• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Manchester Featured Masters Courses
"plant" AND "breeding"×
0 miles

Masters Degrees (Plant Breeding)

We have 40 Masters Degrees (Plant Breeding)

  • "plant" AND "breeding" ×
  • clear all
Showing 1 to 15 of 40
Order by 
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Read more

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge on the physiology, ecology and genetics of cultivated plants.

The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Study programme

This online master's specialisation is designed as a part-time study. The approximate workload is 20 hours per week and gives the student the flexibility to combine work and study. The programme is therefore also suitable for employees who want to continue their education in the sense of life-long-learning.

The general structure is a 2 year part time course-programme followed by a tailor-made internship and master's thesis agreement of 1 or 2 years. Read more about the programme.

Your future career

Graduates from the master's Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach.

Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations. Read more stories of Wageningen University & Research graduates.

Related on-campus programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we cannot do without plants.

Study Programme

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. It not only covers the technological aspects of crop production, but also deals with important environmental, quality, health and socio-economic aspects. Interdisciplinarity is a hallmark of the programme.

On the programme of Plant Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Sciences are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels, based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Goal of the pro­gramme. Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more

Goal of the pro­gramme

Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystemsPlants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:

  • How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
  • How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
  • How plants sense their environment and communicate with each other and with other organisms
  • How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
  • How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:

  • Understand how research in plant biology and biotechnology can contribute to plant breeding and production
  • Plan, coordinate and execute high-quality basic and applied scientific research
  • Have a good command of the scientific method and critically evaluate research across scientific disciplines
  • Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields
  • Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills
  • Be eligible for scientific post-graduate (doctoral) studies

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:

  • Plant biotechnology and breeding
  • Molecular biology and genetics
  • Regulation of growth, reproduction and differentiation of tissues
  • Biological basis of crop yield
  • Plant ecology and evolutionary biology
  • Evolutionary history and systematics of plants and fungi
  • Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.



Read less
This research course focuses on advanced concepts and technologies related to the molecular basis of plant and microbe functions. Read more

This research course focuses on advanced concepts and technologies related to the molecular basis of plant and microbe functions.

The backbone of the MRes in Molecular Plant and Microbial Sciences is a 12-month period of research starting in the first week of October.

It consists of two research projects performed in research groups focusing on plant genetic engineering, plant development, plant molecular biology, proteomics, plant biochemistry, plant-microbe interactions, transcriptomics and bioinformatics.

Career opportunities continue to expand as the potential of plant biotechnology is realised by employers, research companies and governments. A high proportion of our graduates are expected to enter further research leading to a PhD degree. There may be opportunities to join one of the Research Council-funded institutes, which develop and monitor a range of aspects of plant biotechnology.

Some graduates may gain employment in the food industry and agrochemical companies, which are increasingly focused on modern approaches to plant breeding. New developments in biofuels research offer future employment opportunities.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/life-sciences/molecular-plant-microbial-sciences/

If you have any enquiries you can contact our team at:



Read less
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity. Read more
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity.

Of critical shortage are skilled scientists in plant and fungal taxonomy, scientists that underpin much bioscience, nature conservation, plant breeding work, as well as underpinning the development of environmental policy. This course delivers vital training to fill that skill shortage. The course will provide training in plant and fungal identification skills, in combination with a thorough grounding in molecular systematics, evolutionary biology, and conservation policy, theory and practice.

Collaboration with the Royal Botanic Gardens, Kew

This MSc course is delivered in collaboration with the Royal Botanic Gardens, Kew and you will be based there for some of your teaching. The Royal Botanic Gardens, Kew was founded in 1759, and has the largest and most diverse collections of plant and fungal specimens and associated biodiversity databases in the world. The combination of extensive specimen collections, databases, and scientific research conducted on a global scale is unique, and means that Kew plays a leading role in facilitating greater access to basic plant information, underpinning science and conservion activities worldwide.

Other taught modules will be based at Queen Mary, Mile End campus. You will also take a fieldwork module based in Madagascar.

Research

Queen Mary and Kew have a number of long-established research links, and these have led to research papers in leading science journals such as 'Science, Trends in Plant Science', 'Trends in Ecology and Evolution', and 'Plant Journal'.

You will be taught by world-leading experts, internationally recognised for cutting edge research in plant and fungal sciences, applying new technologies to answer fundamental questions about the diversity of plant and fungal life on the planet, how it evolved and how we can best conserve it.

Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. Read more
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. The common part of the programme consists on the one hand of basic knowledge, insights and skills in the areas of production, transformation, preservation, marketing and consumption of food products. On the other hand, it contains a practically oriented component that enables the alumni to identify problems by means of quantitative and qualitative research methods and analytical techniques, to assess and rank causes, and to plan, to execute and to evaluate appropriate interventions.

The other part of courses given during the first year are main subject specific courses. The academic second year provides a more in depth understanding of the specific problems and their solutions for the main subject and major chosen and consists of main subject and major specific courses, elective (optional) courses and Master Dissertation research (30 ECTS).

The specific expertise the students receive depends on the main subject, major and optional courses chosen.

Tropical Agriculture

Delivers technical knowledge related to agriculture focussing on developing countries. The students can specialize in animal production or plant production by choosing the specific option. The major on Animal Production delivers in depth knowledge on production biology, animal nutrition, pasture management, animal genetics. The major on Plant Production focuses on themes like ethno-botany, crop protection, plant breeding, plant biotechnology. The courses are applicative and aim at presenting solutions for production problems in developing countries in an interdisciplinary way.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Common and main subject specific basic courses.
-Fundamental, in depth and high level knowledge.
Semester 2 (Febr-June)
-Main subject specific courses with special attention to ‘in field’ applications.
-Possibility to do internships in summer holidays.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Specialised courses (fine-tuned individual programme).
-Master dissertation (at Ghent University, other Belgian institutes/organizations/multinationals or one of our partners in the South or Europe).

Learning and Outcomes

Have thorough knowledge and comprehension (theory and practice) l in the interdisciplinary domains: food and feed production, socio-economic, (public health) nutrition and management concepts, theories and skills, and in the main subject specific domains and the chosen major domains. The program additionally focuses on international collaboration.
-Major: Public Health Nutrition : Have profound insights in public health nutrition realities and compare public health nutrition issues, approaches and policies within the international context
-Major Nutrition Security and Management: Have profound insights in different food/nutrition security realities and compare nutrition security issues, approaches and (nutrition) policies within an international context
-Major Plant Production: Have profound insights in plant production realities and compare plant production issues, and approaches within the international context
-Major Animal Production: Have profound insights in animal production realities and compare animal production issues, and approaches within the international context

Apply theories and methodological approaches to characterize and analyse specific problems: food, nutrition and agricultural chains, food sovereignty /safety and security, natural resource management, sustainable production, economic and social problems of rural areas, national and international agriculture.

Design and implement adequate instruments, methods, models and innovative tools to analyse, evaluate and solve interdisciplinary related problems in the context of sustainable development.

Apply the interdisciplinary tools to design, implement, monitor and evaluate national and international agro-nutrition policies and programs. More specifically:
-For Human Nutrition: construct innovative tools and instruments for the development of a better nutritional health status of a country/region/area and its inhabitants/households.
-For Tropical agriculture: a more efficient and economic feasible agricultural balanced, food production guaranteeing a better food security situation per country respecting local environment.

Assess the importance and magnitude of a problem, define strategies for intervention and/or identify knowledge gaps. Develop a research protocol based on the analysis of existing evidence and set up a research plan, analyse and interpret the data and present the findings.

Identify, select and apply appropriate research methods and techniques to collect, analyses and critically interpret data.

Critically reflect on program specific issues, and on ethical and value driven aspects of research and intervention strategies.

Take up a trans-disciplinary role in an interdisciplinary ((inter)national) team dealing with global challenges, and develop a global perspective.

Dialogue and professionally interact with different actors and stakeholders from peers to a general public to convincingly communicate evidence based research findings and project results.

To effectively use appropriate communication and behavioural skills in different language and cultural environments.

Learn to continuously critically reflect (individually and in discussion with others) upon personal knowledge, skills, attitudes, functioning, and develop an attitude of lifelong learning. This includes:
-Design and plan own learning processes.
-Self-Directed Learning: work independently, take initiative, and manage a project through to completion.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Are you interested in crop protection and sustainable agriculture? Are you looking for a research career working in agriculture and related areas? Do you want to do something positive for the environment? Then this is the postgraduate course for you. Read more

Are you interested in crop protection and sustainable agriculture? Are you looking for a research career working in agriculture and related areas? Do you want to do something positive for the environment? Then this is the postgraduate course for you:

The course

The continuing production of safe, wholesome food in an environmentally sensitive manner is a major political issue for national governments and internationally within global commodity markets. A report produced by the UK Cabinet Office in 2008 (Food Matters: Towards a Strategy for the 21st Century) predicts that the global population will rise to 9Bn by 2050 rising from a current estimate of nearly 6.8Bn. This increase in population size will substantially increase the demand for food. The global estimates vary in magnitude, but it is thought approximately 25% of crops are lost to pests and diseases, such as insects, fungi and other plant pathogens (FAO Crop Prospects and Food Situation 2009). 

The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions. 

Research projects are available in a wide range of subjects covered by the research groups within the Crop and Environment Sciences Department and choices are made in consultation with expert staff. Projects at linked research institutes in the UK and overseas are also available. The course is underpinned by an extensive programme of research at Harper Adams and long-standing collaborations with research institutes and other organisations in the UK and overseas.

A distinctive and integral feature of our MSc is the high degree of input from entomologists, plant pathologists and pest managers in collaborating governmental organizations and commercial biological control companies. This participation takes a variety of forms, including guest lectures, field visits and specific training courses, but may also include providing research projects in their organizations.

Examples of collaborating organizations include, CEH Wallingford, Forest Research, Horticultural Development Company, The International Pesticide Application Research Centre, The Natural History Museum London, Rothamsted Research, and Wye Bugs.

How will it benefit me?

Having completed the MSc you will be able to identify the underlying causes of major pest and disease problems and recognize economically important insects, plant diseases and weeds. 

You will also be able to apply integrated pest control methods and oversee their application. The course will focus on the ecological and management principles of pest control and you will learn to evaluate the consequences of pesticide use and application on the biological target. You will also receive training in the evaluation of the economic and environmental costs of integrated approaches to pest control in relation to biological effectiveness. Ultimately, the course will enable students to produce integrated pest and disease management solutions that pay due regard to agricultural, horticultural, social and environmental requirements.

In addition, there is considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions

The research project for the MSc will allow you to test hypotheses relevant to pest and disease management research by designing, carrying out, analysing and interpreting experiments or surveys. You will learn to evaluate and interpret data and draw relevant conclusions from existing pest and disease management case studies.

The MSc covers a broad range of topics relevant to pest and disease management and all students receive training in fundamental skills which will enable them to enter a vocational work environment or pursue a research career. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions. 

Scholarships and funding

The Horticultural Development Council typically fund three bursaries each of £5,000 to support the MSc IPM course. Visit the scholarship page for further details and application information.

The full-time and two year part-time courses are eligible for a postgraduate loan.

Unfortunately many universities have closed down or reduced their teaching and research in agriculture and crop science. There is a shortage of expertise in important topics, often in subjects that are closer to the farmer, where UK scientists and agronomists have traditionally played a leading role. Several key subjects are particularly vulnerable, including plant breeding, various aspects of pathology including mycology and virology, whole plant and crop physiology, agricultural entomology, nematology and soil science. There is a danger that valuable skills will be lost as researchers and teachers retire.

(Reaping the benefits: Science and the sustainable intensification of global agriculture - October 2009, Royal Society)

Documents



Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
Students can choose to start in September, May or January. About the course. This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. Read more

Students can choose to start in September, May or January

About the course

This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. The programme provides flexible, accessible, postgraduate level training for people employed in the agri-food sector. Training comprises distance learning modules and work-based research projects. These are accessible as CPD or as credit-bearing units, which can be built towards a range of postgraduate qualifications.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU), the Sustainable and Efficient Food Production course offers you a highly vocational option. In the most recent joint submission to the Research Excellence Framework assessment (2014), the department was placed in the top 10 universities in the UK for research intensity and 78% of our research was world-leading or internationally excellent.

To achieve an MSc students must complete five optional modules (including up to three from BU) plus Research Methods and a Dissertation.

Course structure and content

Two to five years to complete a full MSc. 14 weeks for one module by distance learning Three intakes per year (January, May, September). Students will be eligible for a UK Student Loan if the course is completed in 3 years.

Core modules:

Dissertation

Research Methods

Optional modules - Choose any 5 from:

Contact Time

We have designed our training to be as accessible as possible, particularly for those in full time employment. Each topic comprises a 12-14 week distance learning module worth 20 credits which can be taken for your own continuing professional development or interest; or built towards a postgraduate qualification. The research elements of our qualifications are carried out in your work place with regular academic supervision. The training is web-based which means that as long as you have access to a reasonable broadband connection (i.e. are able to stream videos such as on YouTube), you can study where and when best suits you. Learning material includes podcast lectures, e-group projects, guided reading, interactive workbooks and discussion forums, as well as assignments and e-tutorials. By signing a re-registration form each year you will have access to e-journals and library resources for the full five years.

Assessment

There are no exams within this programme. Taught modules are assessed via course work and forum discussion.



Read less

Show 10 15 30 per page



Cookie Policy    X