• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Leeds Featured Masters Courses
Swansea University Featured Masters Courses
"plant" AND "protection"×
0 miles

Masters Degrees (Plant Protection)

We have 44 Masters Degrees (Plant Protection)

  • "plant" AND "protection" ×
  • clear all
Showing 1 to 15 of 44
Order by 
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Food production has tripled in the last forty years, but one billion people still go hungry every year. On average 30% of all food produced is wasted in the pathway from ‘field to fork’. Read more

Food production has tripled in the last forty years, but one billion people still go hungry every year. On average 30% of all food produced is wasted in the pathway from ‘field to fork’. With the global human population set to rise from seven to over nine billion by 2050, we urgently need sustainable solutions that will allow us to increase the global food supply while preserving the integrity of agricultural and non-agricultural ecosystems.

Our trees and forests face new plant health threats which in turn threaten areas of great natural beauty and diversity, and affect both rural and urban landscapes. Our unique MSc Sustainable Plant Health will give you the opportunity to develop your understanding of the vital role of plant health, applying your skills by conducting laboratory and field studies.

This programme is primarily aimed at graduates wishing to pursue a career in plant protection in agriculture, horticulture, forestry or urban settings, and also careers in policy development and implementation, plant health inspection, academic and industrial research, consultancy and conservation management, and private industry.

Programme structure

This 12 month programme involves two semesters of classes followed by an individual research project. Students will take 80 credits of compulsory courses, with the opportunity to choose two optional courses. Field trips will also form a crucial part of this course.

Compulsory courses typically will be*:

  • Fundamentals of Plant Health
  • Forensic Plant Health
  • Plant Health in a Global Context
  • Research Skills and Field Trip
  • Dissertation

Option courses may include* (select two):

  • Applications in Ecological Economics
  • Atmospheric Quality and Global Change
  • Case Studies in Sustainable Development
  • Ecology of Ecosystem Services
  • Ecosystem Service Values
  • Environmental Impact Assessment
  • Forests and Environment
  • Foundations in Ecological Economics
  • Frameworks to Assess Food Security
  • Human Dimensions of Environmental Change and Sustainability
  • Interrelationships in Food Systems
  • Land Use/Environmental Interactions
  • Principles of Environmental Sustainability
  • Soil Ecology and Taxonomy
  • Soil Protection and Management
  • Soil Science Concepts and Application
  • Sustainability of Food Production
  • Understanding Environment and Development

*Please note: courses are offered subject to timetabling and availability and are subject to change each year.

Learning outcomes

On completion of this course our graduates will have gained:

  • Specialist knowledge and understanding of plant health, and its evaluation, impact and management
  • Skills to detect and identify agents detrimental to plant health
  • An understanding of the nature and diversity of plant health interactions
  • The ability to develop strategies for plant health management taking into account their impact on agricultural and non-agricultural ecosystems
  • Knowledge of the relevance of plant health to sustainability and food security
  • Improved analytical skills and critical thinking

Career opportunities

Plant health scientists are employed in a range of vocations: environmental consultancy, research, overseas development, agriculture, horticulture, forestry, urban planning, policy development, plant inspection and management. Long term career prospects are strong as agricultural scientists will continue to be needed to balance increased output with protection and preservation of ecosystems.

Our graduates will gain particularly valuable skills due to our programme's unique approach looking at impacts across ecosystems. They also benefit from the applied nature of the course allowing them to use their practical skills in a range of field trip environments with expert supervision.



Read less
This master's degree provides students with in-depth theoretical knowledge of the field and new techniques in product synthesis, catalyst development, management of environment-friendly chemical processes, and computational design. Read more
This master's degree provides students with in-depth theoretical knowledge of the field and new techniques in product synthesis, catalyst development, management of environment-friendly chemical processes, and computational design. It is primarily research-oriented, so graduates will be able to undertake research, development and innovation in industry. The general objectives are the following:
i) To provide high-level scientific training in the fields of: molecular synthesis, catalysis and design, so that graduates can undertake doctoral studies and pursue a scientific or academic career.
ii) To provide graduates with a capacity for innovation and the necessary skills to synthesise sustainable chemical products and processes in the professional world.

The aims of the courseg are the following:
-To enable students to use synthetic methodologies and design ways of obtaining new products with the tools of computational chemistry.
-To familiarise students with modern techniques for characterising molecular compounds, surfaces and solids.
-To provide tools for understanding the most advanced principles and applications of catalysis.
-To train students to design chemical processes on a laboratory or industrial scale through channels that meet the standards of sustainability and environmental friendliness.
-To provide students who wish to undertake doctoral studies with more advanced, specific knlowledge relevant to their research: synthesis, catalysis or modelling.

Student Profile

This master's degree is designed for students who have an official university degree in chemistry, chemical engineering or a related science.

Career Opportunities

The University Master's degree in Synthesis, Catalysis and Molecular Design is primarily research-oriented but is suitable for students who wish to pursue a career in the manufacturing sector. It provides the following career opportunities:
-Doctoral studies.
-Leading sectors of production that have interdisciplinary research groups. The spectrum is broad, as most industrial processes require catalysts. However, the sectors with which the master's degree is most involved are fine chemicals in general: synthesis of intermediates, pharmaceutical chemistry, agricultural chemistry, plant protection products and synthesis of polymers and smart materials. Graduates will be able to design and develop new products and processes in chemical companies in general.

Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. Read more
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. The common part of the programme consists on the one hand of basic knowledge, insights and skills in the areas of production, transformation, preservation, marketing and consumption of food products. On the other hand, it contains a practically oriented component that enables the alumni to identify problems by means of quantitative and qualitative research methods and analytical techniques, to assess and rank causes, and to plan, to execute and to evaluate appropriate interventions.

The other part of courses given during the first year are main subject specific courses. The academic second year provides a more in depth understanding of the specific problems and their solutions for the main subject and major chosen and consists of main subject and major specific courses, elective (optional) courses and Master Dissertation research (30 ECTS).

The specific expertise the students receive depends on the main subject, major and optional courses chosen.

Tropical Agriculture

Delivers technical knowledge related to agriculture focussing on developing countries. The students can specialize in animal production or plant production by choosing the specific option. The major on Animal Production delivers in depth knowledge on production biology, animal nutrition, pasture management, animal genetics. The major on Plant Production focuses on themes like ethno-botany, crop protection, plant breeding, plant biotechnology. The courses are applicative and aim at presenting solutions for production problems in developing countries in an interdisciplinary way.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Common and main subject specific basic courses.
-Fundamental, in depth and high level knowledge.
Semester 2 (Febr-June)
-Main subject specific courses with special attention to ‘in field’ applications.
-Possibility to do internships in summer holidays.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Specialised courses (fine-tuned individual programme).
-Master dissertation (at Ghent University, other Belgian institutes/organizations/multinationals or one of our partners in the South or Europe).

Learning and Outcomes

Have thorough knowledge and comprehension (theory and practice) l in the interdisciplinary domains: food and feed production, socio-economic, (public health) nutrition and management concepts, theories and skills, and in the main subject specific domains and the chosen major domains. The program additionally focuses on international collaboration.
-Major: Public Health Nutrition : Have profound insights in public health nutrition realities and compare public health nutrition issues, approaches and policies within the international context
-Major Nutrition Security and Management: Have profound insights in different food/nutrition security realities and compare nutrition security issues, approaches and (nutrition) policies within an international context
-Major Plant Production: Have profound insights in plant production realities and compare plant production issues, and approaches within the international context
-Major Animal Production: Have profound insights in animal production realities and compare animal production issues, and approaches within the international context

Apply theories and methodological approaches to characterize and analyse specific problems: food, nutrition and agricultural chains, food sovereignty /safety and security, natural resource management, sustainable production, economic and social problems of rural areas, national and international agriculture.

Design and implement adequate instruments, methods, models and innovative tools to analyse, evaluate and solve interdisciplinary related problems in the context of sustainable development.

Apply the interdisciplinary tools to design, implement, monitor and evaluate national and international agro-nutrition policies and programs. More specifically:
-For Human Nutrition: construct innovative tools and instruments for the development of a better nutritional health status of a country/region/area and its inhabitants/households.
-For Tropical agriculture: a more efficient and economic feasible agricultural balanced, food production guaranteeing a better food security situation per country respecting local environment.

Assess the importance and magnitude of a problem, define strategies for intervention and/or identify knowledge gaps. Develop a research protocol based on the analysis of existing evidence and set up a research plan, analyse and interpret the data and present the findings.

Identify, select and apply appropriate research methods and techniques to collect, analyses and critically interpret data.

Critically reflect on program specific issues, and on ethical and value driven aspects of research and intervention strategies.

Take up a trans-disciplinary role in an interdisciplinary ((inter)national) team dealing with global challenges, and develop a global perspective.

Dialogue and professionally interact with different actors and stakeholders from peers to a general public to convincingly communicate evidence based research findings and project results.

To effectively use appropriate communication and behavioural skills in different language and cultural environments.

Learn to continuously critically reflect (individually and in discussion with others) upon personal knowledge, skills, attitudes, functioning, and develop an attitude of lifelong learning. This includes:
-Design and plan own learning processes.
-Self-Directed Learning: work independently, take initiative, and manage a project through to completion.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Are you interested in crop protection and sustainable agriculture? Are you looking for a research career working in agriculture and related areas? Do you want to do something positive for the environment? Then this is the postgraduate course for you. Read more

Are you interested in crop protection and sustainable agriculture? Are you looking for a research career working in agriculture and related areas? Do you want to do something positive for the environment? Then this is the postgraduate course for you:

The course

The continuing production of safe, wholesome food in an environmentally sensitive manner is a major political issue for national governments and internationally within global commodity markets. A report produced by the UK Cabinet Office in 2008 (Food Matters: Towards a Strategy for the 21st Century) predicts that the global population will rise to 9Bn by 2050 rising from a current estimate of nearly 6.8Bn. This increase in population size will substantially increase the demand for food. The global estimates vary in magnitude, but it is thought approximately 25% of crops are lost to pests and diseases, such as insects, fungi and other plant pathogens (FAO Crop Prospects and Food Situation 2009). 

The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions. 

Research projects are available in a wide range of subjects covered by the research groups within the Crop and Environment Sciences Department and choices are made in consultation with expert staff. Projects at linked research institutes in the UK and overseas are also available. The course is underpinned by an extensive programme of research at Harper Adams and long-standing collaborations with research institutes and other organisations in the UK and overseas.

A distinctive and integral feature of our MSc is the high degree of input from entomologists, plant pathologists and pest managers in collaborating governmental organizations and commercial biological control companies. This participation takes a variety of forms, including guest lectures, field visits and specific training courses, but may also include providing research projects in their organizations.

Examples of collaborating organizations include, CEH Wallingford, Forest Research, Horticultural Development Company, The International Pesticide Application Research Centre, The Natural History Museum London, Rothamsted Research, and Wye Bugs.

How will it benefit me?

Having completed the MSc you will be able to identify the underlying causes of major pest and disease problems and recognize economically important insects, plant diseases and weeds. 

You will also be able to apply integrated pest control methods and oversee their application. The course will focus on the ecological and management principles of pest control and you will learn to evaluate the consequences of pesticide use and application on the biological target. You will also receive training in the evaluation of the economic and environmental costs of integrated approaches to pest control in relation to biological effectiveness. Ultimately, the course will enable students to produce integrated pest and disease management solutions that pay due regard to agricultural, horticultural, social and environmental requirements.

In addition, there is considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions

The research project for the MSc will allow you to test hypotheses relevant to pest and disease management research by designing, carrying out, analysing and interpreting experiments or surveys. You will learn to evaluate and interpret data and draw relevant conclusions from existing pest and disease management case studies.

The MSc covers a broad range of topics relevant to pest and disease management and all students receive training in fundamental skills which will enable them to enter a vocational work environment or pursue a research career. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions. 

Scholarships and funding

The Horticultural Development Council typically fund three bursaries each of £5,000 to support the MSc IPM course. Visit the scholarship page for further details and application information.

The full-time and two year part-time courses are eligible for a postgraduate loan.

Unfortunately many universities have closed down or reduced their teaching and research in agriculture and crop science. There is a shortage of expertise in important topics, often in subjects that are closer to the farmer, where UK scientists and agronomists have traditionally played a leading role. Several key subjects are particularly vulnerable, including plant breeding, various aspects of pathology including mycology and virology, whole plant and crop physiology, agricultural entomology, nematology and soil science. There is a danger that valuable skills will be lost as researchers and teachers retire.

(Reaping the benefits: Science and the sustainable intensification of global agriculture - October 2009, Royal Society)

Documents



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:

  • Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
  • Be able to assess the sustainability and environmental impact of food and energy production.
  • Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
  • Have mastered the key issues and future development trends of your field.
  • Have mastered state-of-the-art research and analysis methods and techniques.
  • Be able to engage in international activities, project work and communication.
  • Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
  • Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Agricultural Sciences comprises four study tracks:

Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing

During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing

During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment

This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface

These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

For further information about study contents, visit the programme home page.



Read less
Agriculture faces many challenges, not least coping with the rising demand for food, biofuel and other products by an increasing population combined with the demands for a more sustainable industry. Read more
Agriculture faces many challenges, not least coping with the rising demand for food, biofuel and other products by an increasing population combined with the demands for a more sustainable industry. Food security is key and requires the reconciliation of efficient production of food with reducing agriculture’s environmental footprint.

About the course

The MSc Environmental Management for Agriculture course examines agriculture activities and their potential to impact both positively and negatively on the environment. It explains how environmental management systems, environmental auditing, life cycle assessment and environmental impact assessment can be used in the farm situation.

This course aims to use environmental management to deliver sustainable agricultural management. Students will gain a holistic understanding and the interdisciplinary training to identify on-farm environmental risks and the knowledge and skills needed to develop answers.

The two specialist core modules have been designed to ensure understanding of the issues, where the science is balanced with the practical demands of the farm/producer/grower. You will develop the expertise required for a career in research, development, policy, or within the advisory sector relating to sustainability in farming systems, the food supply chain, environmental management and rural development, or to apply there skills in agriculture.

Crop plants are prone to suffer the effects of pests, pathogens and weeds and these reduce crop productivity. The next generation of crop protection scientists need to be educated to undertake this task and the MSc Environmental Management for Agriculture course also has two option modules in crop protection to enable this route to be followed if you want to pursue a career in applied biology, particularly in the area of crop protection science, peri-urban agriculture/horticulture and related areas.

The structure of the MSc Environmental Management for Agriculture course is based on four core modules and a choice of five specialist modules, as well as a supervised research project related to the field of agriculture. Students will begin their studies, for both full-time and part time students, with a core module in Sustainability and Environmental Systems.

This course is available both full and part-time with intakes in September (Semester A) and January (Semester B). Full time study in Semester A takes 1 year. Full time study beginning in Semester B will take 15 months. Part time study options typically take two years but students are given a maximum of five years to complete.

Why choose this course?

-Learn environmental skills to enable the delivery of sustainable agricultural production
-Crop protection modules are available
-BASIS points are available for specialist agriculture modules
-Flexible modular structure enables students to study whilst working. This allows part-time student to not have to take more than 12 days off a year (if studying over 2/3 years)
-Accredited by the Institute of Environmental Management and Assessement (IEMA) and the Chartered Institution of Water and Environmental Management (CIWEM)
-Networking opportunities per module with lunch and refreshments provided within your fees
-Learning resources such as textbooks will be provided within your fees

Professional Accreditations

Three modules are accredited by the Institute of Environmental Management and Assessment (IEMA) for Associate membership (giving exemption from the Associate Entry Examination). Accreditation by the Chartered Institution of Water and Environmental Management (CIWEM) is being applied for. BASIS points are available for the specialised agriculture modules.

Teaching methods

The MSc Environmental Management for Agriculture course approach integrates blended learning, combining:
-Face-to-face teaching and tutorials with online learning materials
-Field and laboratory work
-Easy contact with tutors
-Online submission of assignments

All modules are delivered as intensive two or three day short courses that run primarily on Thursdays, Fridays and Saturdays.
Full-time students attend tutorials in the weeks following a short course, receiving face-to-face support.

Part-time students attend courses at the University for only about eight working days a year. These students complete their assignments through making use of our outstanding virtual learning environment Studynet and keeping in remote contact with tutors. Students normally complete the part time course within two years but we give maximum of five years.

Our outstanding virtual learning environment Studynet will enable you to keep in remote contact with tutors and submit assignments online.

Assessment is primarily by assignments, often directly related to environmental management in the workplace or field. These can include reports, essays, seminars and online tests.

You have access to excellent University facilities including a field station, laboratories and state of the art Learning Resource Centres.
Each module can be studied individually as a stand-alone course, please enquire for further details.

Structure

Core Modules
-Agricultural Pollution and Mitigation
-Foundation in Environmental Auditing
-Integrated Farm Management
-Management Skills for Environmental Management
-Sustainability and Environmental Systems

Optional
-Crop Pathogens, Pests and Weeds
-Crop Protection; Principles & Practice
-Ecology and Conservation
-Environmental Management for Agriculture Individual Research Project
-Integrated Waste and Pollution Management
-Research Methods
-Sustainability and Environmental Systems
-Water Pollution Control

Read less
Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career. On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. Read more

Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career.

On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. You can specialise in exciting contemporary topics in the areas of human disease, bioinformatics, biotechnology and plant science, and choose from a range of optional modules, including those associated with the specialisms we offer. This means you can study the topics that interest you and match your career aspirations.

You’ll also carry out an independent research project in an area related to your course options.

The course is 100% coursework assessed (although some modules have small in-course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Course content

This course is designed to equip you with the expertise necessary to work at the forefront of the modern bioscience sector. We’ll offer you a combination of practical training and theoretical modules to help you build your knowledge and skills.

The practical experience you gain during this degree is a vital part of your career preparation. You’ll receive substantial training in practical methods and technologies currently being used to advance the biological sciences.

During the course you’ll apply yourself through core research training modules. You’ll undertake a laboratory-based mini-project providing a hands-on experience in molecular biology techniques. You’ll also carry out a laboratory-based independent research project on an innovative topic related to your course options.

Importantly, we’ll also give you a strong foundation of theoretical teaching to enhance your practical training. You’ll develop your knowledge through research planning exercises and by studying methodologies underpinning contemporary bioscience, with many optional modules available to choose from, including Advanced Immunology, Plant Biotechnology, and Medical Diagnostics.

Course structure

Compulsory modules

  • Practical Bioinformatics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

Optional modules

  • Bioimaging 10 credits
  • Advanced Immunology 10 credits
  • Topics in Plant Science 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Drug and Chemical Toxicology 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • Medical Diagnostics 10 credits
  • Treatment of Infectious Disease and Cancer 10 credits

For more information on typical modules, read Bioscience MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

The learning context has a strong research ethos, preparing you for academic (PhD and post-doctoral), industrial or public sector research. Taught modules address problems at the forefront of the subject, and learning activities (such as group work and mini-research projects) are designed to develop your subject-specific knowledge and research skills.

Your major project will involve cutting edge research with potential for publication in peer reviewed literature.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Bioscience MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications

You will also have access to seminars and presentations from industry professionals (including our alumni) at faculty led career events. We also have regular research seminars presented by leading academics from around the world on their specialist subjects.



Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less
MSc Italian FOOD & WINE (ItF&W). The "Italian Food and Wine" MSc degree will focus on the understanding, management, promotion and protection of high-value food products, including wine. Read more

MSc Italian FOOD & WINE (ItF&W)

The "Italian Food and Wine" MSc degree will focus on the understanding, management, promotion and protection of high-value food products, including wine.

Programme Summary

In this MSc course, the internationally-recognised Italian food production system is analysed as a model for defining and characterising the individual elements that contribute to the unique value of food products that are inextricably linked to place (terroir) through historic, social and cultural ties. These elements also include more recent developments in technology, nutrition, food safety, diet and health, and sensory science that are at the heart of a growing international demand for terroir-related high-value foods.

The specific learning outcome is a deep understanding of the multi-faceted characteristics that distinguish these foods from others in the marketplace and that can be exploited in products’ valorisation and consumer information strategies both in the EU and international markets. The ultimate objective of this multi-disciplinary program is to train professionals who are well-versed in the complex system of producing high-value foods and wines whose quality is profoundly linked to tradition and place of origin.

Who is the MSc candidate?

This programme is open to Italian and foreign students interested in learning and implementing effective actions for the valorisation of high-quality food products and wines.

What career opportunities does the MSc provide?

Graduates will be expert in the technical and economical management, valorisation and protection of high quality agro-food products - in an export and territorial development-oriented perspective - by using the Italian system as the reference model. He/she will find employment opportunities in quality-oriented agro-food companies, in producers' organizations, and in public and private consultancy companies involved in the protection, valorisation, marketing, consulting, training and communication activities for high-quality agro-food products.

The most relevant positions concern: ii) marketing of high-quality foods and wines, on both the EU and international market; ii) design and implementation of promotion and protection strategies for these products; iii) management of producers' organizations; iv) 'off-trade' and 'on-trade' buying activities, mainly in the international market; v) information on high-quality foods and wines management; vi) planning and management of territorial development strategies based on 'terroir-related' quality agro-food products.

How is the programme organised?

During the two-years MSc course students choose 12 course units – according to their individual background and interest - among the following:

Plant biodiversity and food

Animal biodiversity and food

Quality, processing and sensorial analysis of Italian food

Quality, processing and sensorial analysis of Italian wine

Food microbiology and quality

Food safety and hygiene

Food traceability for food quality

Food, wine and nutrition

Value adding quality schemes and consumer demand

Food and Wine-based territorial valorization and rural development

Quality-oriented Food and Wine management and governance

Consumer behavior

Food, wine and society

Food and Wine history and anthropology

Food and wine: perspectives from abroad

Foreign language (Italian or English)

Teaching includes lectures, laboratory and field activities, practical exercises, and seminars by outside experts that feature a rich variety of relevant case studies of Italian foods and wines. Opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in this sector of the food industry or with other relevant organisations in the private or public sphere.

Visit the MSc “Italian food and wine” page on the Università di Padova web-site (http://www.unipd.it/en/italian-food-and-wine) for more details.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Who is it for?. This MSc degree is aimed at graduates with at least two years of practical experience in construction; however, more recent graduates with a good appreciation of construction processes will also benefit. Read more

Who is it for?

This MSc degree is aimed at graduates with at least two years of practical experience in construction; however, more recent graduates with a good appreciation of construction processes will also benefit.

Having achieved a firm grounding in engineering you may be keen to develop your skills as a practical engineer working on site or enhance design skills if you are engaged in permanent works design.

Objectives

The course provides the following:

  • An introduction to statutory obligations, management methods and special design considerations for temporary works;
  • Design of structures used in and for temporary works, their construction and monitoring;
  • Design of geotechnical temporary works and processes, including groundwater control and ground investigation;
  • Design of temporary works for marine construction, in particular floating structures and the effect of waves and varying water levels;
  • The use of plant in temporary works and the provision of appropriate working platforms and access;
  • Demolition and alteration of structures, including the disposal/reuse of construction waste.

Accreditation

Accreditation by the Joint Board of Moderators (The Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highways Engineers):

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See the JBM website for further information

The accreditation report commended the MSc for addressing an area which is important in the construction industry but which does not often receive attention in existing degree programmes. It also identifies as examples of good practice the support from the Temporary Works Forum and the number of visiting lecturers who have committed to contribute to the programme.

Teaching and learning

The learning and teaching approach for the course encompasses a range of methods which support active learning including lectures, workshops, group work, case studies, problem-based learning, presentations and peer review.

Workshops, group work, case studies and problem-based learning will be used to build your ability to critically review and assess options for design and assessment of temporary works. Your learning will be supported by the online learning environment Moodle, which will provide resources for independent learning, such as further reading, links to wider sources of information and quizzes for self-assessment.

All modules involve undertaking a certain number of individual and/or group assignments (coursework) during the teaching terms, as well as comprehensive final examinations.

Part-time students are expected to complete all the modules within the two-year period. The teaching periods are structured to deliver core modules in a sequence, which permits engagement by part-time students alongside full-time students. The project is undertaken by part-time students in the second year.

Teaching normally takes place on two full days per week, although there may be some variations to accommodate practical exercises and site visits. In addition, there is an introduction week at the start of the programme each year which is attended by all full and part-time students.

This method of delivery is designed to accommodate students working full-time within reasonable commuting distance of City, University of London, as well as to full-time students, by concentrating tuition into two days per week on average, and encouraging flexibility for independent study.

Modules

Temporary works refers to works enabling the construction of, protection, support or provision of access to permanent works which might or might not remain in place at the completion of a construction project. Examples of temporary works include structures such as gantries for heavy plant, materials or accommodation as well as supports for partially-completed or partially-dismantled structures, excavations and accesses. The course delivery and content is actively supported by the Temporary Works Forum (TWf), which promotes best practice within the UK construction industry and sponsors the Centre of Excellence in Temporary Works and Construction Method Engineering at City, University of London. The course content has been developed in collaboration with the TWf membership and TWf members will contribute to lectures and design exercises.

The course addresses the regulatory background to temporary works for construction, the design of geotechnical, structural and marine temporary works, demolition, plant, safe working methods and access works. You will gain both the technical understanding to undertake safe but cost-effective designs for a full range of temporary works and a good understanding of the wide range of plant and techniques that can be employed.

The programme will be delivered by industry experts providing insights into current practice in temporary works and academic members of staff experienced in the theory underlying the design methods employed. There will be visits to operational sites and practical exercises to provide opportunities to experience decision-making in the field, combined with group sessions to develop your knowledge further through active engagement. This will also require you to present your work occasionally, participate in peer review sessions and work in teams.

The course consists of eight taught modules and a project. The project is a major individual research exercise on a topic relevant to temporary works and construction method engineering. The main outcome of the project is a written report (dissertation).

Career prospects

Temporary works are an important aspect of most construction projects. Consequently, a qualification in this field will have widespread application across all civil engineering disciplines, whether you are working as an on-site engineer or as a design office engineer. You could also go into the research arena conducting innovative research in the area of temporary works.



Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less

Show 10 15 30 per page



Cookie Policy    X