• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Bradford Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Loughborough University Featured Masters Courses
"plant" AND "physiology"×
0 miles

Masters Degrees (Plant Physiology)

  • "plant" AND "physiology" ×
  • clear all
Showing 1 to 15 of 38
Order by 
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
This is an online Master specialisation within the MSc Plant Sciences. Read more

MSc Plant Breeding

This is an online Master specialisation within the MSc Plant Sciences

ONLINE OPEN DAY: 17 MARCH 2016

Would you like to know more about the Master programmes of Wageningen University, join us for the Master online open day on 17 March 2016! During the online open day you can meet the staff and students of the Master programmes, experience Wageningen University and check out the innovative campus. You can also ask your questions about application and admission, scholarships, the education system and much more, all online!

sign up now

http://www.wageningenuniversity.eu/masteronlineopenday

Online Master

The online master specialisation is designed for part-time study (approx. 20 hrs/week) to combine work and study or in the context of Life-Long-Learning. A course-programme of 2 years will be followed by a tailor-made internship and Master thesis. During the courses, you will closely collaborate with lecturers, tutors and fellow distance learning students on a virtual learning platform. The course programme includes two short stays of two weeks, each in Wageningen, for essential practicals that relate to the theory. There may be options to organise the academic internship and Master thesis in your own professional context, either parttime or full-time.

Programme summary

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge of the physiology, ecology and genetics of cultivated plants. The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Your future career

Graduates of the Master Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Student Timo Petter.
After 10 years of practical experience in Allium breeding, Timo subscribed to follow courses of the master Plant Breeding and Genetic Resources. His job at Bejo Zaden brought him to many countries where the breeding company has her trial fields, breeding stations and sales representatives. But as a crop research manager he started to feel the need to improve his knowledge of the theoretical side of his profession: “Although I have not finished my masters yet, I use the knowledge that I have gained from the various courses every day! For a plant breeder, I believe that this master is the best educational programme available in the Netherlands.”

Related on-campus programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students must talk to their proposed supervisor about possible project areas (see below) and have a project approved by interview with the supervisor and Head of Discipline prior to application via http://www.pac.ie (PAC code: CKS81).

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012 Marine Megafauna (10 credits)
BL6016 Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)
BL4004 Frontiers in Biology (5 credits)
BL4005 Research Skills in Biology (5 credits)
BL4006 Food Production (5 credits)
PS6001 Plant Genetic Engineering (5 credits)
PS4024 Crop Physiology and Climate Change (5 credits)
PS4021 Environmentally Protective Management of Plant Pests and Pathogens (5 credits)
ZY4021 Evolutionary Ecology (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Animal or Plant Science.

Current projects:

- The effect of lactation housing on the behaviour and welfare of pigs
- Understanding viral pathways in marine environments
- Distribution and diet of otters in a rural/urban streamscape
- Novel approaches in the use of freshwater macroinvertebrates for biomonitoring
- The ecology of Sika/Red/Fallow deer in Ireland
- Catching prey; the role of Ultraviolet radiation in attracting insects by carnivorous plants
- Birds as dispersers of plant propagules
- Does the phytotoxicity of nanoparticles depend on environmental parameters?
- The role of biochar as a sustainable soil amendment
- Effects of Eutrophication in shallow subtidal marine systems
- Use of Brachypodium sylvaticum as a model for growth regulation in perennial forage grasses
- Effect of temperature on spring growth of perennial ryegrass cultivars

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Animal or Plant Science.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Animal or Plant Science.
- Understand the basis and application of field and laboratory methods used in Animal and Plant Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills (e. g. biostatistics).
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication

How to apply

Students should consult the MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
The MSc in Animal Behaviour addresses the interaction between environment, experience and physiology in the development and dynamics of behaviour. Read more
The MSc in Animal Behaviour addresses the interaction between environment, experience and physiology in the development and dynamics of behaviour. There is an applied element in terms of how the principles of animal behaviour can be applied to practical problems such as animal welfare and conservation. Students can gain experience of laboratory studies (of invertebrates) and field work. The programme features a strong numerical and research-orientated approach. A range of elective units are available, including Zoo Conservation Biology which takes place at Chester Zoo. There is also a compulsory residential field course in Poland or Tanzania.

The MSc is completed by a research-based project which can be carried out overseas or in the UK. There are also opportunities to work within Manchester Met research projects in Tanzania, Kenya, the Philippines, Mauritius and Madeira.

Non means-tested loans of up to a maximum of £10,000 will be available to postgraduate master’s students.

Features and benefits of the course

-We work with the College of African Wildlife Management and the Kenya Wildlife Service and are able to offer unique fieldwork experiences in Tanzania and Kenya.
-You will have the opportunity to stay for six weeks at one of our research bases in Tanzania or Kenya to collect data for your own research project.
-Course delivery is flexible and most lectures take place in the evening. Lectures, other course materials and assessment information are available via our online learning platform, Moodle.
-In the last ten years we’ve invested over £50 million in our home, John Dalton building, including high specification teaching and research facilities for biochemistry, molecular biology and genetics, microbiology, plant physiology, animal behaviour and exercise physiology and biomechanics.
-The course is taught by a vibrant community of research-active staff. Tutors are currently involved in research in Tanzania, Kenya, Mauritius, Madeira, Ethiopia, the Philippines, Indonesia as well as the UK and every year many of our MSc students work within this project.
-Students are encouraged to carry out their projects in association either with staff interests or those of external organisations such as Chester Zoo, local and national conservation bodies, water authorities, etc.
-The School of Science and the Environment has strong links with with the Royal Society for the Prevention of Cruelty to Animals and close association to a number of organisations across the North West, including Blackpool Zoo, Chester Zoo and Knowsley Safari Park.

Placement options

There are optional three month placements for those taking MSc Zoo Conservation Biology and these can take place at many different zoos in the UK.

About the Course

Course delivery is flexible and most lectures take place in the evening. Lectures, other course materials and assessment information is available via our online learning platform, Moodle. You will be assessed mostly through coursework, although some units have a formal examination.

Our Masters programmes in behaviour and conservation are run by a large group of research active staff with strong links to a variety of research institutions, national organisations and non-governmental bodies in the UK and overseas.

Each term there is a research colloquium in which invited speakers talk about areas of research directly relevant to our MSc programmes.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less
Sustainable food production is increasingly important as the human population grows. we need to produce more food, more sustainably. Read more
Sustainable food production is increasingly important as the human population grows: we need to produce more food, more sustainably. This MSc, taught by world-class researchers, provides a unique opportunity for you to gain a rigorous scientific background if you are aiming for a career in habitat management, crop production, plant physiology, ecological research, scientific communication or agricultural policy.

Cutting-edge programme topics include sustainable agricultural intensification and food production; agri-environment schemes; organic farming; land sparing; genetically modified crops; emerging crops; effects of climate change and mitigation measures; interactions between managed species and the environment; ecosystem services including pollination; pest/disease control; and maximising production while minimising environmental impacts.

The programme covers a broad but highly applied subject area; the focus ranges from the molecular to the global level. You will also develop transferable skills including statistics, data handling, scientific writing, and research methods. This programme may provide a springboard to PhD research or lead to a career in industry, including management and technical career paths, policy, conservation, charities or NGOs, or ecological consultancy.

Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. Read more
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. The common part of the programme consists on the one hand of basic knowledge, insights and skills in the areas of production, transformation, preservation, marketing and consumption of food products. On the other hand, it contains a practically oriented component that enables the alumni to identify problems by means of quantitative and qualitative research methods and analytical techniques, to assess and rank causes, and to plan, to execute and to evaluate appropriate interventions.

The other part of courses given during the first year are main subject specific courses. The academic second year provides a more in depth understanding of the specific problems and their solutions for the main subject and major chosen and consists of main subject and major specific courses, elective (optional) courses and Master Dissertation research (30 ECTS).

The specific expertise the students receive depends on the main subject, major and optional courses chosen.

Tropical Agriculture

Delivers technical knowledge related to agriculture focussing on developing countries. The students can specialize in animal production or plant production by choosing the specific option. The major on Animal Production delivers in depth knowledge on production biology, animal nutrition, pasture management, animal genetics. The major on Plant Production focuses on themes like ethno-botany, crop protection, plant breeding, plant biotechnology. The courses are applicative and aim at presenting solutions for production problems in developing countries in an interdisciplinary way.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Common and main subject specific basic courses.
-Fundamental, in depth and high level knowledge.
Semester 2 (Febr-June)
-Main subject specific courses with special attention to ‘in field’ applications.
-Possibility to do internships in summer holidays.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Specialised courses (fine-tuned individual programme).
-Master dissertation (at Ghent University, other Belgian institutes/organizations/multinationals or one of our partners in the South or Europe).

Learning and Outcomes

Have thorough knowledge and comprehension (theory and practice) l in the interdisciplinary domains: food and feed production, socio-economic, (public health) nutrition and management concepts, theories and skills, and in the main subject specific domains and the chosen major domains. The program additionally focuses on international collaboration.
-Major: Public Health Nutrition : Have profound insights in public health nutrition realities and compare public health nutrition issues, approaches and policies within the international context
-Major Nutrition Security and Management: Have profound insights in different food/nutrition security realities and compare nutrition security issues, approaches and (nutrition) policies within an international context
-Major Plant Production: Have profound insights in plant production realities and compare plant production issues, and approaches within the international context
-Major Animal Production: Have profound insights in animal production realities and compare animal production issues, and approaches within the international context

Apply theories and methodological approaches to characterize and analyse specific problems: food, nutrition and agricultural chains, food sovereignty /safety and security, natural resource management, sustainable production, economic and social problems of rural areas, national and international agriculture.

Design and implement adequate instruments, methods, models and innovative tools to analyse, evaluate and solve interdisciplinary related problems in the context of sustainable development.

Apply the interdisciplinary tools to design, implement, monitor and evaluate national and international agro-nutrition policies and programs. More specifically:
-For Human Nutrition: construct innovative tools and instruments for the development of a better nutritional health status of a country/region/area and its inhabitants/households.
-For Tropical agriculture: a more efficient and economic feasible agricultural balanced, food production guaranteeing a better food security situation per country respecting local environment.

Assess the importance and magnitude of a problem, define strategies for intervention and/or identify knowledge gaps. Develop a research protocol based on the analysis of existing evidence and set up a research plan, analyse and interpret the data and present the findings.

Identify, select and apply appropriate research methods and techniques to collect, analyses and critically interpret data.

Critically reflect on program specific issues, and on ethical and value driven aspects of research and intervention strategies.

Take up a trans-disciplinary role in an interdisciplinary ((inter)national) team dealing with global challenges, and develop a global perspective.

Dialogue and professionally interact with different actors and stakeholders from peers to a general public to convincingly communicate evidence based research findings and project results.

To effectively use appropriate communication and behavioural skills in different language and cultural environments.

Learn to continuously critically reflect (individually and in discussion with others) upon personal knowledge, skills, attitudes, functioning, and develop an attitude of lifelong learning. This includes:
-Design and plan own learning processes.
-Self-Directed Learning: work independently, take initiative, and manage a project through to completion.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?. Read more
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:
-Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
-Be able to assess the sustainability and environmental impact of food and energy production.
-Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
-Have mastered the key issues and future development trends of your field.
-Have mastered state-of-the-art research and analysis methods and techniques.
-Be able to engage in international activities, project work and communication.
-Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
-Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master’s Programme in Agricultural Sciences comprises four study tracks:
Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing
During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing
During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment
This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface
These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

Selection of the Major

The Master’s Programme in Agricultural Sciences comprises four study tracks, allowing you to focus on a specialisation according to your interests and previous studies: plant production sciences (quota of 40 students), animal science (quota of 25 students), agrotechnology (quota of 15 students), and environmental soil science (quota of 5 students).

You can be admitted to the Master’s Programme in Agricultural Sciences either directly from the relevant Bachelor’s programme or through a separate admissions process. A total of 80 students will be admitted through these two admissions channels.

Programme Structure

With a scope of 120 credits (ECTS), the Master’s programme can be completed in two academic years. The degree comprises:
-60 credits of advanced studies in the selected study track, including your Master’s thesis (30 credits)
-60 credits of other studies from the curriculum of your own or other degree programmes

The study tracks of the Master’s Programme in Agricultural Sciences collaborate across disciplinary boundaries to construct thematic modules around importance topical issues: the bioeconomy, the recycling of nutrients, food systems, and the production and exploitation of genomic information.

You must also complete a personal study plan (PSP). Your studies can also include career orientation and career planning.

Various teaching methods are used in the programme, including lectures, practical exercises, practical laboratory and field courses, practical training, seminars, project work and independent study.

Career Prospects

As a graduate of the Master’s Programme in Agricultural Sciences, you will have the competence to pursue a career or to continue your studies at the doctoral level.

According to the statistics of the Finnish Association of Academic Agronomists, the current employment situation for new graduates is positive. Graduates have found employment in Finland and abroad as experts in the following fields:
-Research and product development (universities, research institutes, companies, industry).
-Administration and expert positions (ministries, supervisory agencies, EU, FAO).
-Business and management (companies).
-Teaching, training and consultation (universities, universities of applied sciences, organisations, development cooperation projects).
-Communication (universities, media, companies, ministries, organisations).
-Entrepreneurship (self-employment).

As a graduate you can apply for doctoral education in Finland or abroad. A doctoral degree can be completed in four years. With a doctoral degree you can pursue a career in the academic world or enter the job market. The qualifications required for some positions may be a doctoral rather than a Master’s degree.

Other admission details

Applications are also accepted from graduates of other University of Helsinki Bachelor’s programmes as well as from graduates of other Finnish or international universities. In these cases, admission will be based on your previous academic performance and the applicability of your previous degree. For the latest admission requirements see the website: https://www.helsinki.fi/en/masters-admission-masters-programme-in-agricultural-sciences-master-of-science-agriculture-and-forestry-2-years/1.2.246.562.20.29558674254

Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
The programme includes the following profiles. This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Read more
The programme includes the following profiles:

Genetics, Cell and Developmental Biology

This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Courses of this profile span multiple levels of biological organization, from whole organisms down to the molecular level. Students choosing this profile not only receive up-to-date knowledge on these topics but also acquire the laboratory skills required to engage in cutting-edge research.

Environment, Biodiversity and Ecosystems

This profile allows students to gain experience in the research methods used to study the evolution and ecology of organisms found in terrestrial, freshwater and coastal ecosystems. A staff of experts teaches up-to-date knowledge on individual organisms, populations, species communities and ecosystems, backed up by their active research experience in taxonomy and phylogeny, vertebrate and invertebrate ecology, evolutionary ecology, biogeography, plant ecology, plant-animal interactions, and nature management. In addition, students are introduced into ecological research by means of practical field training and excursions in Belgium and abroad.

Herpetology

This unique profile addresses biology students with a passion for amphibians and reptiles. An international team of visiting scientists organizes lectures on diversity, ecology, physiology, behavior, evolution and conservation biology and prepares students for a professional career in herpetology. Ecological and herpetological field courses in European and tropical countries form an important part of this programme. As a student, you will be in a stimulating environment, with fellow students and top-experts sharing your passion. For more information, have a look at http://www.herpetology.be.

Human Ecology

This profile focuses on the interaction between humans and their natural environment. The increasing impact of the human population on ecosystems worldwide stresses the urgent need for researchers with a multidisciplinary background, that engage in developmental plans for a durable use and management of natural resources. The profile Human Ecology addresses an international audience of students and offers a course programme that, besides scientific topics, also addresses technological, socio-economical and political aspects. For more information, have a look at http://www.humanecology.be.

EMMC Tropical Biodiversity and Ecosystems

The world faces a crisis risking extinction of species through global warming. Due to impact of e.g., changes in land use and destruction of habitats, tropical rain forests, mangrove forests and coral reefs are disappearing and with them ecosystem functions, goods and services on which human populations are dependent. In order to conserve nature, to manage or even to restore tropical biodiversity and ecosystems, we must understand patterns of tropical biodiversity, study how organisms interact with their environment and how they respond to perturbations and change. Next to research, this is dealt with in this unique masters programme. http://www.tropimundo.eu

Read less

Show 10 15 30 per page



Cookie Policy    X