• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Southampton Solent University Featured Masters Courses
University College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Newcastle University Featured Masters Courses
"plant" AND "physiology"×
0 miles

Masters Degrees (Plant Physiology)

We have 43 Masters Degrees (Plant Physiology)

  • "plant" AND "physiology" ×
  • clear all
Showing 1 to 15 of 43
Order by 
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Read more

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge on the physiology, ecology and genetics of cultivated plants.

The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Study programme

This online master's specialisation is designed as a part-time study. The approximate workload is 20 hours per week and gives the student the flexibility to combine work and study. The programme is therefore also suitable for employees who want to continue their education in the sense of life-long-learning.

The general structure is a 2 year part time course-programme followed by a tailor-made internship and master's thesis agreement of 1 or 2 years. Read more about the programme.

Your future career

Graduates from the master's Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach.

Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations. Read more stories of Wageningen University & Research graduates.

Related on-campus programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students must talk to their proposed supervisor about possible project areas (see below) and have a project approved by interview with the supervisor and Head of Discipline prior to application via http://www.pac.ie (PAC code: CKS81).

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012 Marine Megafauna (10 credits)
BL6016 Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)
BL4004 Frontiers in Biology (5 credits)
BL4005 Research Skills in Biology (5 credits)
BL4006 Food Production (5 credits)
PS6001 Plant Genetic Engineering (5 credits)
PS4024 Crop Physiology and Climate Change (5 credits)
PS4021 Environmentally Protective Management of Plant Pests and Pathogens (5 credits)
ZY4021 Evolutionary Ecology (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Animal or Plant Science.

Current projects:

- The effect of lactation housing on the behaviour and welfare of pigs
- Understanding viral pathways in marine environments
- Distribution and diet of otters in a rural/urban streamscape
- Novel approaches in the use of freshwater macroinvertebrates for biomonitoring
- The ecology of Sika/Red/Fallow deer in Ireland
- Catching prey; the role of Ultraviolet radiation in attracting insects by carnivorous plants
- Birds as dispersers of plant propagules
- Does the phytotoxicity of nanoparticles depend on environmental parameters?
- The role of biochar as a sustainable soil amendment
- Effects of Eutrophication in shallow subtidal marine systems
- Use of Brachypodium sylvaticum as a model for growth regulation in perennial forage grasses
- Effect of temperature on spring growth of perennial ryegrass cultivars

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Animal or Plant Science.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Animal or Plant Science.
- Understand the basis and application of field and laboratory methods used in Animal and Plant Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills (e. g. biostatistics).
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication

How to apply

Students should consult the MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
The MSc in Animal Behaviour addresses the interaction between environment, experience and physiology in the development and dynamics of behaviour. Read more

The MSc in Animal Behaviour addresses the interaction between environment, experience and physiology in the development and dynamics of behaviour. There is an applied element in terms of how the principles of animal behaviour can be applied to practical problems such as animal welfare and conservation. Students can gain experience of laboratory studies (of invertebrates) and field work. The programme features a strong numerical and research-orientated approach. A range of elective units are available, including Zoo Conservation Biology which takes place at Chester Zoo. There is also a compulsory residential field course in Poland or Tanzania.

The MSc is completed by a research-based project which can be carried out overseas or in the UK. There are also opportunities to work within Manchester Met research projects in Tanzania, Kenya, the Philippines, Mauritius and Madeira.

Features and benefits of the course

-We work with the College of African Wildlife Management and the Kenya Wildlife Service and are able to offer unique fieldwork experiences in Tanzania and Kenya.

-You will have the opportunity to stay for six weeks at one of our research bases in Tanzania or Kenya to collect data for your own research project.

-Course delivery is flexible and most lectures take place in the evening. Lectures, other course materials and assessment information are available via our online learning platform, Moodle.

-In the last ten years we’ve invested over £50 million in our home, John Dalton building, including high specification teaching and research facilities for biochemistry, molecular biology and genetics, microbiology, plant physiology, animal behaviour and exercise physiology and biomechanics.

-The course is taught by a vibrant community of research-active staff. Tutors are currently involved in research in Tanzania, Kenya, Mauritius, Madeira, Ethiopia, the Philippines, Indonesia as well as the UK and every year many of our MSc students work within this project.

-Students are encouraged to carry out their projects in association either with staff interests or those of external organisations such as Chester Zoo, local and national conservation bodies, water authorities, etc.

-The School of Science and the Environment has strong links with with the Royal Society for the Prevention of Cruelty to Animals and close association to a number of organisations across the North West, including Blackpool Zoo, Chester Zoo and Knowsley Safari Park.

Placement options

There are optional three month placements for those taking MSc Zoo Conservation Biology and these can take place at many different zoos in the UK.

About the Course

Course delivery is flexible and most lectures take place in the evening. Lectures, other course materials and assessment information is available via our online learning platform, Moodle. You will be assessed mostly through coursework, although some units have a formal examination.

Our Masters programmes in behaviour and conservation are run by a large group of research active staff with strong links to a variety of research institutions, national organisations and non-governmental bodies in the UK and overseas.

Each term there is a research colloquium in which invited speakers talk about areas of research directly relevant to our MSc programmes.



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less
Sustainable food production is increasingly important as the human population grows. we need to produce more food, more sustainably. Read more
Sustainable food production is increasingly important as the human population grows: we need to produce more food, more sustainably. This MSc, taught by world-class researchers, provides a unique opportunity for you to gain a rigorous scientific background if you are aiming for a career in habitat management, crop production, plant physiology, ecological research, scientific communication or agricultural policy.

Cutting-edge programme topics include sustainable agricultural intensification and food production; agri-environment schemes; organic farming; land sparing; genetically modified crops; emerging crops; effects of climate change and mitigation measures; interactions between managed species and the environment; ecosystem services including pollination; pest/disease control; and maximising production while minimising environmental impacts.

The programme covers a broad but highly applied subject area; the focus ranges from the molecular to the global level. You will also develop transferable skills including statistics, data handling, scientific writing, and research methods. This programme may provide a springboard to PhD research or lead to a career in industry, including management and technical career paths, policy, conservation, charities or NGOs, or ecological consultancy.

Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Dig deeper into horticulture. Use Massey’s experts and world-leading facilities to develop your own ground-breaking research. Find out more about the . Read more

Dig deeper into horticulture

Use Massey’s experts and world-leading facilities to develop your own ground-breaking research.

Find out more about the Master of Science parent structure.

With Massey’s Master of Science (Horticultural Science) you can take advantage of Massey University’s 80 years of research and teaching experience in agriculture and horticulture to create your own innovative research project. Massey University’s horticultural science programme is the most research focussed in New Zealand.

Take advantage of our globally-renowned expertise

Let our experts help you develop your own expertise. You will learn from, and research with, highly-skilled internationally-recognised and active researchers in horticulture, with a huge depth of knowledge and experience. Our current specific areas of horticulture research expertise include fruit and vegetable innovation, high-value plant products and services, applied plant and horticultural science and seed science and technology.

You will also be able to take advantage of Massey’s expertise across the sciences. We have a wide and relevant group of expertise within the university, from engineering and fundamental sciences like microbiology and biochemistry, to agriculture, environmental management and food technology and innovation. 

This means no matter what your research interest you will have access to a broad range of experts to assist you develop your own research project.

Use world-leading equipment and facilities

As a horticulture student you will have access to our world-leading equipment and facilities such as our controlled environment plant growth facilities, the unique and extensive university orchards and state-of-the-art plant physiology and biology equipment.

Award–winning labs

Massey’s Manawatu campus hosts the only multi-function teaching laboratories in Australasia. The labs, built in 2010, won a Best Practice Award for Innovation at the Association for Tertiary Education Management conference in Australia and was shortlisted for the international UKS-Lab awards.

The facility is unique in Australasia in that it allows each laboratory to be tailored to accommodate a variety of disciplines. Technicians can do preparation in the dedicated technical area before moving this into the lab, which means students can spend more time doing lab practical work.

Be surrounded by the best

Massey University is a partner in the Joint Graduate School for Horticulture and Food Enterprise (with Plant&Food). Massey University is also home to ‘foodHQ’, New Zealand’s international centre for collaborative food research. FoodHQ is a collaboration between organisations including Massey University, AgResearch, AsureQuality, the Cawthorn Institute, SR, Fonterra, Plant & Food Research and the Riddet Institute. There is a breadth of horticultural research activities at Massey, including the work to understand the effects of light in improving crop production and quality, research on fruit crops such as kiwifruit and apples, Maori vegetable crop science, and plant disease.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. Massey has strong links with industry, used to help our students find relevant and topical research projects.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.

Complete in 1.5 years

Massey University’s Master of Science is primarily a 180 credit master qualification. This is made up of 90 credits of taught courses and a 90 credit research project.

A 240 credit MSc is also available if you want to do more in-depth research. 

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Make a difference. From protecting our native biodiversity to identifying key traits to improve crop plants in an ever-changing climate, plant biology research can solve the world’s major global issues. Read more

Make a difference

From protecting our native biodiversity to identifying key traits to improve crop plants in an ever-changing climate, plant biology research can solve the world’s major global issues.

Find out more about the Master of Science parent structure.

Massey’s Master of Science (Plant Biology) will give you the knowledge and skills to understand and help solve some of the world’s most important current issues, such as the effects of climate change on our native species and crop plants, how to preserve native biodiversity, and understanding fundamental physiological aspects of plants.

You will build upon your undergraduate degree and conduct original, independent research under the guidance of a leading plant science academic.

Expertise in an area of your choice

The plant biology team at Massey have expertise in plant molecular biology, evolutionary biology, systematics and taxonomy, and plant physiology. During the course of your studies you can choose to further your knowledge and apply your learning on an exciting research project such as:

  • Evolution of plant genomes
  • Molecular development of plants
  • Population genetics and conservation genetics of native plants

Take advantage of our globally-renowned expertise

Let our experts help you develop your own expertise. You will learn from, and research with, highly-skilled internationally-recognised and active researchers in plant biology and related areas, with a huge depth of knowledge and experience. Postgraduate study and research in plant biology at Massey spans evolutionary biology to physiology. You will have the opportunity to learn about the fundamental aspects of plant growth and function, as well as the molecular evolution and classification (systematics) of plants. You might choose to conduct research focused on the native New Zealand flora or a model organism, like Arabidopsis thaliana, or even a crop species.

You will also be able to take advantage of Massey’s expertise across the sciences. We have a wide and relevant group of expertise within the university, from fundamental sciences like microbiology and biochemistry, to agriculture, engineering, horticulture and environmental management. 

This means no matter what your research interest you will have access to a broad range of experts to assist you develop your own research.

Use world-leading equipment and facilities

As a plant biology student you will have access to our world-leading equipment and facilities such as the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers.

Making industry connections for you

Massey has strong connections with the Crown Research Institutes in Palmerston North and across New Zealand, especially AgResearch, Landcare Research, Plant and Food Research, and Scion. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your MSc qualification.



Read less
Best of all worlds. Biological sciences gives you expertise in a broad range of biological and fundamental sciences. Find out more about the . Read more

Best of all worlds

Biological sciences gives you expertise in a broad range of biological and fundamental sciences.

Find out more about the Master of Science parent structure.

When you study Massey’s Master of Science with a major in biological sciences you don’t have to focus on one particular type of science, but will gain expertise across a range of your interests.

If you are interested in subjects like microbiology, genetics and biochemistry, but don’t have all the prerequisites you need to specialise, or you want to open the door to a broader range of careers, a major in biological sciences gives you a broad-based degree that keeps your options open.

Within the degree you can focus on one particular area of science, or keep your study broad - the choice is yours!

Flexibility and industry links

At Massey you have the flexibility to choose from different locations for your study - either Manawatu or the Auckland campuses - as well as other research institutes such as AgResearch, Scion, and Plant & Food Research. This flexibility provides a great deal of project choice, as well as providing important industry linkages that enhance job prospects.

World-class facilities

Whether you study on the Auckland or Palmerston North campuses, you will have access to world-class facilities. These include the Manawatu Microscopy and Imaging Centre and the Massey Genome Service (part of New Zealand Genomics Limited), our controlled environment plant growth facilities, the unique and extensive university orchards and state-of-the-art plant physiology and biology equipment. We have large animal units and there are extensive Massey farms that operate as commercial beef, dairy and sheep farms. 

Massey has a dedicated tissue culture facility, real-time PCR instruments, specialised fluorescence microscopes and plate readers, as well as a microscopy centre, offering confocal, and scanning, transmission and epifluorescence microscopy services.

Genome sequencing services are also readily accessible with both the Massey Sequencing Service and a New Zealand Genome Limited laboratory housed on the university’s Manawatu campus. This service center is equipped with ABI3730 and Illumina MiSeq instruments and associated expertise. We house a full suite of protein purification, separation and analysis equipment, including DIGE imaging and access to mass spectrometers. There is also an X-ray diffraction laboratory and access to the Australian Synchrotron in Melbourne.

Make our expertise yours

Massey offers a very broad range of research areas in chemistry, biochemistry, genetics, microbiology and all the biological sciences, Genetics ranges from classical through molecular, biomedical, genomic and computational projects. These utilise a wide range of biological systems including microbial, plant, animal and human species.

You will also be able to utilise Massey’s broad range of expertise in the sciences, working with other departments and experts as you need to for your research.

Friendly environment - passionate scientists

A critical part of the postgraduate experience at Massey is being part of the vibrant, well-established community of fundamental scientists and students. We have active student groups where we work together to share discoveries and research and provide peer support.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge and expertise especially in planning, time management, setting goals and milestones and undertaking research.



Read less
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. Read more
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. The common part of the programme consists on the one hand of basic knowledge, insights and skills in the areas of production, transformation, preservation, marketing and consumption of food products. On the other hand, it contains a practically oriented component that enables the alumni to identify problems by means of quantitative and qualitative research methods and analytical techniques, to assess and rank causes, and to plan, to execute and to evaluate appropriate interventions.

The other part of courses given during the first year are main subject specific courses. The academic second year provides a more in depth understanding of the specific problems and their solutions for the main subject and major chosen and consists of main subject and major specific courses, elective (optional) courses and Master Dissertation research (30 ECTS).

The specific expertise the students receive depends on the main subject, major and optional courses chosen.

Tropical Agriculture

Delivers technical knowledge related to agriculture focussing on developing countries. The students can specialize in animal production or plant production by choosing the specific option. The major on Animal Production delivers in depth knowledge on production biology, animal nutrition, pasture management, animal genetics. The major on Plant Production focuses on themes like ethno-botany, crop protection, plant breeding, plant biotechnology. The courses are applicative and aim at presenting solutions for production problems in developing countries in an interdisciplinary way.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Common and main subject specific basic courses.
-Fundamental, in depth and high level knowledge.
Semester 2 (Febr-June)
-Main subject specific courses with special attention to ‘in field’ applications.
-Possibility to do internships in summer holidays.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Specialised courses (fine-tuned individual programme).
-Master dissertation (at Ghent University, other Belgian institutes/organizations/multinationals or one of our partners in the South or Europe).

Learning and Outcomes

Have thorough knowledge and comprehension (theory and practice) l in the interdisciplinary domains: food and feed production, socio-economic, (public health) nutrition and management concepts, theories and skills, and in the main subject specific domains and the chosen major domains. The program additionally focuses on international collaboration.
-Major: Public Health Nutrition : Have profound insights in public health nutrition realities and compare public health nutrition issues, approaches and policies within the international context
-Major Nutrition Security and Management: Have profound insights in different food/nutrition security realities and compare nutrition security issues, approaches and (nutrition) policies within an international context
-Major Plant Production: Have profound insights in plant production realities and compare plant production issues, and approaches within the international context
-Major Animal Production: Have profound insights in animal production realities and compare animal production issues, and approaches within the international context

Apply theories and methodological approaches to characterize and analyse specific problems: food, nutrition and agricultural chains, food sovereignty /safety and security, natural resource management, sustainable production, economic and social problems of rural areas, national and international agriculture.

Design and implement adequate instruments, methods, models and innovative tools to analyse, evaluate and solve interdisciplinary related problems in the context of sustainable development.

Apply the interdisciplinary tools to design, implement, monitor and evaluate national and international agro-nutrition policies and programs. More specifically:
-For Human Nutrition: construct innovative tools and instruments for the development of a better nutritional health status of a country/region/area and its inhabitants/households.
-For Tropical agriculture: a more efficient and economic feasible agricultural balanced, food production guaranteeing a better food security situation per country respecting local environment.

Assess the importance and magnitude of a problem, define strategies for intervention and/or identify knowledge gaps. Develop a research protocol based on the analysis of existing evidence and set up a research plan, analyse and interpret the data and present the findings.

Identify, select and apply appropriate research methods and techniques to collect, analyses and critically interpret data.

Critically reflect on program specific issues, and on ethical and value driven aspects of research and intervention strategies.

Take up a trans-disciplinary role in an interdisciplinary ((inter)national) team dealing with global challenges, and develop a global perspective.

Dialogue and professionally interact with different actors and stakeholders from peers to a general public to convincingly communicate evidence based research findings and project results.

To effectively use appropriate communication and behavioural skills in different language and cultural environments.

Learn to continuously critically reflect (individually and in discussion with others) upon personal knowledge, skills, attitudes, functioning, and develop an attitude of lifelong learning. This includes:
-Design and plan own learning processes.
-Self-Directed Learning: work independently, take initiative, and manage a project through to completion.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:

  • Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
  • Be able to assess the sustainability and environmental impact of food and energy production.
  • Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
  • Have mastered the key issues and future development trends of your field.
  • Have mastered state-of-the-art research and analysis methods and techniques.
  • Be able to engage in international activities, project work and communication.
  • Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
  • Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Agricultural Sciences comprises four study tracks:

Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing

During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing

During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment

This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface

These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

For further information about study contents, visit the programme home page.



Read less

Show 10 15 30 per page



Cookie Policy    X