• Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
University of Manchester Featured Masters Courses
FindA University Ltd Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Cambridge Featured Masters Courses
"plant" AND "breeding"×
0 miles

Masters Degrees (Plant Breeding)

We have 38 Masters Degrees (Plant Breeding)

  • "plant" AND "breeding" ×
  • clear all
Showing 1 to 15 of 38
Order by 
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
This is an online Master specialisation within the MSc Plant Sciences. Read more

MSc Plant Breeding

This is an online Master specialisation within the MSc Plant Sciences

ONLINE OPEN DAY: 17 MARCH 2016

Would you like to know more about the Master programmes of Wageningen University, join us for the Master online open day on 17 March 2016! During the online open day you can meet the staff and students of the Master programmes, experience Wageningen University and check out the innovative campus. You can also ask your questions about application and admission, scholarships, the education system and much more, all online!

sign up now

http://www.wageningenuniversity.eu/masteronlineopenday

Online Master

The online master specialisation is designed for part-time study (approx. 20 hrs/week) to combine work and study or in the context of Life-Long-Learning. A course-programme of 2 years will be followed by a tailor-made internship and Master thesis. During the courses, you will closely collaborate with lecturers, tutors and fellow distance learning students on a virtual learning platform. The course programme includes two short stays of two weeks, each in Wageningen, for essential practicals that relate to the theory. There may be options to organise the academic internship and Master thesis in your own professional context, either parttime or full-time.

Programme summary

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge of the physiology, ecology and genetics of cultivated plants. The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Your future career

Graduates of the Master Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Student Timo Petter.
After 10 years of practical experience in Allium breeding, Timo subscribed to follow courses of the master Plant Breeding and Genetic Resources. His job at Bejo Zaden brought him to many countries where the breeding company has her trial fields, breeding stations and sales representatives. But as a crop research manager he started to feel the need to improve his knowledge of the theoretical side of his profession: “Although I have not finished my masters yet, I use the knowledge that I have gained from the various courses every day! For a plant breeder, I believe that this master is the best educational programme available in the Netherlands.”

Related on-campus programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology

Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
The Master of Agriculture and Environment is focused on providing you with the knowledge and skills necessary to tackle and create solutions for our time in areas such as food security, climate change, and management of carbon, water and the environment within the changing complexity of global markets and world economics. Read more
The Master of Agriculture and Environment is focused on providing you with the knowledge and skills necessary to tackle and create solutions for our time in areas such as food security, climate change, and management of carbon, water and the environment within the changing complexity of global markets and world economics.

If you have a degree in Science, Economics or related work experience (accreditation subject to approval) the Master of Agriculture and Environment is the degree for you. You will gain important hands-on experience, which is highly valued by employers in both the public and private sectors. Within this articulated degree you will complete a research project that provides you with the opportunity to identify and address critical and current problems and issues, and develop your skills in project management, effective communication and cross-disciplinary thinking. A range of specialist streams is available to those wishing to target specific areas of interest.

The Faculty has access to some of the world’s best-equipped and newest research facilities, including the Centre for Carbon, Water and Food, and the world renowned Plant Breeding Institute. The Faculty’s substantial field stations in Australia include1200 hectares of farmland, and house state of the art research facilities with enviable amenities for large-scale field studies in agricultural science, food science, environmental studies, ecology, bush-fire research and more.

A Master of Agriculture and Environment qualification will allow you to develop a career in an exciting and leading-edge sector that generates over $150 billion a year in production, contributes around 16% of Australia's export earnings, and tackles the global issues of food, water, energy and soil security internationally.

For further information on this course please visit The Master of Agriculture and Environment is focused on providing you with the knowledge and skills necessary to tackle and create solutions for our time in areas such as food security, climate change, and management of carbon, water and the environment within the changing complexity of global markets and world economics.

If you have a degree in Science, Economics or related work experience (accreditation subject to approval) the Master of Agriculture and Environment is the degree for you. You will gain important hands-on experience, which is highly valued by employers in both the public and private sectors. Within this articulated degree you will complete a research project that provides you with the opportunity to identify and address critical and current problems and issues, and develop your skills in project management, effective communication and cross-disciplinary thinking. A range of specialist streams is available to those wishing to target specific areas of interest.

The Faculty has access to some of the world’s best-equipped and newest research facilities, including the Centre for Carbon, Water and Food, and the world renowned Plant Breeding Institute. The Faculty’s substantial field stations in Australia include1200 hectares of farmland, and house state of the art research facilities with enviable amenities for large-scale field studies in agricultural science, food science, environmental studies, ecology, bush-fire research and more.

A Master of Agriculture and Environment qualification will allow you to develop a career in an exciting and leading-edge sector that generates over $150 billion a year in production, contributes around 16% of Australia's export earnings, and tackles the global issues of food, water, energy and soil security internationally.

For further information regarding this course please visit the website http://sydney.edu.au/courses/master-of-agriculture-and-environment

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
The Faculty of Agriculture and Environment has a long history in research and development in agricultural and related sciences benefiting local and international enterprises and industries. Read more
The Faculty of Agriculture and Environment has a long history in research and development in agricultural and related sciences benefiting local and international enterprises and industries. Its research addresses and creates solutions for the most challenging current issues affecting agriculture and management of natural resources, such as food security, climate change, carbon, water and the environment.

The Master of Philosophy is a two year full-time degree in which candidates undertake research and write a thesis. It may also include some coursework to support the candidature.

Research in the Faculty is managed by two departments: Environmental Sciences and Plant and Food Sciences. These departments are supported by the Faculty's research centres – the Plant Breeding Institute at Cobbitty and Narrabri, the Precision Agriculture Laboratory, the Pulsford laboratory and the Centre for Carbon, Water and Food. The Faculty has a major involvement with the Grains and Research Development Corporation and several Cooperative Research Centres, providing excellent opportunities for research.

The Faculty has links with CSIRO, NSW Department of Industries and other important stakeholders in agriculture and strong international links with research programs in Vietnam, India, Mexico, China, Indonesia, Papua New Guinea, Thailand and parts of Europe and the USA.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity. Read more
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity.

Of critical shortage are skilled scientists in plant and fungal taxonomy, scientists that underpin much bioscience, nature conservation, plant breeding work, as well as underpinning the development of environmental policy. This course delivers vital training to fill that skill shortage. The course will provide training in plant and fungal identification skills, in combination with a thorough grounding in molecular systematics, evolutionary biology, and conservation policy, theory and practice.

Collaboration with the Royal Botanic Gardens, Kew

This MSc course is delivered in collaboration with the Royal Botanic Gardens, Kew and you will be based there for some of your teaching. The Royal Botanic Gardens, Kew was founded in 1759, and has the largest and most diverse collections of plant and fungal specimens and associated biodiversity databases in the world. The combination of extensive specimen collections, databases, and scientific research conducted on a global scale is unique, and means that Kew plays a leading role in facilitating greater access to basic plant information, underpinning science and conservion activities worldwide.

Other taught modules will be based at Queen Mary, Mile End campus. You will also take a fieldwork module based in Madagascar.

Research

Queen Mary and Kew have a number of long-established research links, and these have led to research papers in leading science journals such as 'Science, Trends in Plant Science', 'Trends in Ecology and Evolution', and 'Plant Journal'.

You will be taught by world-leading experts, internationally recognised for cutting edge research in plant and fungal sciences, applying new technologies to answer fundamental questions about the diversity of plant and fungal life on the planet, how it evolved and how we can best conserve it.

Read less
This course makes an ideal stepping-stone for those considering PhD or company-based research and provides an opportunity for you to explore your interest in the biosciences in depth while showing a commitment to a research-focused career. Read more

About this course

This course makes an ideal stepping-stone for those considering PhD or company-based research and provides an opportunity for you to explore your interest in the biosciences in depth while showing a commitment to a research-focused career. Our course is flexible, allowing you to explore and specialise in an area of biology that fascinates you with the personalised support of a supervisor. With over 200 members of staff, the breadth of research and expertise in the institute means that you can undertake research in any one of the many areas of specialisation including, zoology, plant breeding, microbiology, bioinformatics, animal or equine science, marine biology and ecology.

Why study Biosciences at Aberystwyth University?

IBERS has been judged world leading in areas such as zoology, grassland science, biochemistry, animal science, marine biology, microbiology, plant biology and ecology.

No matter which area of Biology you specialise in, you will be working alongside some of the world’s biggest names in their respective fields.

We have excellent research facilities including aquariums (marine, freshwater, tropical), a bioinformatics hub, ion-torrent sequencers, and extensive glass house facilities.

We operate several farms and own significant tracts of natural woodland, while our coastal location close to several nature reserves and national parks offers unique opportunities for a broad range of bioscience research.

Opportunity to work within research teams with your supervisor, research staff and other postgraduate students.

This course is suitable for students who are not yet ready or do not wish to begin a PhD but who would like to develop their research skills first. It is also suitable for students that would like to combine research with the support of a taught element of a postgraduate course.

In the most recent Research Excellence Framework (REF 2014) review of university achievement, 78% of our research was classed as world-leading or internationally excellent, and 76% of our work was recognised as having a practical applied impact on society at a world-class level.

Aberystwyth is a safe, vibrant, and friendly town that comprises a multinational community.

Course structure

This course can be studied one year full-time or 24 months part-time. Students on this course complete 40 credits of core modules centred on research and laboratory techniques, and 20 credits giving them an insight into themes/approaches to the biosciences. These modules are delivered via fieldtrips, practicals, lectures, workshops and tutorials.

The core element of this course is the MRes Dissertation, for which students will have supervision meetings to give them guidance before undertaking a prolonged period of experimental work/data gathering, research, and writing up of the dissertation, under the supervision of their dissertation supervisor. All postgraduate students in IBERS also have a named personal tutor, with whom they can discuss personal or domestic concerns that impact on their studies.

Course content

The modules included in this programme are designed to provide a fundamental basis for understanding and contributing meaningfully to biological science research. This qualification combines taught elements that focus primarily on how to undertake excellent research and how research can address grand challenges in biology that we face as a society.

This interdisciplinary research training provides you with the skills needed to complete your individual Research Dissertation. The key feature here is that you are able to explore an area of biology that fascinates you and undertake higher level research with the personalised support of a supervisor.

Core modules:

Field and Laboratory Techniques
MRes Dissertation (A)
MRes Dissertation (B)
Research Methods in the Biosciences
Frontiers in the Biosciences

Contact time

Up to 10 hours per work are spent in taught modules in semesters 1 and 2. The rest of the time in semesters 1 and 2 and the whole of semester 3 are spent conducting your research project. Depending on your project this may include laboratory, field or computer-based research supported by regular meetings with your supervisor.

Assessment

The taught modules are assessed by scientific writing assignments (such as reports, critical reviews, essays and journalistic articles), presentations, contribution to group discussions in seminars, and online assignments.

Subsequent successful submission of your dissertation leads to the award of an MRes.

Skills

Throughout this course you will:

Develop strong data collection/analysis, fieldwork and laboratory skills

Enhance your scientific communication and team work skills

Write for a range of audiences including academics and the wider public

Enhance your analytical abilities and problem solving skills

Develop study and research skills

Develop and sustain a self-initiated programme of study underpinned by good time management skills

Work effectively and independently

Enhance your project management skills to deliver a demanding combination of research, analysis, communication and presentation

Read less
This course, offered by a leading research institute in grass-microbe-animal interactions in relation to sustainable efficient farming, is aimed at professionals working within the agri-food sector. Read more

Course Starts September, January or May

Course Description

This course, offered by a leading research institute in grass-microbe-animal interactions in relation to sustainable efficient farming, is aimed at professionals working within the agri-food sector. It provides students with an in-depth understanding of the components of ruminant production and mixed farming systems, focussing on the latest research into how these systems can be made more sustainable and efficient.

The aim of this Professional Doctorate programme is to produce a qualification which, whilst being equivalent in status and challenge to a PhD, is more appropriate for those pursuing professional rather than academic careers. Our DAg programme comprises taught modules and two work-based research projects, carried out through two-day workshops, distance learning and a mixture of live and virtual supervisory meetings. While the primary academic focus is on the completion of an advanced piece of research, the collaborative route provided by a work-based research project provides an ideal opportunity to embed new knowledge in the work place and ensure that research is relevant to industry. As such, it is crucial that a student’s employer is supportive of both their research aims and the time commitment that the proposed research will involve. Self-employed students should aim to undertake research which will be closely aligned to their business.

Modules

The ATP DAg is delivered in two parts:

Part I is undertaken for a minimum of two years and comprises two taught modules from the ATP menu*, a taught ‘Research Methodologies’ module; and a portfolio of work or a research thesis (approximately 20,000 words in length). Each taught module is worth 20 credits and takes 12-14 weeks to complete. The short Part 1 thesis should involve analysing existing data from the candidate’s workplace. For example: Reviewing historical mineral deficiency data by species and region; analysing and interpreting the findings. Students may exit here with an MRes.

Part II is undertaken for a minimum of three years and comprises a longer portfolio of work or a research thesis (up to 60,000 words). It will involve experimentation and must embody the methodology and results of original research. It should, ideally, be built upon the Part 1 thesis. Thus, from the example above, could be something like: Changing practices and introducing innovation to combat mineral deficiencies.

* Optional taught modules - some of which are delivered by Bangor University (BU) - may be chosen from:

• Genetics and Genomics
• Grassland Systems
• Home-Grown Feeds
• Organic and Low Input Ruminant Production
• Ruminant Gut Microbiology
• Ruminant Health & Welfare
• Ruminant Nutrition
• Global Ruminant Production
• Silage Science
• Farm Business Management
• Plant Breeding
• Agro Ecosystems Services (BU)
• Carbon Footprinting & Life Cycle Assessment (BU)
• Resource Efficient Farming (BU)
• Soil Management (BU)
• Upland Farming (BU)

Each module is worth 20 credits and takes 12-14 weeks to complete.

Read less
Students can choose to start in September, May or January. About the course. This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. Read more

Students can choose to start in September, May or January

About the course

This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. The programme provides flexible, accessible, postgraduate level training for people employed in the agri-food sector. Training comprises distance learning modules and work-based research projects. These are accessible as CPD or as credit-bearing units, which can be built towards a range of postgraduate qualifications.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU), the Sustainable and Efficient Food Production course offers you a highly vocational option. In the most recent joint submission to the Research Excellence Framework assessment (2014), the department was placed in the top 10 universities in the UK for research intensity and 78% of our research was world-leading or internationally excellent.

To achieve an MSc students must complete five optional modules (including up to three from BU) plus Research Methods and a Dissertation.

Course structure and content

Two to five years to complete a full MSc. 14 weeks for one module by distance learning Three intakes per year (January, May, September). Students will be eligible for a UK Student Loan if the course is completed in 3 years.

Core modules:

Dissertation

Research Methods

Optional modules - Choose any 5 from:

Contact Time

We have designed our training to be as accessible as possible, particularly for those in full time employment. Each topic comprises a 12-14 week distance learning module worth 20 credits which can be taken for your own continuing professional development or interest; or built towards a postgraduate qualification. The research elements of our qualifications are carried out in your work place with regular academic supervision. The training is web-based which means that as long as you have access to a reasonable broadband connection (i.e. are able to stream videos such as on YouTube), you can study where and when best suits you. Learning material includes podcast lectures, e-group projects, guided reading, interactive workbooks and discussion forums, as well as assignments and e-tutorials. By signing a re-registration form each year you will have access to e-journals and library resources for the full five years.

Assessment

There are no exams within this programme. Taught modules are assessed via course work and forum discussion.



Read less
Students can choose to start in September, May or January. About the course. This scheme aims to facilitate knowledge exchange between academia and industry. Read more

Students can choose to start in September, May or January

About the course

This scheme aims to facilitate knowledge exchange between academia and industry. Students must complete three taught modules including research methods and a 120 credit work-based dissertation / research thesis (approximately 20,000 words in length).

While the primary academic focus is on the completion of an advanced piece of research, the collaborative route provided by a work-based research project provides an ideal opportunity to embed new knowledge in the work place and ensure that research is relevant to industry. As such, it is crucial that a student’s employer is supportive of both their research aims and the time commitment that the proposed research will involve. Self-employed students should aim to undertake research which will be closely aligned to their business.

Students may build on the MRes to work towards a Professional Doctorate.

Course structure and content

An MRes can be completed in 2-5 years but we would expect most students to spend 1 year on their taught modules and 2 years on their work based dissertation. 12 or 14 weeks for one module by distance learning. Three intakes per year (January, May, September).

Students will be eligible for a UK Student loan if their course is completed within 3 years.

Core modules:

MRes Research Project

Research Methods

Optional modules:

Contact time

The MRes comprises three taught modules (including Research Methodologies and Advances in Bioscience) followed by a 120 credit work-based dissertation (20,000 words).

We have designed our training to be as accessible as possible, particularly for those in full time employment. Each taught module comprises a 12 or 14 week distance learning module worth 20 credits which can be taken for your own continuing professional development or interest; or built towards a postgraduate qualification. The research elements of our qualifications are carried out in your work place with regular academic supervision. The training is web-based which means that as long as you have access to a reasonable broadband connection (i.e. are able to stream videos such as on YouTube), you can study where and when best suits you. Learning material includes podcast lectures, e-group projects, guided reading, interactive workbooks and discussion forums, as well as assignments and e-tutorials. By signing a re-registration form each year you will have access to e-journals and library resources for the duration of your registration.

Assessment

There are no exams within this programme. Taught modules are assessed via course work and forum discussion. Research is monitored and assessed.



Read less

Show 10 15 30 per page



Cookie Policy    X