• University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
University of Southampton Featured Masters Courses
Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"plant" AND "medicine"×
0 miles

Masters Degrees (Plant Medicine)

  • "plant" AND "medicine" ×
  • clear all
Showing 1 to 15 of 37
Order by 
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine. Read more
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare).

Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

The course will be run entirely by research active and will offer students the opportunity to gain experience in internationally competitive laboratories.

PROGRAMME CONTENT
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare). Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

Students undertaking this MSc course will study the folling modules:

- Foundation for Research in the Biosciences 20CATS
- Fundamental Parasitology & Advanced Skills 20CATS
- Advanced Parasitology I 20CATS
- Advanced Parasitology II 20CATS
- Bio-Entrepreneurship & Advanced Skills 20CATS
- Literature Review 20CATS
- Research Project 60CATS

CAREER PROSPECTS
It is anticipated that the skills set and knowledge acquired will equip participants with a comprehensive academic and methodological repertoire to undertake careers in agriculture, plant science, animal and human health, pharmaceutica, academia and food security, underpinning the transdisciplinary nature of the programme.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

WHY QUEEN'S?
The MSc programme embraces the One Health approach to these infectious diseases, with strong recognition of the interplay between health and disease at the dynamic interface between humans, animals and the environment.

In addition to embedded generic skills training, students will have the opportunity to acquire subject-specific skills training, e.g. molecular biology techniques, diagnostics, epidemiology (human, animal and plant diseases), drug/vaccine development, pathogen management/control, host-parasite interaction, immunobiology, drug resistance and the potential impact of climate change on parasites and their vectors.

In addition to the taught elements of the course, MSc students will undertake a research project working in research active laboratories (academic or industrial), or in the field, e.g. the impact of helminth infections on animal welfare, the economic impact of parasites on agriculture, the role of vectors in emerging diseases, the ecology of zoonotic diseases, the molecular basis of anthelmintic resistance, emerging technologies for drug discovery, the pathology of infection, parasite immunomodulation of the host.

The transferrable skill set and knowledge base acquired from the programme will equip students with a highly desirable qualification that is suited to those wishing to pursue careers in human health/infectious disease, animal health, veterinary medicine, animal/plant biology, pharmaceutical sciences and food security.

Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
- check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Instructions in English. http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento2011&keyIF0362. Read more

Admission Notice now available

- check at
http://www.unipd.it/en/biotecnologie-alimentazione
http://www.unipd.it/en/how-apply

Instructions in English:
http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362
.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.
The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.
The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.
Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.
Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.
Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

During the two-years MSc course students attend the following 12 course units

Applied genomics for animal and crop improvement
Applied Bionformatics
Food Microbiology and Food Microbial Biotechnology
Molecular basis of disease, immunology, and transmissible diseases
Laboratory of advanced DNA, RNA, and protein analysis
Biotechnology for crop production
Epidemiology and risk analysis
Traceability tools for species authentication  
Advanced technologies for the agrifood sector (nanotechnologies, proteomics, metabolomics)
Biotechnology for plant protection
Food toxicology and food regulation
Foreign language (English)

First year
During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year
In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.
link to the Campus descriptions:
http://youtu.be/gR4qcWUXvGg

Read less
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Read more
Phytopharmaceutical Science, the development of drugs from plants and other natural compounds, is now a significant area of research for the development of new medicines with a sound historical basis. Many drugs listed as conventional medications are derived from plants and were originally administered in plant form.

Over recent years, in their search for novel therapeutic agents, there has been a huge rise in interest from the global pharmaceutical industry centred on the isolation and evaluation of compounds from plants used in medical treatment derived from traditional medicine sources.

Based on the increasing importance of this emerging area of natural product science this programme of study will enable individuals with specific expertise in the regulation and development of plant-based medicines to pursue a career in the rapidly expanding phytopharmaceutical industry or a government regulatory body.

The MSc in Phytopharmaceuticals is a taught postgraduate programme which provides an in depth study of natural products, their analysis, value as medicines and regulatory issues controlling their production and sales.

As a MSc Phytopharmaceutical student, you will:

receive a high quality programme which will provide you with the expertise to work in the pharmaceutical industries emerging area of natural product science
be supported throughout your studies by our experienced, dedicated team of staff
study in excellent facilities, including new refurbished laboratories with the latest analytical equipment and Medicinal Herb Garden.

Programme structure

Phytopharmaceuticals is multi-disciplinary. You will study, plant chemistry, phytochemical analysis, analytical methods, quality control, toxicology, ethnobotany, herbal therapeutics, legislation and regulation of herbal products, and research methods.

In order to be eligible for the award of the Postgraduate Diploma, a student shall have passed the two specialist modules, the optional module and the core module; or one specialist module, the research project and the core module (120 M Level credits). Students obtaining 60 M level credits (by the core module and either specialist module or the research project) may be considered for the award of Postgraduate Certificate in Life Sciences.

In order to be eligible for the award of the Masters degree, a student shall have passed both specialist modules, the optional module, the research project and the core module (180 M level credits).

You will be assessed throughout the programme in practical work and theory. Coursework varies and includes laboratory work, data analysis, essays, presentations and examinations.

Career opportunities

Feedback from industry suggests that natural product science is an expanding area of interest resulting in new employment opportunities for qualified individuals with specific expertise in the regulation and development of plant based medicines. Opportunities also exist in teaching, writing and horticulture.

You may also be interested in UEL's MSc Pharmaceutical Science programme.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less
The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. Read more

Mission and goals

The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. The educational path is intended to train students for designing equipment, devices, materials and procedures and for a correct introduction, development and management of biomedical technologies inside Companies and Health Structures, as well as freelance. The peculiar multidisciplinary structure of the programme allows developing a strong knowledge in electronics and informatics, mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines (biology, physiology and medicine).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Career opportunities

Graduated biomedical engineers find employment for the design, development and commercialization of biomedical devices, as well as in the pharmaceutical sector. Career opportunities are found: 1) in manufacturing companies which are active on health-care market with systems for prevention, diagnostics, therapy and rehabilitation; 2) in public and private hospitals for the management of health technologies; 3) in medical plant and equipment service companies; 4) in specialised biomedical laboratories; 5) in biomedical research 6) as freelance.
For a more specific training in scientific research in the area, a Ph.D. in Bioengineering is available.

The programme has 4 advised paths (besides the possibility to develop a personal path with some constraints):
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Presentation

See http://www.polinternational.polimi.it/uploads/media/Biomedical_Engineering_01.pdf
This postgraduate programme provides students with an engineering education applied to medical and biological issues. The educational path is intended to train students in the design of biomedical equipment, devices, materials and procedures and to offer a correct introduction to the management of biomedical technologies in companies and health bodies. The peculiar multidisciplinary structure of the programme allows the development of a strong knowledge in electronics and informatics, in mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines like biology, physiology and
medicine. The programme is taught in English.

Subjects

Four specializations available:
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Mandatory courses for all areas:
- mathematical and digital methods for engineering
- bioengineering of the motor system
- mechanics of biological structures
- bioengineering of autonomic control and respiratory systems
- biofluid dynamics
- biomechanical design
- biomachines (with laboratory)
- biomaterials
- endoprostheses
- biomimetics and tissue engineering
- biotechnological applications and bioreactors
- design of life support systems
- laboratory of tissue characterization
- laboratory of biomaterials + lab. of instrumental analysis
- laboratory of biofluid dynamics
- laboratory of biomechanical design
- computational biomechanics laboratory

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefitting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. Read more

About the course

The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefitting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. The range and value of these developments is rapidly increasing.

This exciting MSc Molecular Biology and Biotechnology program provides training for bioscience graduates to develop confidence and independence in their practical skills and knowledge relevant to careers in this area. Successful graduates will be ready to undertake further study at PhD level or to enter employment in the biotechnology sector.

You’ll learn essential practical skills; study the relevant theory in the Departments of Molecular Biology and Biotechnology (MBB) and Chemical and Biological Engineering (CBE); and carry out an individual research project, in which you’ll learn how to design and conduct research, keep records and present the research in different styles.

Where your masters can take you

Our graduates work in health care, pharmaceuticals, food safety and production, brewing and agrochemicals. Many of our masters students go on to do a PhD then pursue a career in research; others have gained entry to the prestigious NHS Scientist Training Programme (STP).

An international reputation

The 2014 Research Excellence Framework (REF) ranks Sheffield No 1 for biomedical research and in the UK top five for biological sciences generally. We have regular seminars from distinguished experts, and our motivated staff undertake collaborative research ranging from biotechnology to medicine.

Teaching and assessment

Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern and well-equipped labs, leading on to a research project in which you design and conduct your own research. You will learn cutting edge science from research leaders, and gain practice in reading the scientific literature and writing reports. Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.

Core modules

Laboratory Skills in Molecular Bioscience; Principles of Biochemical Engineering; Advanced Research Topics; Literature Review; Research Project (typical research areas include plant genetic engineering, engineering of proteins of commercial importance, or genetic studies by random mutagenesis).

Examples of optional modules

Choose two from: The RNA World, Cells as Factories, Plant Biotechnology, Microbiology of Extreme Environments.

Read less
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living. Read more
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living.

Our course provides you with knowledge, understanding and hands-on experience in modern biotechnology, and with practical insights into current commercial applications. It creates access to a broad range of career opportunities in this rapidly growing key technology.

You will learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
-The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
-Industrial, plant and medical biotechnology
-Gene and protein technology
-Synthetic biology
-Bioinformatics

The course has a very high proportion of practical work that provides valuable experience for your career, and in addition to this, our optional module Creating and Growing a New Business Venture challenges you to think creatively. This increases your value to organisations, including small enterprises, which are a growing part of the biotechnology sector.

Your research project is a major component of this course, for which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories, or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology, and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside leading academics and PhD students in shared labs
-Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Biotechnology - MSc
-Research Project: MSc Biotechnology
-Protein Technologies
-Gene Technology and Synthetic Biology
-Genomics
-Professional Skills and the Business of Biotechnology
-Creating and Growing a New Business Venture (optional)
-Industrial Biotechnology: Enzymes, Biochemicals and Biomaterials (optional)
-Molecular Medicine and Biotechnology (optional)
-Plant Biotechnology (optional)
-Rational Drug Design (optional)

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Enhance your knowledge and skills in biosciences with an emphasis on biotechnology and increase your competitiveness in the job market. Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by:
-Cell biology
-Molecular biology
-Bioinformatics
-Structural biology.

It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering. Important biotechnological advances including:
-The production of therapeutic proteins using cloned DNA, for example insulin and clotting factors.
-The application of stem cells to treat human disease.
-The enhancement of crop yields and plants with increased nutritional value.
-Herbicide and insect resistant plants.
-Production of recombinant antibodies for the treatment of disease.
-Edible vaccines, in the form of modified plants.
-Development of biosensors for the detection of biological and inorganic analytes.

You gain:
-Up-to-date knowledge of the cellular and molecular basis of biological processes.
-An advanced understanding of DNA technology and molecular biotechnology.
-Knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases.
-Practical skills applicable in a range of bioscience laboratories.
-The transferable and research skills to enable you to continue developing your knowledge and improving your employment potential.

The course is led by internationally recognised academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by a personal tutor.

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biotechnology

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies. Recombinant proteins are also found throughout everyday life from washing powders to cheese as well as many industrial applications.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The Diploma and Certificate are shorter. Starts September and January.

The masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Biotechnology (15 credits)
-Plant biotechnology (15 credits)
-Molecular biology (15 credits)
-Applied biomedical techniques (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (choose one from)
-Human genomics and proteomics (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work; in-depth critical analysis; oral presentations. Research project assessment includes a written report and viva.

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems. Read more

Sustainable agriculture

The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems.

Programme Summary

The context of the topics is international, having as its main area of investigation warm-temperate environments at a global level. The graduate in Sustainable agriculture must work to achieve food security objectives associated with improving the quality and wholesomeness of food products. The graduate must know the issues related to biodiversity, global change and ecosystem services, which are analyzed according to a systemic and adaptive approach, considering also the traceability of processes.
To address the global challenges, students are equipped with a wide learning platform, and are able to make comparisons between different production systems at the international level in terms of environmental, socio-economics, and regulatory environments.

Dual degree with USA

With the aim of strengthening this global approach to sustainability and food security, the degree program has been included in an internationalization project in collaboration with the University of Georgia, USA, which enables students to achieve a dual degree in "Sustainable Agriculture" (Italy) and "Crop and Soil Science" (USA).

Who is the MSc candidate?

The course is intended for highly-motivated national and international students and is conceived for Bachelor graduates with a main interest in agricultural and environmental sciences.

What career opportunities does the MSc provide?

The graduate in Sustainable Agriculture is able to perform a wide range of activities in a professional and efficient manner:
1) Operate internationally by conducting activities of planning, management, monitoring, coordination and training in agricultural production processes to meet the needs of the international market;
2) Be involved in activities of experimentation and research in both the public and private sectors (eg. Biotechnology companies);
3) Fill a position or interact with international organizations such as FAO, EU and World Bank;
4) Be involved in the transfer of technologies (innovation broker);
5) Manage technical and international business related to agricultural products and processing, and related to agricultural mechanization;
6) Play an active role in private and public structures aimed at land management and the management of water resources, including historical, cultural and landscape values of agricultural land;
7) Collaborate in the establishment and operation of projects in basic and applied research in the field of agricultural production in the international arena.

How is the programme organised?

The training course in Sustainable Agriculture, lasting two years, includes two main areas of study:
1) Production: training in the areas of agronomy, crop and animal productions, soil science, plant breeding, and integrated management of pests and diseases, all aimed at the sustainability of the production process and its social implications;
2) Technology: training in the areas of management and protection of air-soil-water, use of biomass of agricultural plants and animals, land management, and management of the production process (at different geographic scales) considering both innovative technologies and socio-economic aspects.
Learning is based on active studies covering activities in the classroom, in the laboratory and in the field as well as the possibility of using the contribution of Italian and foreign teachers, and industry experts that can provide specific case studies. The program offers intensive individual tutoring of students, as well as the opportunity to intern for six months, in companies in the public and private sectors, possibly abroad, for the study of cases of excellence in preparation of the thesis

Visit the MSc “Sustainable agriculture” page on the Università di Padova web-site http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2016&key=AV2293 for more details.

Read less
The Master of Nursing Practice will provide a professional nursing qualification for individuals who have gained an Australian bachelor's degree (or equivalent) from a recognised university. Read more
The Master of Nursing Practice will provide a professional nursing qualification for individuals who have gained an Australian bachelor's degree (or equivalent) from a recognised university. This program builds on prior knowledge and skills and facilitates the development of professional nursing practice through engagement with expert clinical nurses, contemporary nursing theory and evidence.

Nurses are in demand throughout the world because they are vital to the health and wellbeing of every country and person. As a nurse, you can have a variety of roles or work in a number of specialty areas – such as acute care, paediatrics and medical surgical.

On enrolment, a medical certificate specifying the student's current health and immunisation status is required.

Students will also be asked to obtain a National Police Certificate (annual requirement) and a Working With Children Check on enrolment in the program.

Visit the website http://www.study.monash/courses/find-a-course/2016/nursing-practice-3966?domestic=true

Overview

If you're not happy with the direction your career has taken, here's your chance to explore alternative options for a satisfying, fulfilling and respected profession.

Monash nursing graduates are among the most sought after in the world because of our teaching quality and access to hands on learning in major teaching hospitals.

This intensive program gives graduates with non-nursing degrees the opportunity to switch careers and reap the rewards of becoming a highly skilled carer.

The chance it offers to rethink careers is changing the face of nursing, with many more men represented in the course than in nursing generally, where only about 10 per cent of nurses are male.

Lee Horsley, one of the first students to enrol in this new degree, had been raising a young family and working 60-hours a week in his plant nursery before deciding to take his mother's advice and become a nurse as she had been.

"For the first time I feel that I am doing what I should be doing," he said at the time. On his first day, he discovered that half of his fellow students were men from a range of backgrounds, including engineering, law, teaching and IT.

He says nursing "absolutely benefits from a better gender balance".

The course is an effective blend of theory and practice, with about half your study week spent in class and the other half in clinical practice, allowing you to apply and reinforce new knowledge quickly.

And with Monash's links to leading research centres and teaching hospitals across metropolitan and regional Victoria, you'll have access to great facilities and learn from some of the most experienced and capable medical practitioners and researchers in the country.

Monash also leads the way in teaching health educators to teach more effectively and in the use of simulated learning - so skilled instructors help you practise new techniques on dummies before people.

You can study the course at our Clayton campus, but, because of its intensity, only on a full-time basis.

The Master of Nursing Practice is not a postgraduate degree for individuals who are already nurses and who wish to undertake study to advance their practice or who wish to pursue a research pathway.

Career opportunities

Successful completion of the Master of Nursing Practice demonstrates that a candidate has attained competence in delivering nursing care and is eligible to be registered as a Registered Nurse with the Nursing and Midwifery Board of Australia.

Professional recognition (Australian)

On completion of this degree, graduates will be eligible for registration as a Registered Nurse with the Nursing and Midwifery Board of Australia.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/nursing-practice-3966?domestic=true#making-the-application

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Animal Breeding and Genetics
Evolutionary Genetics
Human Complex Trait Genetics

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Statistics and Data Analysis
Linkage and Association in Genome Analysis
Research Proposal
Either Bioinformatics or Molecular Phylogenetics

Option courses (selected according to degree specialisation):

Quantitative Genetic Models
Molecular Evolution
Genetics of Human Complex Traits
Animal Genetic Improvement
Evolution and Climate Change
Functional Genomic Technologies

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
In a world where global transport links allow rapid movement of people and animals, disease can spread more quickly than before and is harder to control than ever. Read more
In a world where global transport links allow rapid movement of people and animals, disease can spread more quickly than before and is harder to control than ever. In such a world there is a growing need for trained epidemiologists at the front line of disease surveillance.

The UK leads the way in providing this training and, in order to meet the demand for skilled professionals, the RVC has developed a unique postgraduate veterinary epidemiology course, delivered jointly with the London School of Hygiene and Tropical Medicine (LSHTM).

Under the microscope

This demanding masters in veterinary epidemiology programme is led by veterinary epidemiologists and supported by policy makers from the forefront of UK government and you will gain a fascinating insight into the work of the Department for Environment, Food, and Rural Affairs (Defra) and the Animal and Plant Health Agency (APHA, formerly AHVLA). Your areas of study will combine LSHTM’s strengths in epidemiological principles and communicable disease epidemiology, with the RVC’s expertise in veterinary epidemiology, animal health and production.

The course

All students are required to study the core units and usually the recommended units. Students are advised to take at most one optional unit unless they are very familiar with the content of several core or recommended units.

Term one core units:
- Extended epidemiology
- Statistics for EPH
- Epidemiological aspects of laboratory investigation
- Surveillance of animal health and production
- Data management using epi-data
- Communication skills in epidemiology

Recommended unit: Public health
Optional units: Epidemiology in context, Introduction to computing

Term two core units:
- Animal health economics
- Epidemiology and control of communicable diseases
- Statistical methods in epidemiology
- Applied risk assessment and management

Term three core unit:
- Advanced statistical methods in veterinary epidemiology

Recommended units: Modelling and dynamics of infectious diseases, Methods of vector control


Projects - you will spend the second part of the year working full-time on an individual project with the guidance of a supervisor. If you have been sponsored by an employer, you may undertake a project related to your work.

Assessment - you will be assessed by two written exams in June, six in-course assessments throughout the year, and a project report with oral examination in September.

How will I learn?

You can choose to complete the Veterinary Epidemiology post-graduate course over one year full-time study, or part time over two years.

All participants begin the course in September. Over three terms, you will be taught through a combination of lectures, seminars, practicals and tutorials. Both MSc and Diploma students complete the Term One foundation module. MSc students then complete a further five compulsory modules over Terms Two and Three, while Diploma students complete a further four modules, with some module choice available.

Students on both courses sit written examination papers in June, after which the veterinary epidemiology MSc students will work on a research project from June to August, culminating in an oral examination in September.

Part-time students attend the course full-time from October to December in year one, followed by classes two to three days a week from January to May. You will usually study the remainder of the course in year two, including the summer research project (MSc students only).

We recognise the need for flexibility, however, and are happy to tailor your part-time study to meet your specific requirements (subject to agreement with the course director).

Learning outcomes

Upon successful completion of the course you will be able to:

- Demonstrate and understand the key concepts underpinning the discipline of veterinary and medical epidemiology
- Select an appropriate study design when confronted with an epidemiological research question and develop a detailed study protocol capable of answering the research question
- Analyse and interpret epidemiological data derived from cross-sectional, case-control and cohort studies
- Review critically the published epidemiological literature
- Apply epidemiological principles to surveillance, and infection and disease control, within animal and human populations
- Communicate effectively with researchers from different disciplinary backgrounds
- Communicate effectively with other people with an interest in human and animal health, including the general public and key policy makers.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X