• Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London Featured Masters Courses
Cass Business School Featured Masters Courses
EURECOM Featured Masters Courses
Birmingham City University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
"plant" AND "biology"×
0 miles

Masters Degrees (Plant Biology)

We have 137 Masters Degrees (Plant Biology)

  • "plant" AND "biology" ×
  • clear all
Showing 1 to 15 of 137
Order by 
Make a difference. From protecting our native biodiversity to identifying key traits to improve crop plants in an ever-changing climate, plant biology research can solve the world’s major global issues. Read more

Make a difference

From protecting our native biodiversity to identifying key traits to improve crop plants in an ever-changing climate, plant biology research can solve the world’s major global issues.

Find out more about the Master of Science parent structure.

Massey’s Master of Science (Plant Biology) will give you the knowledge and skills to understand and help solve some of the world’s most important current issues, such as the effects of climate change on our native species and crop plants, how to preserve native biodiversity, and understanding fundamental physiological aspects of plants.

You will build upon your undergraduate degree and conduct original, independent research under the guidance of a leading plant science academic.

Expertise in an area of your choice

The plant biology team at Massey have expertise in plant molecular biology, evolutionary biology, systematics and taxonomy, and plant physiology. During the course of your studies you can choose to further your knowledge and apply your learning on an exciting research project such as:

  • Evolution of plant genomes
  • Molecular development of plants
  • Population genetics and conservation genetics of native plants

Take advantage of our globally-renowned expertise

Let our experts help you develop your own expertise. You will learn from, and research with, highly-skilled internationally-recognised and active researchers in plant biology and related areas, with a huge depth of knowledge and experience. Postgraduate study and research in plant biology at Massey spans evolutionary biology to physiology. You will have the opportunity to learn about the fundamental aspects of plant growth and function, as well as the molecular evolution and classification (systematics) of plants. You might choose to conduct research focused on the native New Zealand flora or a model organism, like Arabidopsis thaliana, or even a crop species.

You will also be able to take advantage of Massey’s expertise across the sciences. We have a wide and relevant group of expertise within the university, from fundamental sciences like microbiology and biochemistry, to agriculture, engineering, horticulture and environmental management. 

This means no matter what your research interest you will have access to a broad range of experts to assist you develop your own research.

Use world-leading equipment and facilities

As a plant biology student you will have access to our world-leading equipment and facilities such as the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers.

Making industry connections for you

Massey has strong connections with the Crown Research Institutes in Palmerston North and across New Zealand, especially AgResearch, Landcare Research, Plant and Food Research, and Scion. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your MSc qualification.



Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less
Goal of the pro­gramme. Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more

Goal of the pro­gramme

Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystemsPlants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:

  • How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
  • How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
  • How plants sense their environment and communicate with each other and with other organisms
  • How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
  • How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:

  • Understand how research in plant biology and biotechnology can contribute to plant breeding and production
  • Plan, coordinate and execute high-quality basic and applied scientific research
  • Have a good command of the scientific method and critically evaluate research across scientific disciplines
  • Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields
  • Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills
  • Be eligible for scientific post-graduate (doctoral) studies

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:

  • Plant biotechnology and breeding
  • Molecular biology and genetics
  • Regulation of growth, reproduction and differentiation of tissues
  • Biological basis of crop yield
  • Plant ecology and evolutionary biology
  • Evolutionary history and systematics of plants and fungi
  • Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.



Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. In general, the group use molecular biology, plant pathology, proteomics, genetics, microscopy and bioinformatics to investigate the functional role of genes in various conditions. These include biotic stress, flowering, cell cycling, circadian rhythm, receptor-ligand interactions, identification of pathogen secreted molecules and their function, targeted genome editing using CRISPR technology, comparisons of bacterial genomes using next generation sequencing and bioinformatics.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines. The team members have collaborations within and outside the UK, thus possibilities for travelling and longer term visits exist at national and international partner universities.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Institute of Science and the Environment has an excellent range of resources available to support your learning and your research project.

Recent research
Regulation of effectors by circadian rhythm; Identification of PAMPs and apoplastic effectors from downy mildew pathogen; Role of heterozygosity in effector-triggered immunity, investigating immune system of plants using genome editing technology and biopesticides.

Read less
This Master's offers a broad, research-led syllabus that will benefit life and plant science undergraduates, and professionals in commercial horticulture and agriculture from the UK and overseas looking to develop their career. Read more

This Master's offers a broad, research-led syllabus that will benefit life and plant science undergraduates, and professionals in commercial horticulture and agriculture from the UK and overseas looking to develop their career.

Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Teaching

The programme team is a combination of scientists working within the Natural Resources Institute (NRI), a unique multidisciplinary centre of excellence focused on global food security, sustainable development and poverty reduction, and the Department of Life and Sports Sciences, both part of the university's Faculty of Engineering and Science. Both have reputations founded on excellence in teaching, training and research. You will also benefit from our links with businesses in the South East and other centres of expertise including Hadlow College and East Malling Research.

Professional development

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

Courses can be studied individually as CPD and credits acquired this way can be accumulated towards the MSc over 24 or 36 months towards the full MSc if required. Please contact the programme leaders for information.

Outcomes

The aims of the programme are to:

  • Provide knowledge of the science of plant biology and its application in the commercial and research arena
  • Introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
  • Examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
  • Allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Full time

Year 1

Students are required to study the following compulsory courses.

Students are required to choose 45 credits from this list of options.

Students are required to choose 15 credits from this list of options.

Part time

Year 1

Students are required to choose 90 credits from this list of options.

Year 2

Students are required to study the following compulsory courses.

Students are required to choose 30 credits from this list of options.

Assessment

Assessment methods include:

  • Examinations
  • Coursework
  • Research project dissertation
  • Practical work
  • Laboratory/Glasshouse

Careers

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Specialised equipment

Molecular biology laboratories, horticultural and agricultural facilities



Read less
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we cannot do without plants.

Study Programme

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. It not only covers the technological aspects of crop production, but also deals with important environmental, quality, health and socio-economic aspects. Interdisciplinarity is a hallmark of the programme.

On the programme of Plant Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Sciences are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels, based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
The. MSc programme in Parasitology and Pathogen Biology. is designed for students seeking training in parasite-borne infectious diseases that severely undermine. Read more

The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare).

Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

The course will be run entirely by research active and will offer students the opportunity to gain experience in internationally competitive laboratories.

PROGRAMME CONTENT

The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare). Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

Students undertaking this MSc course will study the folling modules:

- Foundation for Research in the Biosciences 20CATS

- Fundamental Parasitology & Advanced Skills 20CATS

- Advanced Parasitology I 20CATS

- Advanced Parasitology II 20CATS

- Bio-Entrepreneurship & Advanced Skills 20CATS

- Literature Review 20CATS

- Research Project 60CATS

CAREER PROSPECTS

It is anticipated that the skills set and knowledge acquired will equip participants with a comprehensive academic and methodological repertoire to undertake careers in agriculture, plant science, animal and human health, pharmaceutica, academia and food security, underpinning the transdisciplinary nature of the programme.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

WHY QUEEN'S?

The MSc programme embraces the One Health approach to these infectious diseases, with strong recognition of the interplay between health and disease at the dynamic interface between humans, animals and the environment.

In addition to embedded generic skills training, students will have the opportunity to acquire subject-specific skills training, e.g. molecular biology techniques, diagnostics, epidemiology (human, animal and plant diseases), drug/vaccine development, pathogen management/control, host-parasite interaction, immunobiology, drug resistance and the potential impact of climate change on parasites and their vectors.

In addition to the taught elements of the course, MSc students will undertake a research project working in research active laboratories (academic or industrial), or in the field, e.g. the impact of helminth infections on animal welfare, the economic impact of parasites on agriculture, the role of vectors in emerging diseases, the ecology of zoonotic diseases, the molecular basis of anthelmintic resistance, emerging technologies for drug discovery, the pathology of infection, parasite immunomodulation of the host.

The transferrable skill set and knowledge base acquired from the programme will equip students with a highly desirable qualification that is suited to those wishing to pursue careers in human health/infectious disease, animal health, veterinary medicine, animal/plant biology, pharmaceutical sciences and food security.



Read less
EXPLORE LIFE FROM GENES TO ECOSYSTEMS. Plants, animals, and microbes all play a key role in the sustainability of life on Earth. Read more

EXPLORE LIFE FROM GENES TO ECOSYSTEMS

Plants, animals, and microbes all play a key role in the sustainability of life on Earth. The Master's programme in Environmental Biology offers you the opportunity to explore different organisational levels of life – from genes, cells, and organisms to populations and entire ecosystems. 

In this programme, you will study the fundamental life processes of plants and microbes. The interdisciplinary course content also offers you the chance to examine animal behaviour from an ecological and evolutionary perspective.

TRACKS

Within the Environmental Biology Master, you can select a specialised track from the following: 

TAILOR-MADE STUDY PLAN

Alternatively, you can develop an individualised curriculum suited to your unique interests. We offer you considerable flexibility in choosing specific subfields or topics within Environmental Biology. See the study programme and courses page.



Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project. Read more
Our MSc by Research in Life Sciences is a dedicated programme which is designed to enable students to further develop their research skills by focusing on a specialist project.

This course provides an opportunity for students from biological subjects to begin research in life sciences. Research may be conducted in a broad range of topics in biology and life sciences and as a researcher in the School, you will have the opportunity to collaborate with academics working on studies and projects.

The School undertakes research at molecular, cellular, organism and population levels in order to answer fundamental questions in molecular biology and biomedical science, forensic science and microbiology, animal and plant biology, and evolution and ecology.

Research Areas, Projects & Topics

Research is conducted within six substantial research groups. Scientists in Animal Behaviour, Cognition and Welfare explore the causes, functions and evolution of animal behaviour and the impact this has on animal welfare.

Those in Evolution and Ecology examine population dynamics and evolutionary processes at all levels of biological organisation. Researchers in Drug Design and Delivery focus on the application and efficacy of novel therapeutics, while academics working in Molecular Basis of Disease aim to understand disease at a molecular level in order to improve diagnosis and treatment.

Example Research Areas:
-Management of Native River Fish
-Forensic Analysis of Burnt Bones
-Public Perception of Dog Breed Types.

Example Research Projects:
-Peptide-guided drug delivery
-Cognitive phylogenetics in parrots
-Sexual selection dynamics in humans
-Protein Biochemistry with the development of cardiovascular disease
-Reconstruction of patterns of habitat colonisation using genetic methods.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

Facilities

Students have the chance to develop their professional and technical skills in specialist laboratories equipped for research in biomedical, forensic and pharmaceutical science, chemistry, microbiology, molecular biology and animal and plant biology.

Minster House, adjacent to the laboratories, provides specialist facilities for the study of animal behaviour. Our links with local, national and international partners may provide postgraduate students with opportunities for further collaboration with scientists in industry, government and academia.

Career and Personal Development

Postgraduate-level research provides you with the opportunity to advance your knowledge and develop your practical and intellectual skills. Graduates may pursue careers in research and science-related roles, while others may choose to move on to research at doctoral level.

Read less
Are you interested in developing new technologies that will help to feed our growing population?. If so, see how our research and training is helping to shape our future. Read more
• Are you interested in developing new technologies that will help to feed our growing population?
• If so, see how our research and training is helping to shape our future...
• Industrial Internships are available on a competitive basis.
• Scholarships for Full or Part contribution towards fees and bursary are available for students who wish to consider either full or part-time option of the course.

The world leading Department of Chemistry (http://www.imperial.ac.uk/chemistry) and Institute of Chemical Biology (http://www.chemicalbiology.ac.uk) at Imperial College London is offering a 1-year multidisciplinary Masters in Research (MRes) in Plant Chemical Biology.
This course will equip you with the skills to tackle problems that lie at the plant/physical science interface on a molecular level. Chemical Biology through physical science innovation will lead to the development of novel technologies, vital to overcome future global challenges such as addressing the food, fuel and fibre needs of our growing population.
Advances in understanding biomolecular processes have often depended on the collaborative efforts of biochemists, chemists and physicists. Students will get training from both academic and industrial leaders in the plant and chemical biology fields. The course will enable students to bridge the gap that can exist between the physical and plant science disciplines because of differences in ‘language’, perspective and methodology. The course consists of an 8-month interdisciplinary research project, specialist lectures, transferable skills courses, interactive workshops, tutorials, journal clubs, and seminars.

Syngenta are the key industrial partner on this course. Joint Syngenta/Imperial research projects (internships) are available on a competitive basis. Students will either be based at Syngenta or at Imperial.

Successful graduates from this course will be ideally placed to undertake PhD studies or apply directly to the agri-science industrial sector.

For more information (including a copy of the course flyer and booklet) on the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences and details on how to apply, please see (http://www.imperial.ac.uk/chemicalbiology/mrescrop).

Visit the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences (Full or Part-time course) page on the Imperial College London web site for more details!

Read less
The Master of Science in Biology is designed to provide students with advanced knowledge of both plant and animal biology and microbiology. Read more

The Master of Science in Biology is designed to provide students with advanced knowledge of both plant and animal biology and microbiology. The program requires a minimum of 30 credits of graduate work. These must include at least one 3-credit course in four of the following five areas: cell biology/biochemistry, molecular biology, computational biology, ecology/evolution, and plant biology.

To fulfill the written thesis requirement, students may conduct laboratory, field work, or bibliographic research. Students selecting the experimentally-based research thesis option must complete a minimum of 24 credits of course work and 6 credits of research with a graduate faculty member of the department. Students choosing the bibliographic-based research thesis option are required to take 27 credits of course work and 3 credits of independent study with a graduate faculty member of the department. For both experimentally-based and bibliographic-based research thesis options, the thesis will be defended publicly followed by a question-and-answer session with the thesis committee. The thesis committee must be approved by the Graduate Program Director and consist of the primary advisor and at least one other reader who is a member of the graduate faculty.



Read less

Show 10 15 30 per page



Cookie Policy    X