• University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Leeds Featured Masters Courses
Southampton Solent University Featured Masters Courses
Coventry University Featured Masters Courses
OCAD University Featured Masters Courses
Coventry University Featured Masters Courses
"physical" AND "oceanogra…×
0 miles

Masters Degrees (Physical Oceanography)

We have 39 Masters Degrees (Physical Oceanography)

  • "physical" AND "oceanography" ×
  • clear all
Showing 1 to 15 of 39
Order by 
This 12 month taught postgraduate course introduces students with a first degree in the physical, mathematical or other numerate sciences to the subject of Physical Oceanography. Read more
This 12 month taught postgraduate course introduces students with a first degree in the physical, mathematical or other numerate sciences to the subject of Physical Oceanography. The course has run for over 40 years and is unique in the UK for the depth of physical oceanography training provided. As well as giving an overview of physical oceanography, the course enable students to study in detail those aspects of the subject for which they have particular interest.

The first two semesters of the course are taught, introducing the student to the physics of the ocean and its role in the climate system. Modules cover both oceanographic theory and its application, as well practical oceanography. The latter includes an introduction of state-of-the-art instrumentation, remote sensing, numerical modelling as well as practical experience working on small boats and the University's state-of-the-art research vessel, the Prince Madog. Student achievement in the course is evaluated by continuous assessment and module examinations.

During the second semester the student begins to focus on specific aspects of the subject, intially through an extensive literature review and then a research project. The research project, which forms a major component of the course, is selected in close consultation with the students to be of direct relevance to their intended future work. For overseas students, well founded projects based on investigations being undertaken in a home institute are encouraged.

Course Objectives
Provide a thorough training in the theory and application of physical oceanography.
Familiarize the student with modern oceanographic instrumentation and observational techniques.
Introduce state-of-the-art computational fluid dynamics, data analysis and fundamental modelling methods.
Provide the student with the practical experience and physical understanding necessary to address significant problems in the coastal ocean environment.fessional life.

Read less
Summary. This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, mathematics, environmental science, physical geography or related disciplines. Read more

Summary

This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, mathematics, environmental science, physical geography or related disciplines. The programme includes compulsory introductory modules that provide a foundation in interdisciplinary marine science, along with the opportunity to specialise in particular areas through an option of modules, as well as research project experience. To highlight the specialisations possible through the option modules of the programme, we have developed “pathways” of suggested module choices, which include:

– Marine Biology and Ecology

– Physical Oceanography and Climate Dynamics

– Marine Biogeochemistry

– Marine Geology and Geophysics

Students can either follow one of these ‘pathways’, or mix options from different pathways, where the timetable allows, to pursue broader interests.Graduates often pursue careers in the marine environmental sector or undertake PhD research in marine sciences.

Modules

Semester one

Core introductory modules: Biological Oceanography; Chemical Oceanography; Marine Geology; Physical Oceanography Plus: Key Skills and Literature Review

Optional modules: two from: Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Deep-sea Ecology; Geodynamics and Solid Earth Geophysics; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large-scale Ocean Processes; Microfossils, Environment and Time; Zooplankton Ecology and Processes

Semester two

Optional modules: three from: Global Ocean Carbon Cycle, Ocean Acidification and Climate; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Global Ocean Monitoring; Seafloor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus: Key Skills and Literature Review Research project: From June to September, students work full-time on an independent research project that represents one-third of the MSc degree.

Visit our website for further information.



Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
With the eastern Mediterranean as our natural marine laboratory, the International M.Sc. Program in Marine Geosciences provides students with a unique opportunity to develop practical scientific experience at sea alongside a rigorous academic curriculum. Read more

With the eastern Mediterranean as our natural marine laboratory, the International M.Sc. Program in Marine Geosciences provides students with a unique opportunity to develop practical scientific experience at sea alongside a rigorous academic curriculum.

Established in 2007 as part of the multidisciplinary Leon H. Charney School of Marine Sciences, the Department of Marine Geosciences combines research and graduate studies of the marine environment in the following main disciplines: exploration geophysics, seafloor mapping, remote sensing, geodynamics, tectonics, marine and coastal sedimentology, geochemistry, chemical and physical oceanography.

The two-year MSc program will begin in October.

What you will study

Topics to be covered include: the structure of the seafloor; the Earth’s crust below it and the search for energy sources (oil, gas, hydrates); the dynamics of the water body above it; sea level variations and their relation to tectonic and climate changes; coastline developments in present and past times; and, finally, present and past influences on human evolution. Students will have the opportunity to interact with central research institutions in Israel including the Israel Oceanographic and Limnological Research Institute, the Geological Survey of Israel, the Geophysical Institute of Israel and other industrial institutes.

Taught in English, the program can be completed in two years and begins every October. Coursework, field trips and an educational cruise are held during the first two semesters, the summer semester is dedicated to establishing a research proposal, while the second year is dedicated to conducting research. Students will be required to submit a research thesis at the end of the second year of the program. Upon completion of the program, students will be awarded a Master of Science in Marine Geosciences.

For a full and detailed list of the program curriculum, please visit here.

Full Scholarships for outstanding students from China and India!

Careers

Graduates of the program will be well-placed to pursue careers within government research agencies, onshore and offshore site investigation contractors or consultancy companies, and various branches of higher education and research.

Field Work

Students will gain practical experience in marine geophysical survey work through hands-on field activities. The program includes educational research cruises to the deep sea, coastal and underwater field excursions, as well as geological field trips to marine structures currently exposed onshore. The research and educational cruises are carried out in water bodies in and surrounding Israel – the Mediterranean, the Dead Sea, the Red Sea and the Sea of Galilee.

Courses

Core Courses

  • Geophysical Investigation of the Marine Environment
  • Signals Analysis - Fundamentals and Application
  • Geology of Marine Sediments
  • Physical Oceanography
  • Geochemical Oceanography
  • Hydrography
  • Educational Cruise
  • Scientific Writing and Research Presentation
  • Interdisciplinary School Seminar
  • DMG Colloguium

Elective Courses

  • Intoduction to Geology
  • Introduction to Geophysics
  • Seismic Processing and Imaging
  • Processes in Marine Geology
  • Numerical Methods in Physics of Continuum
  • Processesing and Analysis of Seismic Data: Workshops
  • Seismic Data Interpretation
  • Two-Phase Flow
  • Tectonics of the Oceans
  • Geology of the Eastern Meditteranean
  • Seafloor Morphology
  • Topics in Coastal Geomorphology
  • New Frontiers in Marine Research
  • Miscropaleontolgy
  • Paleoceanography
  • Natural Energy
  • Underwater Geoarchaeology in Caesarea
  • Paleolimnology of the Dead Sea Region: Field Trip
  • Marine Geology of Mt. Carmel, Exploring the Cretaceous Seafloor: Field Trip
  • Coastal Geomorphology: Field Trip

For more information on the course curriculum and course description please click here.

Faculty

Currently, the Department of Marine Geosciences faculty includes seven senior members and six adjunct faculty members. The department is currently under the leadership of Professor Uri S. Ten Brink whose fields include marine geophysics, tectonics, earthquakes, landslides and tsunami hazards.

For a full list of faculty staff and their specialisations please visit here.

Scholarships

This program is eligible for MASA scholarship.

A number of full-tuition scholarships for outstanding students from China and India are available.

Further information on scholarships and financial aid can be found here.



Read less
This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. Read more

Summary

This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. You will spend a full semester at three out of the four European universities (Southampton, Bilbao, Bordeaux, Liege) and will study in English. Your dissertation can be taken at any of these institutions or at any other MER partner institution worldwide. This experience of mobility, along with the emphasis on environment and resources in the programme, will empower you in the pan-European job and research market.

Modules

Semenster one delivered by the University of Southampton or the University of Bordeaux
Modules offered at Southampton:

Core modules: Contemporary Topics in Marine Science Policy and Law; Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography
Optional modules: Coastal Sediment Dynamics; Marine GeoArchaeology; Microfossils, Environment and Time; Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; International Maritime and Environment Law; Introductory Remote Sensing of the Oceans; Largescale Ocean Processes; Deep-sea Ecology; Zooplankton Ecology and Processes

Semester two delivered by the University of the Basque Country, Bilbao.

Semester three delivered by the University of Southampton or the University of Liege.
Modules offered at Southampton:

Option modules: four from: Deep-sea Ecology; Zooplankton Ecology and Processes; and any option not taken in the first semester Specialisation in: Biodiversity and Preservation of the Marine Environment and its Resources; Design of Sampling Schemes and Data Analysis in Research Projects; Ecotoxicology; Integrated Assessment of the Quality of the Marine Environment; Sustainable Management of Marine Living Resources; Sustainable Management of Marine Non-living Resources

Visit our website for further information...



Read less
Summary. This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise. Read more

Summary

This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise.

You will gain hands-on research experience through an advanced project with leading international researchers. The MRes focuses less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one:

Core modules: Contemporary Topics in Ocean and Earth Science; Introduction to Marine Geology; plus one from Introduction to Chemical Oceanography or Introduction to Physical Oceanography

Optional modules: Applied and Marine Geophysics; Basin Analysis; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Geodynamics and Solid Earth Geophysics; Microfossils, Environments and Time

Semester two:

Optional modules: Applied Coastal Sediment Dynamics; Ecological Modelling; Global Climate Cycles; High-resolution Marine Geophysics

Plus research project

Visit our website for further information.



Read less
Summary. You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. Read more

Summary

You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. The MRes is a research-led programme that differs from the MSc in focusing less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one Core modules: Contemporary Topics in Ocean and Earth Science; plus one from: Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography

Optional module: one from: Biogeochemical Cycles in the Earth System; Computational Data Analysis for Geophysicist and Ocean Scientists; Deep-sea Ecology; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large scale Ocean Processes; Zooplankton Ecology and Processes

Semester two

Optional module: one from: Applied Biogeochemistry and Pollution; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Reproduction in Marine Animals; Sea Floor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus research project

Visit our website for further information...



Read less
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. The course provides advanced training in marine biology with a strong emphasis on practical training.

The course provides training addressing the following major themes:

Marine Ecology Skills
Habitat Ecology / Coastal Survey
Marine Fisheries
Marine Vertebrates
Marine Invertebrates
Research Design & Planning
Research Project / Dissertation
The programme is achieved through a series of compulsory modules encompassing theory, practical, private study and practical research.

The School of Ocean Sciences at Bangor University has over 50 years experience of teaching at postgraduate level, and excellent teaching and research facilities for the study of the marine biology. Undergraduate teaching was graded excellent in the last Teaching Quality Assessment, and research was graded 4* in the Research Assessment Exercise. NERC has designated the School as a Centre of Excellence in Coastal Seas, Marine Biology and Biological Oceanography.

The MSc course in Marine Biology is one of a suite of 4 focused MSc courses in marine science run within the School. New students on this course are inducted to the University and School via an introductory course consisting of orientation through site tours, excursions and social events, and 5 weeks of quantifying biological variability, learning Information Technology, and practising presentation skills. Pre-sessional English language training courses are also available for overseas students.

The MSc course is managed by a course team comprising of the Course Director, Deputy Course Director and Postgraduate Course Administrator. The team report to the School Course Board, which in turn reports to the College of Natural Sciences. Each student has a personal tutor drawn from the teaching staff. The School has 30 academics teaching and researching across the marine science disciplines of Marine Biology (15), Biogeochemistry (2), Physical Oceanography (6) and Geological Oceanography (7) with a similar overall number of technical staff. Teaching on the MSc Marine Biology will be provided from 'in house' in the main, but additional teaching will be provided from the University's School of Biological Sciences and the National Museum of Wales.

The MSc course is housed in a fully serviced and dedicated postgraduate suite. The School is located on the shores of the Menai Strait which separates the Isle of Anglesey from the mainland. The Menai Strait is a proposed Statutory Marine Resource and EU Special Area of Conservation and there are unspoilt marine environments relatively close by.

The University's newly refurbished science library is located in nearby in Bangor. Specialist facilities in the School include temperate and tropical aquaria, satellite imaging processing and Geographical Information System computing, diving and field survey operations (including ROVs and sledges) and laboratories for benthic analysis, nutrition, microbiology, genetics, radiochemical analysis, stable isotopes, sediments and organic chemistry, scanning electron microscopy. An additional strength in our field teaching, is work at sea aboard the only ocean-going research vessel in the Higher Education sector (RV Prince Madog), which entered service in 2001.

MSc course students can benefit from the School's links with other institutions, especially for research project opportunities. Such links presently include the Virginia Institute of Marine Science, U.S.A., University of Mauritius, Catholic University Chile etc.

Read less
Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Read more

Program Overview

Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Research carried out both independently and in collaboration with federal government laboratories occurs in many different oceanographic regimes, including coastal BC fjords, the inland sea of the Strait of Georgia, open ocean regions of the Subarctic Pacific, and many other locations, including the Arctic and Antarctic Oceans. The types of problems that can be studied include fundamental questions about the flow of stratified fluids at scales ranging from tens of meters to thousands of kilometers, applied research in estuaries, coastal, and deep-ocean processes, general ocean circulation and climate change issues, marine chemistry, geochemistry, and biogeochemistry, natural product chemistry, marine viruses, fisheries oceanography, plankton ecology and physiology, and primary production of the sea. The Department is well equipped to carry out research in the field (using either its own boat or larger vessels in the oceanographic fleet), at the laboratory bench, and in the numerical heart of a computer. Most problems involve aspects of all three.

Students in Oceanography may select courses, depending on their interest, from the following areas of specialization:
- biological oceanography
- marine chemistry and geochemistry
- physical oceanography and atmospheric sciences

Students are encouraged to broaden their knowledge by taking courses outside their area of specialization. Courses related to Oceanography are also offered in the Departments of Botany, Chemistry, Civil Engineering, Geography, Physics and Astronomy, and Zoology.

Oceanography students normally begin their studies in September but may sometimes arrange to start their thesis/dissertation work in the summer before their first Winter Session. A student wishing to do graduate work in Oceanography should first discuss the proposed program with appropriate faculty in the Department of Earth, Ocean and Atmospheric Sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Oceanography
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This course provides you with an exceptional grounding in marine environmental research. You’ll develop your understanding of key concepts and issues. Read more
This course provides you with an exceptional grounding in marine environmental research. You’ll develop your understanding of key concepts and issues. You’ll also develop the skills and qualities required for a career in academia or industry.

Through a combination of taught and research modules, our course develops your understanding of:
-The roles of science, policy, technology and economic development in the marine environment
-Marine environmental issues, their origins and possible solutions
-The principal processes maintaining and altering structure, function and ecosystem services of coastal waters
-The key concepts and methodologies used in ecosystem, environmental management and conservation science
-The context, purpose and implementation of resource mapping and evaluation
-The theory, principles, concepts and practices in marine governance

Our staff have over 30 years of research and teaching experience, both in the UK and overseas. Their expertise spans the natural and social sciences in coastal-marine science and management.

Our taught modules will ground your understanding of marine ecosystem dynamics, research methodologies and environmental governance. You will develop your research skills by designing and completing a supervised project.

Major sites for projects include the:
-Red Sea
-Maldives
-Bahamas
-Northumberland coast (UK)

The project will develop a detailed knowledge of your chosen research topic by drawing on the research communities within the School of Marine Science and Technology. These include:
-Marine Biology, Ecosystems and Governance (MBEG)
-Oceans and Climate (OC)

These research groups have had notable successes in their work on:
-Coral reefs (Prof John Bythell, Prof Alasdair Edwards, Prof Nicholas Polunin)
-Physical oceanography and climate modelling (Prof Andrew Willmott, Dr Miguel Maqueda)
-Marine spatial mapping and systems planning (Dr Clare Fitzsimmons)
-Marine protected areas and management (Prof Nicholas Polunin, Prof Selina Stead)
-Food webs (Prof Nicholas Polunin)

They are also active in:
-Marine mammal monitoring (Dr Per Berggren)
-Citizen science and outreach (Dr Jane Delaney)
-Deep sea ecology and marine time series (Dr Ben Wigham)

Read less
Join us for our. Master Open Day. to find out more about our courses. This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. Read more

Join us for our Master Open Day to find out more about our courses.

This Masters will prepare you in the physical sciences and mathematics for a research career in climate, atmospheric or environmental sciences. It ideally bridges the gap between undergraduate studies in physical/natural sciences and engineering, and study for a PhD.

Alternatively, if you decide to leave academia, the highly transferable skills gained from this course could lead to a research role in industry or government.

Gain a broad overview of physical problems in climate and atmospheric science, together with a sound physical understanding of natural processes. Alongside this, develop highly transferable skills to conduct research in these subjects with a strong emphasis on quantitative data analysis and physical and numerical modelling.

A career in scientific research is always interesting – sometimes exciting – but might not suit everyone. This course provides an excellent opportunity to get a taste of postgraduate research study and decide whether it is really the career for you.

Course highlights:

Interact with academics who are at the forefront of major global issues. Leeds is a leading centre of excellence across both the physical science of the climate and atmosphere science, and the resultant socio-economic impacts and processes:

National Centre for Atmospheric Science (NCAS), one of six research centres funded by the Natural Environment Research Council (NERC), providing its core atmospheric research.

Institute for Climate and Atmospheric Science (ICAS) is the UK’s most diverse academic institute for atmospheric research.

Priestley International Centre for Climate Change (PICC) a world-leading centre for policy-relevant, solution-driven climate research.

Centre for Polar Observation and Modelling (CPOM) is a research centre that studies processes in the Earth's polar latitudes that may affect the Earth's albedo, polar atmosphere and ocean circulation, and global sea level.

Develop your research skills – you will be regarded as a researcher in the School and expected to work closely with ICAS staff as well as presenting at the annual ICAS Science Conference along with academics and doctoral researchers.

Continue on to a PhD, or move into a research role in industry or government. Highly numerate graduates with training in independent research are widely sought after in many sectors.

The School's £23m building gives you access to world-class research, teaching and laboratory facilities, and dedicated computer facilities – many of which will be available to you throughout your studies.

You will be regarded as a researcher within the School and be expected to work closely with ICAS staff as well as presenting at the annual ICAS away day along with academic staff and doctoral researchers.

Programme team

Be taught by staff from across the School, primarily from ICAS. Your programme manager is Dr Ryan Neely (ICAS) who also teaches as well as regularly supervises your research project and provides tutorial support.




Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Environmental Dynamics and Climate Change course places particular emphasis on recent global and regional environmental and climatic change, the scientific basis and limitations of models and data collection techniques. It combines the international research strengths of staff within the Departments of Geography and Biosciences around environmental and climate dynamics (processes and mechanisms involved in stability and change), marine and ecosystem biology, and environmental management and sustainable development.

Graduates from the Environmental Dynamics and Climate Change course will have extensive knowledge of the current scientific issues underpinning climate change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Students of the MSc Environmental Dynamics and Climate Change at Swansea will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

The aims of the Environmental Dynamics and Climate Change programme are:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Modules of the MSc Environmental Dynamics and Climate Change ‌programme include:

Climate Change

Core Science Skills

Satellite Remote Sensing

Principles of Environmental Dynamics and Climatic Change

Please visit our website for a full description of modules for the Environmental Dynamics and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces Environmental Dynamics and Climatic Change programme students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

The Department of Geography aima to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

We host a large community of postgraduate researchers studying for PhD degrees, and run one-year MRes, MSc and MA courses.

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

I originally came to Swansea University to study for a BSc in Geography. Although this course covered a wide range of both human and physical topics that were all very interesting and provided a broad spectrum of skills from GIS and remote sensing to environmental modelling, my main interest was in the physical aspects. I graduated in 2007 with a 1st Class BSc (Hons) in Geography and wanted to continue my studies into the field of climate change. I decided that the MSc in Environmental Dynamics and Climate Change would be an appropriate route to take in order to pursue this field. The MSc in Environmental Dynamics and Climate Change focused on many characteristics of the global environment, like impacts on ecosystems, and how the varying processes associated with climate change can be monitored, measured and modelled. This choice of topics was complimented by the fact that the modules were run by lecturers working at the cutting-edge of global environmental change. The culmination of what I learned over the course of the year was put into practice with the dissertation, which allowed me to focus on an area of particular interest. The group of friends that I had on the course were brilliant and I will take away a lot of fond memories of our time together at Swansea. Now, after finishing the MSc in Environmental Dynamics and Climate Change I have a job working for the National Oceanography Centre in Southampton".

David Hamersley, MSc Environmental Dynamics and Climate Change



Read less
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff. Read more
The aims of the course are to provide an understanding of key contemporary research problems in a range of disciplines in either the humanities and social sciences or physical sciences relating to the Arctic and Antarctica, and for students to undertake original research on a topic selected in consultation with members of staff.

Taught material is presented in the Michaelmas Term, usually in the form of seminars. The material is organized in two strands, suitable for students interested in the humanities and social sciences or in the natural sciences. It is examined through the submission of three essays, which can take the form of research papers. In the Lent and Easter terms students carry out research towards their dissertations. Dissertation topics are agreed with supervisors and are closely integrated with the ongoing research activities of the Scott Polar Research Institute (SPRI). Students are expected to participate in internal and external research seminars, and a research forum.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/eaggmpmps

Course detail

The outcomes of the course are achieved both through focused study of specialised aspects of research on the Arctic and Antarctic, either in terms of Arts and Humanities or the Sciences, and through the development of research skills and methods. The following outcomes of student learning are sought:

Knowledge of ideas: Students gain familiarity with an appropriate range of intellectual and methodological traditions relevant to the study of the Arctic and Antarctic. For the humanities and social science strand, students draw on material from Geography, Anthropology, Political Science and other social sciences, and understand the significance of different epistemological positions that provide the context for research. For the physical sciences strand, students will become familiar with theories and empirical work from, amongst other areas, the fields of glaciology, oceanography and atmospheric science. They will gain knowledge and understanding of the field-based, remote sensing and modelling techniques used in polar science research. The teaching is provided via lectures and seminars, research supervision via bi-weekly meetings between students and their supervisor and sessions concerning research skills. Students also attend the research seminars held in their research groups. This allows exchange of ideas and debate with more experienced academic researchers and their peers;

Critical skills: Students become skilled and critical readers of Arctic and/or Antarctic publications and data sets. This is achieved through structured reading associated with each module, as well as via supervision on the essays and dissertation;

Substantive knowledge of ideas: Students gain in-depth knowledge of substantive areas of Arctic and/or Antarctic research. This knowledge is gained in the modules on The Emerging Arctic, Northern Peoples, Polar Remote Sensing, Glacier and Ice Sheet Dynamics: Present and Past. Students gain an in-depth knowledge either of underlying patterns of development, conservation and cultural transformation in the Arctic and/or Antarctic regions, or of the physical processes at work in these regions, how these have changed in the past and are changing currently, and the methods and techniques for investigating them;

Research design skills: Students develop their capacity to frame research questions, to derive appropriate research designs, and develop awareness of different epistemological approaches. This is achieved through the ‘Research Training’ sections of course;

Practical research skills: Students gain a competence and confidence in using a range of qualitative and/or quantitative methods for gathering, analysing and interpreting data. This is achieved through the ‘Research Training’ sections of course and the dissertation;

Presentation skills: Students gain skills in the presentation of research-based evidence and argument. Students are expected to take an active role in the research seminars of the research groups to which they belong and to contribute actively to seminar discussions. They are also expected to present their dissertation aims, methods, preliminary results, and plans for future work at a student forum held part way through their dissertation research period;

Management and other transferable skills: Students gain skills in managing a research project, and its execution (including, where appropriate, elements of data management, understanding ethics and codes of good practice in cross-cultural research, understanding uncertainty, disseminating research). Several of these elements are taught in the ‘Research Training’ sections of course, and then are extended and applied via the dissertation research, which has individual supervision from an experienced researcher.

Assessment

- 20,000 word dissertation that, at the discretion of the examiners, can include an oral examination on the thesis and the essays and on the general field of knowledge.
- Three essays or other exercises of up to 4,000 words each.

Continuing

70% overall in MPhil.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

AHRC for Arts and History topics approved by the AHRC DTP at University of Cambridge.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Read more
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Research involves the full breadth of the earth sciences and has benefited from major investment in new laboratories and equipment in the past few years. Important initiatives include experimental and theoretical studies of physical, chemical and biological processes of the Earth.

Please note: If you are applying for this programme, you need to select Geology as the programme choice when completing your online application form.

Research groups

The research programme at Bristol is characterised by an expanding range of exciting subject areas. Research in the School of Earth Sciences encourages interdisciplinary collaboration between its five research groups, which in turn nurtures revolutionary research.

Geochemistry
The Geochemistry group uses fundamental chemical techniques to understand natural processes on a range of temporal and spatial scales. This can be from single atoms on mineral surfaces and the environmental geochemistry of the modern Earth to the large-scale chemical structure of planets and the birth of the solar system. The group has considerable expertise in isotopic measurements, spectroscopy and first-principles calculations.

Geophysics
Geophysics uses physical properties of the solid Earth to measure structure and processes on scales from the single crystal to the entire planet. Members of the Bristol Geophysics group use gravity, seismic and satellite data to image the Earth in a variety of different contexts. These include the Earth's core, mantle and tectonic processes, volcanoes, oil and gas reservoirs and mines.

Palaeobiology
The Palaeobiology group uses the fossil record to study the history of life. Research focuses on major diversifications, mass extinctions, dating the tree of life, phylogenomics and molecular palaeobiology, morphological innovation, biomechanics, and links between evolution and development; the organisms of interest range from foraminifera to dinosaurs.

Petrology
The Petrology group uses a combination of high-pressure and high-temperature experiments, petrology, geochemistry and mineral physics to attack a wide range of problems in the solid Earth - from the core to the surface.

Volcanology
The Volcanology group at Bristol aims to understand the physical processes underlying volcanic phenomena and develop methods of hazard and risk assessment that can be applied to volcanoes worldwide.

Recent case studies and collaborators include the Met Office, Montserrat Volcano Observatory, Eyjafjallajökull, Iceland and INGEOMINAS in Columbia.

Research centres

The School of Earth Sciences is involved in a number of collaborative research groups on an international level. Inter-faculty research centres such as the Biogeochemistry Research Centre and the Cabot Institute involve collaboration across several departments and faculties.

Centre for Environmental and Geophysical Flows
This interdisciplinary research centre brings together expertise from the Schools of Earth Sciences, Geographical Sciences, Mechanical Engineering and Mathematics. This creates diverse research activities and interests, from traffic flow to explosive volcanic flows, meteorology to oceanography.

Biogeochemistry Research Centre
The Biogeochemistry Research Centre involves staff from the Schools of Earth Sciences, Geographical Sciences and Chemistry. The research aims to develop our understanding of the biogeochemistry of modern-day and ancient environments and the way that it is affected by natural processes and the actions of mankind.

Bristol Isotope Group
The Bristol Isotope Group is a world-class research facility for isotope measurements directed at understanding natural processes, from the formation of the solar system, the origin of Earth - its deep structure and atmosphere, through to the evolution of that atmosphere and contemporary climate change.

Interface Analysis Centre
The Interface Analysis Centre specialises in the application of a wide range of analytical techniques and is used by the Schools of Chemistry, Earth Sciences and Physics.

The Cabot Institute
The Cabot Institute carries out fundamental and responsive research on risks and uncertainty in a changing environment. Interests include climate change, natural hazards, food and energy security, resilience and governance, and human impacts on the environment.

Read less

Show 10 15 30 per page



Cookie Policy    X