• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Ulster University Featured Masters Courses
"plant" AND "sciences"×
0 miles

Masters Degrees (Plant Sciences)

We have 197 Masters Degrees (Plant Sciences)

  • "plant" AND "sciences" ×
  • clear all
Showing 1 to 15 of 197
Order by 
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we cannot do without plants.

Study Programme

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. It not only covers the technological aspects of crop production, but also deals with important environmental, quality, health and socio-economic aspects. Interdisciplinarity is a hallmark of the programme.

On the programme of Plant Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Sciences are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels, based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences.

You will have the opportunity to study molecular problems from epigenetics through to food crops. Themes include mechanisms of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-molecular-plant-sciences/

Why study Biology & Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. You will gain a broad understanding of molecular plant sciences before specialising in a specific area. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

You will gain a broad understanding of molecular plant sciences before specialising in a specific area. You’ll study the biology of plants at the molecular level.

You will focus on topics including mechanisms of microbial pathogenicity, cell and molecular biology of pollen-stigma recognition, signalling in flowering plants and genomics and gene networks. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including BBSRC, Oxford University and Morvus-Technology Limited.

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-molecular-plant-sciences/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
This programme is suitable for those wishing to carry out a short, in depth research project, and not attend taught programmes. The MSc by Research programmes consist of induction courses, an eight-month research project and a period to write it up. Read more

This programme is suitable for those wishing to carry out a short, in depth research project, and not attend taught programmes. The MSc by Research programmes consist of induction courses, an eight-month research project and a period to write it up. The degree is carefully tailored to your interests, and can be particularly suitable for people undertaking research in a work-based context wishing to gain an academic qualification.

Assessment

Original research and dissertation



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Read more

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge on the physiology, ecology and genetics of cultivated plants.

The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Study programme

This online master's specialisation is designed as a part-time study. The approximate workload is 20 hours per week and gives the student the flexibility to combine work and study. The programme is therefore also suitable for employees who want to continue their education in the sense of life-long-learning.

The general structure is a 2 year part time course-programme followed by a tailor-made internship and master's thesis agreement of 1 or 2 years. Read more about the programme.

Your future career

Graduates from the master's Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach.

Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations. Read more stories of Wageningen University & Research graduates.

Related on-campus programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes. Read more
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes.

These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice.

Example Pathways

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Structural Biology)

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. An important component of the programme will be the opportunity for non-native English speakers to take a specially designed module in communication skills. This module is taught by members of our English Language Unit and will be designed to improve your English in a scientific context. Please see http://www.liv.ac.uk/elu for details.

Read less
This research course focuses on advanced concepts and technologies related to the molecular basis of plant and microbe functions. Read more

This research course focuses on advanced concepts and technologies related to the molecular basis of plant and microbe functions.

The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October.

It consists of two research projects performed in research groups focusing on plant genetic engineering, plant development, plant molecular biology, proteomics, plant biochemistry, plant-microbe interactions, transcriptomics and bioinformatics.

Career opportunities continue to expand as the potential of plant biotechnology is realised by employers, research companies and governments. A high proportion of our graduates are expected to enter further research leading to a PhD degree. There may be opportunities to join one of the Research Council-funded institutes, which develop and monitor a range of aspects of plant biotechnology.

Some graduates may gain employment in the food industry and agrochemical companies, which are increasingly focused on modern approaches to plant breeding. New developments in biofuels research offer future employment opportunities.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/life-sciences/molecular-plant-microbial-sciences/

If you have any enquiries you can contact our team at:



Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Food security. a global concern. There has never been a more urgent need to train food security researchers who are equipped with skills in agronomy, plant pathology, plant disease and plant genetics, and knowledge of modern agricultural systems and agricultural policy. Read more

Food security: a global concern

There has never been a more urgent need to train food security researchers who are equipped with skills in agronomy, plant pathology, plant disease and plant genetics, and knowledge of modern agricultural systems and agricultural policy. As outlined in The Royal Society’s 2009 report Reaping the Benefits: science and the sustainable intensification of global agriculture, it is of vital importance that we increase crop yields significantly over the next 50 years, while also decreasing our dependency on chemical intervention and fertilizers.

Meeting the challenge of sustainable agriculture

This interdisciplinary programme was developed in collaboration with a variety of stakeholders, including: the agricultural industry, government agencies (including Department for Environment, Food and Rural Affairs (defra) and The Food and Environment Research Agency (fera)), and farmers and food manufacturers. Research-led teaching in molecular plant pathology, plant sciences, and microbiology is strongly supplemented by Rothamsted Research, North Wyke expertise in grassland management, soil science, and sustainable farming systems. The combination of expertise in both arable and pastureland systems ensures a truly rounded learning experience. Leading social scientists also provide valuable input on land use and economic practices in rural areas.

The curriculum is designed to address critical shortages of experts capable of working in government agencies, agriculture, and the food industry as researchers, advisers, policy developers, and managers. The programme provides opportunities to gain industrial and practical experience and observe food security issues first-hand during field trips.

Expert teaching

Teaching is enriched by expert contributions from a broad cross-section of the industry. Scientific staff from Fera provide specialist lectures as part of the Crop Security module, members of the Plant Health Inspectorate cover field aspects of plant pathology, and a LEAF1 farmer addresses agricultural systems and the realities of food production using integrated farm management. In addition, teaching staff from the University and BBSRC Rothamsted-North Wyke will draw on material and experiences from their academic research and scientific links with industry.

Industrial and practical experience

All students will have opportunities to gain industrial and practical experiences. Teaching visits will be made to the Plant Health Inspectorate in Cornwall to see quarantine management of Phytophthora, and to a local LEAF farm to review the challenges and approaches to food production in integrated farm management systems. You will gain specialised experience in practical science or policy making through a dissertation or project placement with external agencies. Defra and Fera, for example, are offering five dissertation and/or project placements annually.

Programme structure

The programme is made up of modules. The list of modules may include the following;

  • Professional Skills;
  • Research Project;
  • Sustainable Land Use in Grassland Agriculture;
  • Crop Security;
  • Sustainable Livestock and Fisheries;
  • Political Economy of Food and Agriculture
  • Research and Knowledge Transfer for Food Security and Sustainable Agriculture

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for an up to date list (http://www.exeter.ac.uk/postgraduate/taught/biosciences/foodsecurity/#Programme-structure)

Addressing a skills shortage to tackle global food security

The MSc Food Security and Sustainable Agriculture curriculum has been designed in collaboration with the agricultural industry to tackle the skills shortage that exists in this vital interdisciplinary area. This programme will provide the highly skilled individuals required in government agencies, agriculture and food industries for critical roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security.

Global horizons

With food security and sustainable agriculture a global concern, opportunities for specialists in the areas of agronomy, plant pathology, plant disease and plant improvement will be worldwide. By combining expertise across the natural, social and political sciences, this programme provides valuable interdisciplinary knowledge and skills in both arable and pastureland systems. Graduates will be prepared to take on the global challenges of food security and sustainable agriculture, being able to adapt to farming systems across the world and identify cross-disciplinary solutions to local agricultural problems.

Learning enhanced by industry

The programme is enriched by expert contributions from a broad cross-section of the industry, with specialist lectures, teaching visits to observe the practical application of techniques, and industrial placement opportunities for project work or dissertations in practical science or policy making.



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Do you want to have an impact on what people will eat in the future? Would you like to know what makes food taste good, due to the raw materials and processing technologies? Do you want to know how we could improve the healthiness, safety, ecology and ethics of food and food processing? Are you interested in exploring innovations in food, such as "pulled oats" or using insects as food? If you answered yes, enrol in Food Sciences master’s programme.

The food industry is the 4th most important employer both in Finland and internationally. This industry is constantly looking for experts to solve new problems. With a Master’s degree in Food Sciences you could embark on a career in the food industry; in a food, agricultural or environmental control laboratory; as a teacher, researcher, or self-employed entrepreneur; or as an expert in government ministries or other expert organisations.

As a master in Food Sciences you will be able to help the food industry develop and renew itself, since you will possess know-how on:

  • Raw materials and processes, including their theoretical basics
  • Different food constituents and their impact on food quality
  • Factors that ensure good quality and food safety

You can enrol in the Food Sciences masters' programme if you hold a bachelors' degree in Food Sciences or in Molecular Biosciences. You can also apply to the programme if you have a bachelors' degree in a related area of the natural sciences from a Finnish or foreign university, or if you have a degree from a Finnish university of applied sciences within food sciences or other related areas of the natural sciences.

Your studies in the Food Sciences masters' programme will offer you a broad education covering courses in the composition and processing of food, in the structures and chemical reactions of food proteins, lipids and carbohydrates, and in food legislation and the safety of food additives.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

Food Sciences on the Viikki campus is a nationally unique programme that covers the whole food production chain from primary production via food processing to consumers. Food Sciences is an internationally appreciated field of education: food research at the University of Helsinki has been highly ranked.

Your masters' studies in food sciences will enable you to make an impact on the the creation of innovative solutions for the whole chain of food production. You will:

  • Study the theory and applications of the broad area of food sciences in lecture courses and in group work 
  • Increase your knowledge of food composition, processing, structure, and legislation
  • Deepen your knowledge of how the reactions of different food components, production processes and packaging affect the structure, sensory quality, healthiness and safety of animal and plant based foods
  • Learn laboratory working skills
  • Acquire employment skills for example by training in the food industry

Se­lec­tion of the study track

You can affect the sort of expertise you would like to gain. You can tailor your Master’s degree by choosing special studies in food chemistry, food technology, and in the science and technology relating to meat, dairy and cereals.

You can also complement your expertise in food sciences with, for example, studies in food development, food safety, food research and analysis, economics, marketing, sustainable food production, microbiology, biotechnology or nutrition.



Read less

Show 10 15 30 per page



Cookie Policy    X