• Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Worcester Featured Masters Courses
FindA University Ltd Featured Masters Courses
"plants"×
0 miles

Masters Degrees (Plants)

  • "plants" ×
  • clear all
Showing 1 to 15 of 143
Order by 
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area. Read more
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area.

Who is it for?

This course is for students interested in the structural aspects of nuclear power plants and the broader field of nuclear energy.

Objectives

In this programme, you will study how to design, evaluate, and analyse structural systems, with a special focus on Nuclear Power Plants. You will learn all the principles used for the design of buildings, bridges, special structures and in particular nuclear containment structures.

The emphasis on nuclear structures is a response to the skill shortage reported by employers working in this sector. The UK has recently committed to a long-term nuclear new-build programme that is forecast to generate more than 40,000 jobs, yet no specialised training is available in this area. The programme will therefore provide you with a degree that distinguishes you in the market.

The programme is offered on a one-year full-time or two-year part time basis to allow you maximum flexibility.

Teaching and learning

The course is taught by staff from the School of Mathematics, Computer Science and Engineering with some contribution from industrial experts. Teaching is mainly in the form of lectures, but case studies and IT sessions and seminars are also used where appropriate. Modules are shared between two ten-week teaching terms running October-December and January-March. Although work for the MSc dissertation commences during the second term, most of the research work is carried out during the summer months.

The duration of full-time study is 12 months. A part-time route is also available, where students spend two years completing this programme, in which students attend lectures for up to two days each week

Assessment of theoretical modules is based on a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. Design-oriented modules are normally assessed by coursework only, where students work both in groups and individually on challenging projects that are varied each year. For the MSc dissertation, students are required to attend a viva following submission of the final report.

In order to pass your programme, you should complete successfully or be exempted from the relevant modules and assessments and will therefore acquire the required number of credits.

The pass mark for each module is 50%. You need to attain a 50% mark for all assessment components.

Modules

There are seven core modules to be taken, plus one elective module, in addition to the research skills module and the dissertation. The number and credits required to gain an award are identified below.

For the following modules: EPM717, EPM711, EPM712, EPM707, EPM720, EPM718, coursework assignments will require you to apply the theory you have learned to specialised problems relating to the field of nuclear power plants. You are required to answer these problems to satisfy the coursework assessment for these modules.

Core modules
-EPM790: Introduction to Nuclear Energy (10 credits)
-EPM717: Advanced Analysis and Stability of Structures (20 credits)
-EPM704: Dynamics of Structures (15 credits)
-EPM711: Design of Concrete Structures (15 credits)
-EPM712: Design of Steel and Composite Structures (15 credits)
-EPM791: Design of Nuclear Structures and Foundations (15 credits)
-EPM707: Finite Element Methods (15 credits)
-EPM697: Research Skills (15 credits)
-EPM698: Dissertation (45 credits)

Elective modules
-EPM720: Earthquake Analysis of Structures (15 credits)
-EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)

Career prospects

This programme is for students interested in the structural aspects of nuclear power plants. Your career will take you to the broader field of nuclear energy. The types of roles we would expect our graduates to achieve are: an on-site engineer or as a design office engineer, building designing or constructing new plants or evaluating and maintaining existing plants or decommissioning plants at the end of their life cycle. You could also go to the research arena conducting innovative research in the area of nuclear science at research labs or in academia.

Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less
The understanding of plant diversity and resources has never been more important. As we face the unprecedented challenges of climate change and environmental degradation, effective environmental surveillance and conservation depend upon detailed knowledge of plants and their habitats. Read more

Programme description

The understanding of plant diversity and resources has never been more important. As we face the unprecedented challenges of climate change and environmental degradation, effective environmental surveillance and conservation depend upon detailed knowledge of plants and their habitats.

This programme is run jointly by the University and the world-renowned Royal Botanic Garden Edinburgh (RBGE).

This programme is run jointly by the University and the world-renowned Royal Botanic Garden Edinburgh (RBGE). The RBGE is home to one of the world’s best living collections of plants (15,000 species across four sites, amounting to five per cent of known world species), a herbarium of three million preserved specimens and one of the UK’s most comprehensive botanical libraries.

RBGE offers collections-based biodiversity research opportunities across a wide spectrum of organisms and geographical regions. This diversity, coupled with the RBGE’s world-leading research in different continents, provides an unrivalled masters programme in plant biodiversity.

Programme structure

This programme is full time and consists of two semesters of lectures, practicals, workshops and investigations, followed by a four-month research project. The programme includes a two-week field course in a tropical country (recently Belize).

The programme is delivered mainly at RBGE but also at the University’s King’s Buildings campus.

There are no option elements to the programme – all courses are compulsory.

Courses
Conservation and Sustainability
Taxonomy and Plant Collections
Biodiversity of Angiosperms
Evolution of Cryptogams and Fungi
Evolution of Angiosperms
Plant Geography
Phylogenetics and Population Genetics
Biodiversity of Cryptogams and Fungi

Research:
Your research project will be chosen in consultation with your supervisor, and will link directly with active research programmes at RBGE or other research institutions.

The field trip, together with training and a short practical exam, qualifies you for the RBGE Certificate in Practical Field Botany.

Career opportunities

The programme is good preparation for roles in taxonomy, while many graduates have also continued to PhD studies. Past students have entered a wide variety of jobs at research institutions, conservation agencies and elsewhere.

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Enhance your knowledge and skills in biosciences with an emphasis on biotechnology and increase your competitiveness in the job market. Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by:
-Cell biology
-Molecular biology
-Bioinformatics
-Structural biology.

It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering. Important biotechnological advances including:
-The production of therapeutic proteins using cloned DNA, for example insulin and clotting factors.
-The application of stem cells to treat human disease.
-The enhancement of crop yields and plants with increased nutritional value.
-Herbicide and insect resistant plants.
-Production of recombinant antibodies for the treatment of disease.
-Edible vaccines, in the form of modified plants.
-Development of biosensors for the detection of biological and inorganic analytes.

You gain:
-Up-to-date knowledge of the cellular and molecular basis of biological processes.
-An advanced understanding of DNA technology and molecular biotechnology.
-Knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases.
-Practical skills applicable in a range of bioscience laboratories.
-The transferable and research skills to enable you to continue developing your knowledge and improving your employment potential.

The course is led by internationally recognised academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by a personal tutor.

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biotechnology

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies. Recombinant proteins are also found throughout everyday life from washing powders to cheese as well as many industrial applications.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The Diploma and Certificate are shorter. Starts September and January.

The masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Biotechnology (15 credits)
-Plant biotechnology (15 credits)
-Molecular biology (15 credits)
-Applied biomedical techniques (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (choose one from)
-Human genomics and proteomics (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work; in-depth critical analysis; oral presentations. Research project assessment includes a written report and viva.

Read less
Ethnobotany is essentially interdisciplinary, involving knowledge of plants and their ecology in the context of their cultural, social and economic significance. Read more
Ethnobotany is essentially interdisciplinary, involving knowledge of plants and their ecology in the context of their cultural, social and economic significance.

Ethnobotany is the study of the interrelationship between people and plants, particularly the way in which plants impact on human culture and practices, how humans have used and modified plants, and how they represent them in their systems of knowledge. This programme combines anthropological studies of human-environment interaction and sociocultural knowledge of plants in different parts of the world with ecology, conservation science, environmental law and biodiversity management. It also covers plant conservation and sustainable management practices, taxonomy, and economic botany.

The programme is taught collaboratively with the Royal Botanic Gardens at Kew (a World Heritage Site).

Visit the website https://www.kent.ac.uk/courses/postgraduate/189/ethnobotany

Why study with us?

- One-year Master's programme.

- First programme of its kind in the world and only graduate course in UK and Europe.

- Study with the largest research group for Ethnobotany in Europe.

- More than 25% of our graduates complete PhD programmes.

- Integrates field methods with theoretical perspectives.

- Jointly taught with the Royal Botanic Gardens, Kew, and partners with The London School of Pharmacy, The Eden Project and the Endangered Languages Archive at SOAS.

- Research active lecturers, recognised as being world-leading and internationally excellent (REF2014), with wide geographical expertise.

- Field trips to the ancient woodlands of the Blean, the Powell-Cotton Museum and the Eden Project.

Applicants might also be interested in reading more about the Annual Distinguished Ethnobotanist Lecture (http://www.kent.ac.uk/sac/events/lectures-seminars/ethnobotany-lecture/index.html) and our Ethnobotanical Garden (http://www-test.kent.ac.uk/sac/research/research-centres/ethnobotany_garden.html).

This programme draws on the combined strengths of three academic centres. At the University of Kent, the Centre for Biocultural Diversity (http://www.kent.ac.uk/sac/research/research-centres/cbcd/) has pioneered research and teaching in ethnobotany and human ecology; it has been rated excellent for teaching, and its work in anthropological approaches to the environment flagged for excellence in the most recent HEFCE Research Assessment Exercise.

Careers

The School has a very good record for postgraduate employment and academic continuation. Studying anthropology, you develop an understanding of the complexity of all actions, beliefs and discourse by acquiring strong methodological and analytical skills. Anthropologists are increasingly being hired by companies and organisations that recognise the value of employing people who understand the complexities of societies and organisations.

As a School recognised for its excellence in research we are one of the partners in the South East Doctoral Training Centre, which is recognised by the Economic and Social Research Council (ESRC). This relationship ensures that successful completion of our courses is sufficient preparation for research in the various fields of social anthropology. Many of our students go on to do PhD research. Others use their Master’s qualification in employment ranging from research in government departments to teaching to consultancy work overseas.

Since 1998 we have trained nearly 150 students through our MSc programme. More than 25% of these have moved on to undertake research degrees in some area of ethnobotany (for example, Kent, Oxford, Sussex, Vienna, Florida, Tulane, British Columbia, McGill), or have taken up positions which utilise their training and knowledge, for example, in NGOs such as the Global Diversity Foundation, at the Harvard Museum of Economic Botany, conservation education, at various Botanical Gardens around the world (for example, Kew, Edinburgh, New York, Auckland, Beirut), at the United Nations Environment Programme, and in the pharmaceutical industry. Some have gone on to work in universities or start their own organisations and businesses.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?. Read more
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:
-Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
-Be able to assess the sustainability and environmental impact of food and energy production.
-Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
-Have mastered the key issues and future development trends of your field.
-Have mastered state-of-the-art research and analysis methods and techniques.
-Be able to engage in international activities, project work and communication.
-Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
-Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master’s Programme in Agricultural Sciences comprises four study tracks:
Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing
During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing
During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment
This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface
These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

Selection of the Major

The Master’s Programme in Agricultural Sciences comprises four study tracks, allowing you to focus on a specialisation according to your interests and previous studies: plant production sciences (quota of 40 students), animal science (quota of 25 students), agrotechnology (quota of 15 students), and environmental soil science (quota of 5 students).

You can be admitted to the Master’s Programme in Agricultural Sciences either directly from the relevant Bachelor’s programme or through a separate admissions process. A total of 80 students will be admitted through these two admissions channels.

Programme Structure

With a scope of 120 credits (ECTS), the Master’s programme can be completed in two academic years. The degree comprises:
-60 credits of advanced studies in the selected study track, including your Master’s thesis (30 credits)
-60 credits of other studies from the curriculum of your own or other degree programmes

The study tracks of the Master’s Programme in Agricultural Sciences collaborate across disciplinary boundaries to construct thematic modules around importance topical issues: the bioeconomy, the recycling of nutrients, food systems, and the production and exploitation of genomic information.

You must also complete a personal study plan (PSP). Your studies can also include career orientation and career planning.

Various teaching methods are used in the programme, including lectures, practical exercises, practical laboratory and field courses, practical training, seminars, project work and independent study.

Career Prospects

As a graduate of the Master’s Programme in Agricultural Sciences, you will have the competence to pursue a career or to continue your studies at the doctoral level.

According to the statistics of the Finnish Association of Academic Agronomists, the current employment situation for new graduates is positive. Graduates have found employment in Finland and abroad as experts in the following fields:
-Research and product development (universities, research institutes, companies, industry).
-Administration and expert positions (ministries, supervisory agencies, EU, FAO).
-Business and management (companies).
-Teaching, training and consultation (universities, universities of applied sciences, organisations, development cooperation projects).
-Communication (universities, media, companies, ministries, organisations).
-Entrepreneurship (self-employment).

As a graduate you can apply for doctoral education in Finland or abroad. A doctoral degree can be completed in four years. With a doctoral degree you can pursue a career in the academic world or enter the job market. The qualifications required for some positions may be a doctoral rather than a Master’s degree.

Other admission details

Applications are also accepted from graduates of other University of Helsinki Bachelor’s programmes as well as from graduates of other Finnish or international universities. In these cases, admission will be based on your previous academic performance and the applicability of your previous degree. For the latest admission requirements see the website: https://www.helsinki.fi/en/masters-admission-masters-programme-in-agricultural-sciences-master-of-science-agriculture-and-forestry-2-years/1.2.246.562.20.29558674254

Read less
About the course. -Designed to deepen your understanding of the diversity of plants and their conservation. -Taught by staff from academia and industry. Read more
About the course:
-Designed to deepen your understanding of the diversity of plants and their conservation
-Taught by staff from academia and industry
-Emphasises hands-on experience with plants, so theoretical understanding is matched by practical skills including plant identification
-Excellent record of graduates going on to higher (research) degrees or employment in the sector

WHAT WILL YOU STUDY?

Sample modules:
-Diversity and identification of plants
-Vegetation survey and assessment
-Global biodiversity and conservation
-Critical discussion
-Molecular systematics

Please note that all modules are subject to change.

WHAT CAREER CAN YOU HAVE?

All our master’s programmes emphasise the practical skills that employers need, whether that is the ability to identify plants, carry out environmental assessments or use the latest cutting-edge molecular techniques. As a University of Reading MSc graduate, you will be well equipped to work in the field or the lab, and in the private or public sector. Many of our graduates go on to study for a PhD and pursue a career in research either in industry or in universities.

Typical roles of graduates from our ecology and wildlife-based MSc programmes include conservation officers, project managers, field ecologists and environmental consultants. Graduates from our biomedical MSc programme typically go on to pursue PhD studies or work in the pharmaceutical industry.

Read less
Interactions between plants, fungi and the environment from an evolutionary and historical perspective, with organisational levels ranging from genes to ecosystems, are explored in this programme. Read more

Environmental Biology

Interactions between plants, fungi and the environment from an evolutionary and historical perspective, with organisational levels ranging from genes to ecosystems, are explored in this programme.

You will study the fundamental life processes of plants and fungi at different organisational levels, from molecules and cells to entire plants and ecosystems. The goal of these studies is to understand how plants and fungi function in populations and ecosystems and adapt to continuously changing - often hostile - environments.

Tracks

Within the Environmental Biology Master, you can select a specialized track from the following:
-Plant Biology;
-Fungal Biology;
-Ecology and Natural Resource Management;
-Biomarine Sciences & Palaeoecology;
-Behavioral Ecology.

Read less
How do humans, animals and plants adapt to changing environments?. Concerns about how organisms and the environment affect each other is an issue of modern global society. Read more

Overview

How do humans, animals and plants adapt to changing environments?
Concerns about how organisms and the environment affect each other is an issue of modern global society. How humans, animals and plants adapt to their environment is the central question in Nijmegen's Master's in Biology. The mechanisms that lie underneath this adaptation are studied at all levels, ranging from the smallest living entities, such as molecules and cells to larger entities such as ecosystems, and entire populations.

See the website http://www.ru.nl/masters/biology

Specialisations within the Master's in Biology

You can choose one of the following specialisations:
- Adaptive organisms
- Communities and Ecosystems
- Microbiology
- Water and Environment

Rich programme

This MSc. programme does not only put the interactions between organisms into context, but also integrates all levels of organisation from molecule and cell up to ecosystems and landscapes. This combination results in a rich and coherent programme of Master's courses and exciting internships with state-of-the-art research. It prepares you for a career in science, both fundamental and applied, and also provides the necessary knowledge for innovative evidence-based applications in nature and water management.

Personal tutor

Our top scientists are looking forward to guiding you on a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Radboud University offers you a multitude of research fields to choose from in close collaboration with the
- academic hospital UMCN St. Radboud;
- Institute for Water and Wetlands Research;
- Nijmegen Centre for Molecular Life Sciences;
- Donders Institute.

This allows you to specialise in a field of personal interest.

The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and have open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by with the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personalized Master's in Biology.

Quality Label

This programme was recently rated number three in the Netherlands in the Keuzegids Masters 2013 (Guide to Master's programmes) in the category Biologie (Biology).

Career prospects

This programme provides you with the qualifications you need to start working on your PhD and/or work in the field of communication, business and management or education. Biologists often continue their research careers in universities, research institutes, pharmaceutical companies and public health authorities. On graduation, our students very quickly take up positions as researchers or analysts in government departments, research organisations and medical or pharmaceutical companies.

What biologists do:
- Researchers at universities or in companies
- Supervisors of clinical trials
- Consultants
- Lecturers
- Policy coordinators
- Teachers

Where biologists work:
- Research/education
- Health care
- Business services
- Industry
- Government
- Trade

Our approach to this field

How do humans, animals and plants adapt to a changing environment?
Concerns about how organisms and the environment affect each other is an issue of modern global society. How humans, animals and plants adapt to their environment is the central question in Nijmegen's Master's in Biology. The mechanisms that lie underneath this adaptation are studied at all levels, ranging from the smallest living entities, such as molecules, cells and pollen to larger entities such as ecosystems, river courses and entire populations.

See the website http://www.ru.nl/masters/biology

Read less
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Read more
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Many drugs listed as conventional medications are derived from plants and were originally administered in plant form.

Over recent years, in their search for novel therapeutic agents, there has been a huge rise in interest from the global pharmaceutical industry centred on the isolation and evaluation of compounds from plants used in medical treatment derived from traditional medicine sources.

Based on the increasing importance of this emerging area of natural product science this programme of study will enable individuals with specific expertise in the regulation and development of plant-based medicines to pursue a career in the rapidly expanding phytopharmaceutical industry or a government regulatory body.

The MSc in Phytopharmaceuticals is a taught postgraduate programme which provides an in depth study of natural products, their analysis, value as medicines and regulatory issues controlling their production and sales.

As a MSc Phytopharmaceutical student, you will:

receive a high quality programme which will provide you with the expertise to work in the pharmaceutical industries emerging area of natural product science
be supported throughout your studies by our experienced, dedicated team of staff
study in excellent facilities, including new refurbished laboratories with the latest analytical equipment and Medicinal Herb Garden.

Programme structure

Phytopharmaceuticals is multi-disciplinary. You will study, plant chemistry, phytochemical analysis, analytical methods, quality control, toxicology, ethnobotany, herbal therapeutics, legislation and regulation of herbal products, and research methods.

In order to be eligible for the award of the Postgraduate Diploma, a student shall have passed the two specialist modules, the optional module and the core module; or one specialist module, the research project and the core module (120 M Level credits). Students obtaining 60 M level credits (by the core module and either specialist module or the research project) may be considered for the award of Postgraduate Certificate in Life Sciences.

In order to be eligible for the award of the Masters degree, a student shall have passed both specialist modules, the optional module, the research project and the core module (180 M level credits).

You will be assessed throughout the programme in practical work and theory. Coursework varies and includes laboratory work, data analysis, essays, presentations and examinations.

Career opportunities

Feedback from industry suggests that natural product science is an expanding area of interest resulting in new employment opportunities for qualified individuals with specific expertise in the regulation and development of plant based medicines. Opportunities also exist in teaching, writing and horticulture.

You may also be interested in UEL's MSc Pharmaceutical Science programme.

Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less

Show 10 15 30 per page



Cookie Policy    X