair you will find this course suits you. Design and Technology is an exciting, diverse subject and part of the National Curriculum. It is a subject where intellectual planning meets practical applications, where you must identify a need and then design and manufacture products to meet that need.

Design and Technology at the University of Wolverhampton focuses on two of the areas of Design & Technology: Materials Technology - designing and making in wood, metal and plastics - and Electronics and Communications Technology - working with electronics, mechanisms and pneumatics.

If you want to become a Design and Technology teacher then this course will prepare you to work in schools and to deliver high quality lessons for all pupils. The aim of the Design and Technology course is to develop thoughtful teachers who can respond effectively to the learning needs of young people in school by providing a balanced Design and Technology programme.

Completion of the course will award Qualified Teacher Status along with 60 credits towards a Masters.

You will learn to draw on the theoretical principles underpinning Design and Technology, and how to use this knowledge in your teaching. You will contribute to the teaching of the wider range and content of the National Curriculum for Design and

Technology key stage 3 strategy as well as traditional examination DTcourses within the 11-16 programme. We aim to provide a range of experiences, including post 16 teaching.

Typical modules may include:

Observation of teaching, before undertaking ‘sheltered’ teaching activities, for example teaching parts of lessons or groups of pupils within a class

Progression to teaching single or short sequences of lessons

Further development through planned classroom activities

Development of teaching skills as you move to sustained sequences of lessons

A classroom based investigation into an aspect of your subject pedagogy

Generic pedagogical topics including PSHE

Read less

Show 10 15 30 per page



Cookie Policy    X