• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Dundee Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"plant" AND "maintenance"…×
0 miles

Masters Degrees (Plant Maintenance)

We have 16 Masters Degrees (Plant Maintenance)

  • "plant" AND "maintenance" ×
  • clear all
Showing 1 to 15 of 16
Order by 
MSc Maintenance Engineering is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. Read more
MSc Maintenance Engineering is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. The course aims to develop students' knowledge in maintenance engineering, tribology, maintenance of complex systems and systems integration. This postgraduate award covers both technical and management aspects of maintenance engineering and forms a suitable basis for a career in a range of roles associated with maintenance engineering on mechanical plants, such as: asset management, plant maintenance and preventative maintenance.

PROFESSIONAL ACCREDITATION

Our MSc Course in Maintenance Engineering is accredited by the Institution of Engineering and Technology as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration.

LEARNING ENVIRONMENT AND ASSESSMENT

The course adopts a range of approaches to the delivery of curriculum including: case studies, lectures, practical sessions, independent learning guided by a tutor and tutorial sessions.

Assessment of learning is conducted by a range of methods including: tutorial questions, examination, use of online assessment via Blackboard questions, extended assignments, presentations, poster defence and written reports.

The course benefits from world-class facilities in tribology, surface engineering and intelligent condition monitoring with a wide range of equipment (laboratory and industrial scale) and computer modelling facilities relevant in maintenance.

OPPORTUNITIES

On successful completion of this programme, students will be eligible to apply for progression to world-leading research degrees within the Jost Institute for Tribotechnology.

The course is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. The award covers both technical and management aspects of maintenance engineering and forms a suitable basis for a career in a range of roles associated with maintenance engineering on mechanical plants, such as asset management, plant maintenance and preventative maintenance.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in all aspects of plant engineering. - Guidance from practicing plant engineering experts in the field. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in all aspects of plant engineering

- Guidance from practicing plant engineering experts in the field

- Knowledge from the extensive experience of instructors, rather than from clinical information gained from books and college

- Improved career prospects and income

- An EIT Advanced Diploma of Plant Engineering

Start Date: June 05, 2018.

INTRODUCTION

This practical course avoids over emphasis on theory. This is rarely needed in the real industrial world where time is short and immediate results are required. Hard-hitting and useful know-how, are needed as minimum requirements. The instructors presenting this advanced diploma are highly experienced engineers from industry who have many years of real-life experience as Plant Engineers. The format of presentation - live, interactive distance learning with the use of remote labs means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain solid knowledge of the key elements of Plant Engineering to improve their work skills and to further their job prospects:

- Electrical Engineers who need an overall Plant Engineering appreciation

- Electricians

- Maintenance Engineers and Supervisors

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

Even those who are highly experienced in Plant Engineering may find it useful to follow some of the topics to gain know-how in a very concentrated but practical format.

COURSE STRUCTURE

The course follows six engineering threads to provide you with maximum practical coverage in the field of Plant Engineering:

- Overview and where the Plant Engineer fits into the 21st century production sphere

- Engineering technologies in detail

- Skills for project, process, environmental and energy management

- Maintenance management

- Safety management; with corresponding legal knowledge

- Other necessary skills to master

The course is composed 19 modules. These modules cover a range of aspects to provide you with maximum practical coverage in the field of Plant Engineering.

The modules are:

- Introduction to Plant Engineering

- Plant Operations and Facility Management

- Electrical Equipment and Technology

- Pressure Vessels and Boilers

- Fundamentals of Professional Engineering

- Mechanical Equipment and Technology

- Fluid Power Systems and Components

- Pumps and Seals

- Thermodynamics, Compressors, Fans and Blowers

- Process Plant Layout and Piping Design

- Heating, Ventilation and Air Conditioning

- Noise and Vibration

- Structural and Civil Engineering Concepts

- Process Management

- Energy Management

- Instrumentation and Control Engineering

- Maintenance Management

- Environmental Engineering

- Safety Management

PRESENTATION FORMAT

The programme features real-world applications and uses a multi-pronged approach involving interactive on-line webinars, simulation software and self-study assignments with a mentor on call. The course consists of 72 topics delivered over a period of 18 months. Presentations and group discussions will be conducted using a live, interactive software system. For each topic you will have an initial reading assignment (which will be delivered to you in electronic format in advance of the online presentations). There will be coursework or problems to be submitted and in some cases there will be practical exercises, using simulation software and remote labs that you can easily do from your home or office. You will have ongoing support from the instructors via phone, fax and e-mail.

LIVE WEBINARS

The webinar schedule is not put together until after registrations close. The reason for this is that the program is promoted globally and we often have participants from several time zones. When you enrol you will receive a questionnaire which will help us determine your availability. When all questionnaires are returned we create a schedule which will endeavour to meet everyone’s requirements. Each webinar runs 2 or 3 times during each presentation day and we try our best to ensure that at least one session falls into your requested time frames. This is not always possible, however, due to the range of locations of both presenters and students. If you are unable to attend the webinars scheduled, we do have some options available. Contact the EIT for more details.

PRACTICAL EXERCISES AND REMOTE LABORATORIES

As part of the groundbreaking new way of teaching, we will be using a series of remote laboratories (labs) and simulation software, to facilitate your learning and to test the knowledge you gain during the course. These involve complete working labs set up at various locations of the world into which you will be able to log and proceed through the various practical sessions. These will be supplemented by simulation software, running either remotely or on your computer, to ensure you gain the requisite handson experience. No one can learn much solely from lectures, the labs and simulation software are designed to increase the absorption of the materials and to give you a practical orientation of the learning experience. All this will give you a solid, practical exposure to the key principles covered in the course and will Practical Exercises and Remote Laboratories ensure that you obtain maximum benefit from the course to succeed in your future career in Industrial Automation.

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. Read more

Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. It is estimated that 10% of annual typical plant cost is spent maintaining plant. Maintenance costs are likely to influence competitiveness on a global scale and this allows Maintenance Managers to make major impacts on their companies' bottom line.

The programme is a key element in increasing industrial competitiveness and is a sophisticated discipline which embraces management techniques, organisation, planning and the application of substantial electronic, engineering and analytical knowledge to manufacturing processes, transport, power generation and the efficient operation of industrial, commercial and civic buildings. The aim of the programme is to give companies the technical and managerial expertise to thrive in the global marketplace.

On completion of the course students will be able to obtain one of the following degrees: MSc, Postgraduate Diploma (PGDip), Postgraduate Certificate (PGCert).

Course Content

The programme consists of course units which include various aspects of applied management and technology in the field of REAM. It is designed such that after enrolment participants already working in industry will benefit from the structure and content of the course in order to enhance their capability in Reliability Engineering and Asset Management. Our teaching staff are internationally recognised professionals with years of experience working in industry and academic institutions.

The course is offered as indicated below:

HOME/EU

MSc - Full time 1 year; Part time in attendance 3 years*; Distance Learning 3 years**

PG(Diploma) - Full time 1 year; Part time in attendance 2 years*; Distance Learning 2 years**

PG(Certificate) - Part time in attendance1 year*; Distance Learning 1 year**

*4 x 1 week teaching blocks per year; **Attendance = 1 day residential course per module; 2 modules per term - attendance not compulsory but recommended

International

MSc - Full time 1 year; Distance Learning 3 years**

PG(Diploma) - Distance Learning 2 years**

PG(Certificate) - Distance Learning 1 year**

** Attendance = 1 day residential course per module; 2 modules per term - attendance not compulsory but recommended

Accreditation

The course is fully accredited by The Institution of Mechanical Engineers and approved by The Society of Operations Engineers.

Student Experience

Read what students say about the course.

Special features

Reliability Engineering & Asset Management offers a flexible approach to learning as follows:

Full-time in attendanceDirect Taught )

Students undertake eight units. Each taught unit lasts one week and is followed by time for coursework and revision for examinations. Students start work immediately on their project and the programme is completed in one year.

Part time in attendanceDirect Taught )

Students undertake eight units. Each taught unit lasts one week and is followed by time for coursework and revision for examinations. Students start work on their project in the final year and this option is completed in three years.

Part time by Distance Learning

Students undertake eight units, all in distance learning format, each of about three months duration. Teaching will begin with a short introduction allowing students to acclimatise to the Virtual Learning Environment, Blackboard 9. The programme is complete after three years. Students undertake their project in the final year. 

Teaching and learning

The coherent atmosphere in the classroom is to maintain high standards and quality and as such places are limited. Our teaching methods are similar to knowledge transfer concepts as well as case studies without involving much mathematical theories.

Teaching style

Direct Taught - Full and Part time

Each course unit runs for an intensive week-long period and tuition takes place at the University.

Distance Learning

For part-time Distance Learning students, the entire course is delivered via Blackboard, an online virtual learning environment. Two course units per semester are undertaken on-line accessing web-based teaching material which will include text, images, video and animation in parallel, over a three month period. Most importantly web-based teaching generates an interactive environment with real, active communication between students and staff and between groups of students throughout the programme. Distance Learning students will need to visit the University for a 2-day residential per semester for face-to-face discussion with their Unit leader .

Coursework and assessment

Each taught unit of the programme is followed by an assignment which is applied in the work place for part-time students or at the university for full-time students plus an examination either at the University or at higher education institute or British Council in the student's home country.

Assessment is by written examination and assignment. The assignment, which follows the taught element of the unit, accounts for 50% of the total marks, the examination 35% and an in-unit assignment the remaining 15%.

Examination period

Semester 1 - 2nd and 3rd week of January

Semester 2 - 2nd and 3rd week of May

Dissertation Project

The dissertation project is intended to address a real issue in Reliability Engineering and Asset Management and is studied in depth, relating problems in the field to theory, case studies and solution reported in the literature, and often creating innovative proposals and field trials. All students have access to laboratory resources where appropriate.

Course unit details

REAM is a modular programme which consists of eight units, some of which include field and lab work followed by a major project. The earlier units address the management of the maintenance process, including such topics as asset management and maintenance strategy; asset maintenance systems and condition monitoring. Later more specialised units deal with auditing, advanced vibration monitoring, reliability and risk. Units on the full time programme are direct taught, however, part time students can choose either direct taught or web-based distance learning.

All delivery modes cover the same syllabus and lead to the same qualification. View examples of programme structures of individual degree programmes; Full-time , Part-time and Distance Learning . Please see examples of past dissertation projects .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 



Read less
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to many industries. It is estimated that significant annual typical plant cost is spent maintaining plant. Read more

Reliability Engineering and Asset Management is a critical field of managerial and technical importance to many industries. It is estimated that significant annual typical plant cost is spent maintaining plant. Maintenance costs are likely to influence competitiveness on a global scale which allows Maintenance Managers to make major impacts on their companies' bottom line.

The  programme  is a key element in increasing industrial competitiveness and is a sophisticated discipline which embraces management techniques, organisation, planning and the application of substantial electronic, engineering and analytical knowledge to manufacturing processes, transport, power generation and the efficient operation of industrial, commercial and civic buildings. The aim of the programme is to give companies the technical and managerial expertise to thrive in the global marketplace.

On completion of the course students will be able to obtain one of the following degrees: MSc, Postgraduate Diploma (PGDip), Postgraduate Certificate (PGCert).

Course Description

The programme consists of course units which include various aspects of applied management and technology in the field of REAM. It is designed such that after enrolment participants already working in industry will benefit from the structure and content of the course in order to enhance their capability in Reliability Engineering and Asset Management. Our  teaching staff  are internationally recognised professionals with years of experience working in industry and academic institutions.

The course is offered as indicated below:

MSc -  Part time Distance Learning 2 years**

PG(Diploma) -  Distance Learning 2 years**

PG(Certificate) -  Distance Learning 1 year**

** Attendance = 5 day residential programme per module; 2 modules per semester

Special features

You will attend a 5 day face to face workshop for each unit. There will be four workshops each academic year at The University of Manchester's Middle East Centre, located at the heart of Dubai's Knowledge Park. At these workshops, you will undertake practical activities in small multinational groups and complete applied maintenance challenges that are relevant to your workplace. Our approach combines the very best interactive e-learning with the Manchester Method - the `action learning' approach developed here at The University of Manchester in the 1960s. 

In addition to your face to face workshop for each unit you will also complete a dissertation project. You will be supported by an academic supervisor relevant to your chosen project area and will have regular contact with them to support your study.

Teaching and learning

The intention of the programme is to maintain high standards and quality. Therefore places are limited. Our teaching methods are similar to knowledge transfer concepts as well as case studies without involving much mathematical theories.

For part-time students you will visit our University of Manchester Worldwide centre in Dubai Knowledge Park for a 5-day residential per unit, there are two units in each semester, the learning is further supported via Blackboard, an online virtual learning environment. Our web-based platform generates an interactive environment with real, active communication between students and staff and between groups of students throughout the programme after the class room teaching.  

Coursework and assessment

Each taught unit of the programme has three assessments:

  1. Short assignment (15%) completed in the 5-day direct taught residential;
  2. Major written assignment (50%) which is submitted at the end of the semester;
  3. 2 Hour closed book examination (35%) at the end of the semester.

Dissertation Project

The  dissertation project  is intended to address a real issue in Reliability Engineering and Asset Management and is studied in depth, relating problems in the field to theory, case studies and solution reported in the literature, and often creating innovative proposals and field trials. All students have access to laboratory resources where appropriate. The dissertation starts in the second semester and is to be completed by the end of the programme.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 



Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in mechanical. engineering. Practical guidance and feedback from experts from around the world. Read more

WHAT YOU WILL GAIN:

• Skills and know-how in the latest and developing technologies in mechanical

engineering

• Practical guidance and feedback from experts from around the world

• Live knowledge from the extensive experience of expert lecturers, rather  than just theoretical information gained from books and College

• Credibility and respect as the local mechanical engineering expert in

            your firm

• Global networking contacts in the industry

• Improved career choices and income

• A valuable and accredited Master of Engineering (Mechanical) or Graduate

 Diploma of Engineering (Mechanical)

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Mechanical)

  To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Production Engineering

• Robotics

• Manufacturing and Management Systems

• Industrial Automation Engineering

• Instrumentation, Control and Automation

PROGRAM STRUCTURE

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 - 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
Part 1 (120 credits). runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. Read more
Part 1 (120 credits): runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. They must be completed successfully before proceeding to Part 2.

Part 2 (60 credits): is the dissertation phase and runs from end of May to September. This is a supervised project phase which gives students further opportunity for specialisation in their chosen field. Dissertation topics are related to the interests and needs of the individual and must show evidence of wide reading and understanding as well as critical analysis or appropriate use of advanced techniques. The quality of the dissertation is taken into account in the award of the Masters degree. Bangor University regulations prescribe a maximum word limit of 20,000 words for Masters Dissertations. A length of 12,000 to 15,000 words is suggested for Masters programmes in our School.

Summary of modules taken in Part 1:

All students undertake 6 modules of 20 credits each which are described below.

Conservation Science considers questions such as ‘in a post-wild world what should be the focus of conservation attention?’ ‘What are the relative roles of ecology, economics and social science in conservation?’ ‘What are the advantage and disadvantages of the introduction of market-like mechanisms into conservation policy?’ We look closely at the current and emerging drivers of biodiversity loss world-wide, while carefully analysing the range of responses.

Insect Pollinators and Plants is at the interface between agriculture and conservation, this module introduces students to plant ecology and insect pollinators. Students will gain unique understanding of the ecological interactions between plants and insect pollinators including honey-bees to implement more sensitive conservation management. The module explores the current conservation status of insect pollinators and their corresponding plant groups; how populations are monitored, and how interventions in the broader landscape can contribute to improving their conservation status. Module components relate specifically to ecosystem pollination services, apiculture and habitat restoration and/or maintenance. The module has a strong practical skills focus, which includes beekeeping and contemporary challenges to apiculture; plant and insect sampling and habitat surveying. Consequently, there is a strong emphasis on “learning by doing.

Agriculture and the Environment reviews the impact of agricultural systems and practices on the environment and the scientific principles involved. It includes examples from a range of geographical areas. It is now recognised that many of the farming practices adopted in the 1980’s and early 1990’s, aimed at maximising production and profit, have had adverse effects on the environment. These include water and air pollution, soil degradation, loss of certain habitats and decreased biodiversity. In the UK and Europe this has led to the introduction of regulatory instruments and codes of practice aimed at minimising these problems and the promotion of new approaches to managing farmland. However, as world population continues to rise, there are increased concerns about food security, particularly in stressful environments such as arid zones where farmers have to cope with natural problems of low rainfall and poor soils. Although new technologies including the use of GM crops have potential to resolve some of these issues, concerns have been expressed about the impact of the release of these new genetically-engineered crops into the environment.

Management Planning for Conservation provides students with an understanding of the Conservation Management System approach to management planning. This involves describing a major habitat feature at a high level of definition; the preparation of a conservation objective (with performance indicators) for the habitat; identification and consideration of the implications of all factors and thus the main management activities; preparation of a conceptual model of the planning process for a case study site and creating maps using spatial data within a desktop GIS.

Research Methods Module: this prepares students for the dissertation stage of their MSc course. The module provides students with an introduction to principles of hypothesis generation, sampling, study design, spatial methods, social research methods, quantitative & qualitative analysis and presentation of research findings. Practicals and field visits illustrate examples of these principles. Course assessment is aligned to the research process from the proposal stage, through study write up to presentation of results. The module is in two phases. The taught content phase is until the period following Christmas. This is followed by a project planning phase for dissertation title choice and plan preparation.

Field Visit Module: this is an annual programme of scientific visits related to Conservation and Land Management. The main purpose of the trip will be to appreciate the range of activities different conservation organisations are undertaking, to understand their different management objectives and constraints. Previous field trips have visited farms, forests and reserves run by Scottish Wildlife Trust, National Trust, RSPB, local authorities, community groups and private individuals.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering

- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety

- Guidance from experts in the field of mechanical engineering technology

- Networking contacts in the industry

- Improved career prospects and income

- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for April 09, 2018. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies

- Applications of Mechanical Engineering Technologies

- Energy Systems

- Industrial Automation

- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel

- Design engineers

- Process technicians, technologists and engineers

- Process control engineers and supervisors

- Mechanical technicians, technologists and engineers

- Mechanical equipment sales engineers

- Pump and mechanical equipment operators

- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering

Structural Mechanics

Mechanical Drive Systems

A C Electrical Motors and Drives

Rotating Equipment Balancing, Alignment and Condition Monitoring

Hydraulics

Pneumatics

Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning

Process Plant Layout and Piping Design

Pipeline Systems

Pumps and Compressors

Mechanical Seals

Safe Lifting

Machinery Safety

ENERGY SYSTEMS

Energy Efficiency

Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation

Measurement and Control Systems

Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course. Read more
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course.

You’ll share a breadth of experience – the multi-disciplinary nature of the taught component means you will share a broad experience of methodological and research issues. Allied with subject specific supervision, this will allow you to develop a unique awareness of knowledge and experiences across the natural and social sciences in addition to a focus on your own research topic.

Biosciences pathway:
Students pursuing the bioscience pathway would be expected to have research which falls within the areas of the members of the biomolecular research group (BMRG). The BMRG have specialities in cell and molecular biology, protein science, chemical and structural biology, cancer biology, bioinformatics, metabolomics and evolutionary genetics. A selection of current research projects include:

*Development of fluorescent chemosensors for medical applications, biochemical investigations, environmental monitoring, biotechnology and drug discovery.
*Investigating the protein structure and biological control potential of plant lectins.
*Studying organism development and ageing with respect to environmental stimuli.
*Studying prion protein development and maintenance in yeast.
*Investigating the therapeutic potential of novel animal venoms as anti-microbial, anti-parasitic and anti-cancer agents.
*Computationally investigating the molecular dynamics of cell skeletal components.
*Investigating mammalian embryology and comparative genomic studies in a variety of avian species.
*Investigating the biochemical and biophysical properties of muscle proteins.
*Investigating alternative splicing and the circadian clock in plant stress responses.
*Deployment of molecular techniques an attempt to understand the patterns in the spatial distribution of organisms.

Members also have collaborative interests with external partners including local schools and biotechnology businesses. For more information on member’s research activities or for contact details, please click on a member’s individual Staff Profile.

We are a close-knit community of academics, researchers and students dedicated to the study of Life Sciences. You would be joining an active and dynamic post-graduate community and would have the opportunity to contribute to and benefit from this community.

Find out more about the section of Life Sciences at https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/about-us.aspx. You can also find out more about our research https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/research/research.aspx.

Read less
The Institute of Science and Environment’s educational and research expertise within Ecology and Environmental Management encompass a range of topics; climate… Read more
The Institute of Science and Environment’s educational and research expertise within Ecology and Environmental Management encompass a range of topics; climate change and the degradation and loss of ecosystem services, grassland management and its botanical enhancement, habitat restoration, creation and maintenance, plant community ecology and vegetation dynamics, ecology and management of wild boar, ex-situ species conservation and management, soil and water analysis and management. It can be studied full time over three years, or part time over a maximum of six years.

The Programme aims to prepare students:

- For doctoral level study.
- To engage in a career in in ecological or environmental management in a research, consultancy or wider sector context.
- To meet the global need for highly trained individuals who can make informed decisions on future research directions.
- To think for themselves in the development of a critical approach to the analysis of data and interpretation of published research.

Read less
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Read more
This taught one-year course will give students a thorough understanding of all aspects of wetland science and ecology. Students will also gain experience and knowledge on the complex conservation, restoration and management issues associated with wetlands. Field and laboratory work will cover the latest techniques in environmental analysis needed for contemporary wetland monitoring and experimentation.

Taught wetland and conservation modules

Wetland ecology
Classification of wetland types
Properties and functions of wetlands
Wetland zoology and botanical adaptations
Wetland hydrology and biogeochemistry
Carbon sequestration in wetlands
Use of wetlands for carbon offsetting
Wetland conservation and restoration techniques
Use and design of constructed wetlands
Wetland plant identification

Instrumental and environmental analysis

Students will learn a variety of instrumental analysis techniques suitable for ecologists interested in environmental analysis and those studying a wide variety of aquatic and terrestrial habitats – not just wetlands. The theory, practical use and basic maintenance of the instruments will be covered, along with sample collection and analysis.

The lab and field based techniques covered include:

pH, conductivity and Redox potential
Greenhouse gas (GHG) collection and analysis using a gas chromatograph (GC) and infra-red gas analysis (IRGA)
Cation and anion concentration analysis using ion chromatography (IC)
Stable isotope analysis with an isotope ratio mass spectrometer (IRMS)

Wetland-based research project

The research project comprises a third of the MSc and is supervised by research active staff with excellent publication record and experience in their field.
Career Options

Students choosing this MSc will enjoy a modular course that will teach both the practical and theoretical aspects of wetland science and conservation. Successful students will therefore develop the skills and experience required to enable progression onto PhD studies in a wide-range of biological, biogeochemical, environmental and conservation based subjects.

The course will also allow students to seek employment in areas related to wetlands, soil science, water treatment and quality, conservation and environmental consultancy.

Read less
This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. Read more

This part-time, distance learning Masters course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. It’s designed to provide you with advanced, in-depth knowledge of both the theory and practical application of concrete technology to prepare you for a variety of senior roles.

You’ll gain academic and industrial expertise using a range of online resources that give you the flexibility to study around your work and personal lives. From health and safety and quality control to mixture proportioning, repair and maintenance and life cycle analysis, you’ll develop an understanding of a wide range of issues that affect professionals in the concrete industry today.

If you complete the MSc, you’ll also have the chance to conduct your own research project – a chance to focus on a single topic and demonstrate valuable skills when you present your findings in a comprehensive technical report.



Read less
This part-time, distance learning Postgraduate Diploma course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. Read more

This part-time, distance learning Postgraduate Diploma course aims to develop the next generation of senior construction professionals working in concrete production, construction and design. It’s designed to provide you with advanced, in-depth knowledge of both the theory and practical application of concrete technology to prepare you for a variety of senior roles.

You’ll gain academic and industrial expertise using a range of online resources that give you the flexibility to study around your work and personal lives. From health and safety and quality control to mixture proportioning, repair and maintenance and life cycle analysis, you’ll develop an understanding of a wide range of issues that affect professionals in the concrete industry today.

The programme also has close links with our interdisciplinary Institute for Resilient Infrastructure, which collaborates with industry to focus on key challenges facing the construction sector. It broad scope incorporates the impacts of the engineering, environmental, economic, social and political domains on the whole life performance of infrastructure assets.

You can also study for a MSc qualification over 36 months, which means you’ll study the same content and complete an additional research project.

Accreditation

The course is accredited by the Institute of Concrete Technology.



Read less

Show 10 15 30 per page



Cookie Policy    X