• Leeds Beckett University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
Coventry University Featured Masters Courses
University of Strathclyde Featured Masters Courses
Loughborough University Featured Masters Courses
"photovoltaic"×
0 miles

Masters Degrees (Photovoltaic)

  • "photovoltaic" ×
  • clear all
Showing 1 to 15 of 29
Order by 
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
This course has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation.

Who is it for?

This course is suitable for both practicing engineers and those considering a career in engineering.

The course has been designed to provide an in-depth insight into the technical workings, management and economics of the electrical power industry.

Objectives

This programme has been designed to meet the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. The aims are to produce graduates of a high calibre with the right skills and knowledge who will be capable of leading teams involved in the operation, control, design, regulation and management of power systems and networks of the future.

The programme aims to:
-Provide you with the ability to critically evaluate methodologies, analytical procedures and research methods.
-Provide an advanced education in electrical power engineering.
-Give you the education, knowledge and the skills you need to make sound decisions in a rapidly changing electricity supply industry.
-Provide a sound understanding of the principles and techniques of electrical power engineering.
-Give a broad knowledge of the issues and problems faced by electrical power engineers.
-Give a solid working knowledge of the techniques used to solve these problems.
-Provide a foundation in power systems principles for graduates with an engineering background.
-Demonstrate the practical relevance of these principles to the operation of successful enterprises in the broad field of electrical power engineering.
-Familiarise professional engineers and graduates with the theory and application of new technologies applied to power systems.

Academic facilities

Students in City's Department of Electronic and Electrical Engineering benefit from a recent lab equipment upgrade worth £130,000. This includes photovoltaic trainers, three phase synchronous machines, AC motor speed control machines, single and three phase transformers, thryistor controllers, a power systems mainframe and power systems virtual instrumentation.

The equipment is essential in training students to be highly skilled professionals in the energy industry.

The photovoltaic trainer, for instance, is a desk-top instrument which teaches the fundamental principles of photovoltaic energy. The 'photovoltaic effect' is a method of energy generation which converts solar radiation into an electrical current using semiconductors arranged into solar cells.

Teaching and learning

Modules are delivered by academics actively involved in energy related research, as well as visiting lecturers from the power industry who provide a valuable insight into the operation of energy companies.

Industry professionals give several seminars throughout the year. At least two industrial trips are organised per academic year.

Modules

The modules for this course are delivered over two semesters, with weekly lessons scheduled over two days a week. The third semester is spent completing a project that involves writing a dissertation and presenting findings. This course is organised into eight modules provided on a weekly basis.

Course content
-Introduction to Power Systems & Energy Management EPM874 (15 credits)
-Systems Modelling EPM744 (15 credits)
-Renewable Energy Fundamentals and Sustainable Energy Technologies EPM879 (15 credits)
-Transmission and Distribution Systems Management EPM875 (15 credits)
-Power Systems Design and Simulation EPM423 (15 credits)
-Power Electronics EPM501 (15 credits)
-Power Systems Protection and Grid Stability EPM990 (15 credits)
-Economics of the Power Industry EPM101 (15 credits)
-Dissertation EPM949 (60 credits)

Career prospects

Graduates are prepared for careers that encompass a variety of roles in the power industry, from technical aspects to management roles. Previously graduates have found jobs as engineers, managers and analysts in the power sector, with companies such as:
-OFGEM
-National Grid
-UK Power Networks
-EON
-EDF
-Vattenfall
-Caterpillar
-Railroad
-Graduates may also wish to further their research in the energy field by considering a PhD

Read less
This course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Read more
This course is an advanced MSc course in the area of renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. The course is designed to help you develop critical understanding that you can apply to assist the wide range of renewable energy industries. The course will equip you with the engineering knowledge and practical skills necessary to develop and implement creative solutions to engineering problems encountered in renewable energy capture and conversion, system design and analysis, project development and implementation.

You will use lab and field-testing facilities for measuring and monitoring performance of different renewable energy systems, such as wind turbines, photovoltaic power systems and heat pumps. You will also learn to use tools for component and system design, simulation of the performance and monitoring of renewable energy systems. These tools include Matlab/Simulink, ANSYS and SciLab for wind turbine blade design and CFD, GH WindFarmer and WAsP for wind farm design, PVsyst for photovoltaic system design and Labview for system monitoring.

The course is suitable for students with a science or engineering background.

Professional Accreditation

This MSc is accredited by the Institution of Engineering and Technology (IET), as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration

Professional Placements

The Professional/Work Placement options will give you the opportunity to research, secure and undertake a period of work experience or industrial placement in an organization appropriate to the field of study. They take place after the completion of the taught modules.

Course content

Core Modules
• SC4107 Research Methods
• MP4708 Renewable Energy Technology
• MP4709 Energy Systems
• MP4710 Design and Analysis of Renewable Energy Systems
• EL4895 Masters Project (Engineering)

Option Modules
Two of the following:
• MP4701 Design and Operation of Sustainable Systems
• MP4705 Sustainable Systems Development
• MP4706 Sensors, Instrumentation & Control
• MP4713 Wind Turbine Generators, Power Electronics and Control

Optional placement modules:
• Professional Placement (Engineering); (120 credits)
• Work Placement (Engineering); (60 credits)

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
WHAT YOU WILL GAIN. - Advanced skills and know-how in the latest advanced technologies in power generation through Renewable Energy technologies, for professional or highly-skilled work and/or further learning. Read more
WHAT YOU WILL GAIN:

- Advanced skills and know-how in the latest advanced technologies in power generation through Renewable Energy technologies, for professional or highly-skilled work and/or further learning
- Credibility as an advanced practitioner in Renewable Energy technologies
- Ability to make independent judgments and high-level decisions in a variety of technical or managerial contexts
- The knowledge and skills to be actively involved in the planning, implementation and evaluation stages of a range of Renewable Energy power generation systems
- An EIT Graduate Certificate in Renewable Energy Technologies

Next intake starts May 15th, 2017. Applications now open; limited places available.

INTRODUCTION

The Graduate Certificate in Renewable Energy Technologies is an advanced program. It is presented at a considerably higher level than the Advanced Diploma and bachelor degree level programs and intending students should be aware of the greater challenge. This Certificate has identical standing and level to that of a university graduate diploma, but is focused on the career outcomes of a professional engineer and technologist. As the title suggests, it has a greater vocational or ‘job related’ emphasis, and focuses more on developing practical skills that you can apply to the workplace, rather than theory alone.

A feature of this program is that in using web collaborative technologies you will not only study and work with your peers around the world on various renewable energy design projects, but you will do this conveniently from your desktop using the latest techniques in live web and video conferencing. The Graduate Certificate in Renewable Energy Technologies focuses on the mainstream technologies viz. photovoltaic, wind and small hydro, but also covers other less common technologies such as biomass, osmotic and tide power generation, among others. The course deals with practical issues of renewable energy that will confront an advanced practitioner in the field. For example, you will be exposed to the modeling and simulation of wind turbines, and the design of wind farms. You will also be expected to undertake advanced design and conceptualisation work in which you will apply the calculations learned in less advanced programs. Some of the work and study you will be undertaking will involve pioneering technology and exploring new approaches. There is a definite ongoing need for highly qualified and skilled specialists in the Renewable Engineering field and this course caters for that need. Upon completing this program you will be able to show technical leadership in the field of Renewable Energy, and be recognised as an advanced practitioner in the field.

PRE-REQUISITES

Applications are considered on a case-by-case basis. Potential students include:

- Practising engineers or technologists with advanced knowledge, experience and education (such as an Advanced Diploma, or undergraduate degree)
- Practising engineers or technicians with demonstrated competence
- Engineers or technologists from another discipline (such as mechanical and chemical engineering) wanting to up-skill in this area
- It would not be suitable for a student with no relevant work experience. We will review your enrolment application and may recommend pre-course studies if required.

COURSE STRUCTURE

The Graduate Certificate is an intensive part-time program, conducted over 6 months. Unlike other universities or academic institutions, we operate almost all year round without extended breaks between semesters. The course is composed of 4 units, each conducted over 6 weeks.

Unit 1 - Fundamentals and Balance-of-Plant Components
Unit 2 - Small Hydro and Other Renewable Energy Technologies
Unit 3 - Photovoltaic (PV) Systems
Unit 4 - Wind Turbine Systems

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Read more
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Designed to help you develop critical understanding, the course will equip you with the engineering knowledge and practical skills necessary to develop and implement creative solutions to engineering problems encountered in renewable energy capture and conversion, system design and analysis, project development and implementation. You’ll use lab and field-testing facilities for measuring and monitoring performance of different renewable energy systems, such as wind turbines, photovoltaic power systems and heat pumps.

You’ll also learn to use tools for component and system design, simulation of the performance and monitoring of renewable energy systems. These tools include Matlab/Simulink, ANSYS and SciLab for wind turbine blade design and CFD, GH WindFarmer and WAsP for wind farm design, PVsyst for photovoltaic system design and Labview for system monitoring. You’ll also have the option to experience a Professional/Work Placement in addition to the taught course.

PROFESSIONAL ACCREDITATION

This MSc is accredited by the Institution of Engineering and Technology (IET), as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration.

LEARNING ENVIRONMENT

Students will benefit from:
-Free supportive short course tailored to students individual needs. This is a group of lectures/tutorials, provided as part of the independent learning on foundation topics such as electric circuits, 3-phase current, rotating machines, maths, and excel.
-Free supportive English language module for International students
-Seminars on Employability
-Sites visits on UK renewable energy installations.
-Variety in assessment for learning methods including: examination, coursework, tests, presentations, poster defence and written reports.

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The one-year Sustainable Energy Technologies masters course offers engineering, science and mathematics graduates an academically challenging introduction to current and modern energy technologies for sustainable power generation. Read more

Summary

The one-year Sustainable Energy Technologies masters course offers engineering, science and mathematics graduates an academically challenging introduction to current and modern energy technologies for sustainable power generation.

Modules

Compulsory modules: Introduction to Energy Technologies; Environment and Sustainability; Fuel Cells and Photovoltaic Systems 1 and 2; Nuclear Energy Technology; Renewable Energy From Environmental Flows; Sustainable Energy Systems, Resources and Usage; Thermo-fluid Engineering for Low-carbon Energy

Optional modules: further module options are available

Visit our website for further information...



Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
MSc. This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. Read more
MSc:

This MSc is designed to provide instruction and training in the most recent developments in equipment and systems used to interface and control renewable and sustainable energy systems. The course provides essential knowledge both for electrical
engineers wanting to work within the renewable energy systems industry, and for engineers planning a research career in the field.

Students will develop:
advanced and comprehensive knowledge of the specialist
engineering skills required by an engineer working in this field
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
the technical knowledge and skills to equip them for a leading career in engineering for renewable and sustainable energy technologies, electrical engineering and power engineering
the ability to design, analyse and evaluate hardware and software aspects of renewable and energy efficient power systems
decision making powers in relation to the specification and solution of power electronics, power systems and electrical
engineering problems for appropriate renewable and sustainable energy technologies

Following the successful completion of the taught modules, an individual research project is undertaken during the summer term.

Previous research projects on this course have included:
the design of a DC-DC voltage convertor with maximum power tracking for a photovoltaic module
electrical modelling of a PEM fuel Cell
microprocessor based control of a wind turbine generator
optimisation of the operation of a renewable energy micro grid

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

PGDip:

The Postgraduate Diploma Electrical Engineering for Sustainable and Renewable Energy is designed to provide instruction and training in the most recent developments in the equipment and systems used to interface and control renewable and sustainable energy systems.

This knowledge is essential both for an engineer wanting to work in research and development in electrical engineering for renewable energy systems in industry. The course will give you an advanced and comprehensive coverage of the specialist engineering skills required by an engineer working in electrical technology for renewable and sustainable energy systems.

Key facts

Read less
This internationally renowned degree, based within a world-leading renewable energy research group, equips graduates and professionals with a broad and robust training. Read more

Programme description

This internationally renowned degree, based within a world-leading renewable energy research group, equips graduates and professionals with a broad and robust training.

Wind, marine and solar energy technologies are covered, as well as the wider environment in which they are to fit, including: resource assessment; energy production, delivery and consumption; efficiency; sustainability; economics, policy and regulation.

In addition, our MSc students actively engage in research as part of their dissertation projects either within the Institute for Energy Systems or with industry, with some joining our PhD community afterwards.

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1
Technologies for Sustainable Energy
Energy Innovation Governance and Strategy
Sustainable Energy Contexts
Either Electrical Engineering Fundamentals of Renewable Energy or Mechanical Engineering Fundamentals of Renewable Energy

Semester 2
Principles of Wind Energy
Marine Energy
Solar Energy and Photovoltaic Systems
An MSc Dissertation project from May to August

Depending on quotas and timetabling, we can offer further courses from the Schools of Engineering, GeoSciences, Mathematics, and Social and Political Science, and from Scotland's Rural College.

Career opportunities

Graduates go on to a wide range of activities in industry, public organisations or academia. The MSc has well established links with industry, with many graduates finding employment with leading national and international companies involved with energy, consultancy and engineering.

Read less
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. Read more
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. This course provides students with advanced skills and vital training in renewable energy, energy efficiency and business.

Students will gain essential technical skills in the field as well as becoming fluent in the financial, marketing and managerial aspects of modern business. The course aims to develop confidence and understanding in the specialist field of entrepreneurship applied to technology that can arise from the research base of sustainable energy subjects. Graduates from the course will be well placed to pursue careers in renewable energy technology industries.

By the end of the course, you will have gained useful and technical knowledge in the areas of sustainable energy and business as well as the application of technologies to proposed business models, and you will be adept at communicating and presenting yourself and your projects to an audience.

Students will develop:
useful and technical knowledge in the areas of sustainable energy and business
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
knowledge of the application of technologies to proposed business models

Previous projects have included:

promotion of energy efficient building technologies in developing countries through Clean Development Mechanism
Solar Decathlon Zero Carbon House - Mass market solution for the Solar Eco House concept
technical analysis of photovoltaic for small scale application & its economic viability - case study Nigeria
design of a framework for the application of CDM measures to promote rural electrification of microcredit systems

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
NOTE Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electronic Engineering. Read more
NOTE Are you a student from outside the EU? If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electronic Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About this course:
The course provides coherent and up to date coverage of Electronic Engineering with modules in Microelectronic Systems, VLSI, Digital Signal Processing,Research Methods, Embedded Systems,Analogue and Digital Electronics and Telecommunications. The approach spans specification and design to realisation, with particular emphasis on the application of industry standard CAD tools and DSP devices to develop solutions to practical engineering problems.

Course content

The course consists of a taught programme followed by an individual project. The taught programme is based on eight modules. Normally these modules are taken over two semesters for the full time route. The individual project is then studied over a further semester to complete the Masters Award.

Core modules are:
-Research Methods & Project Management
-Photovoltaic Technology
-Digital Electronic Systems
-Digital Signal Processing
-MSc Project
-Embedded Real Time Systems
-Telecommunications

Option Modules are:
-Technical Paper Authoring
-Optical Fibre Communication Systems
-Control Systems
-Wireless Navigation Systems

Semester 1 runs from September to January and Semester 2 from February to June. Study of the MSc normally commences in September. The possibility of an optional industrial placement either between the taught programme and the individual project is also available which may involve working in another European country.

Employment opportunities

Future option for graduates include employment in local, national and international industries normally initially in Research and Development roles although many progress to management positions. Alternatively graduates may choose to pursue further academic qualifications and register for a PhD programme.

Read less
NOTE Are you a student from outside the EU?. If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electrical Engineering. Read more
NOTE Are you a student from outside the EU?
If you are an International student we have designed a version of this award especially for you! It is called the Extended International Master in Electrical Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success. Take a look at this alternative course here.

About this course
The modern power system is evolving with increasing use of power electronics, integration of renewable sources such as wind and solar development of embedded generation and microgrids. The MSc Electrical Engineering award is designed to produce engineers who are capable of engineering such a system. .

Core modules are:
-Research Methods & Project Management
-Power Electronics in Electrical Utility Systems
-Advanced Power Systems Analysis
-Power System Protection
-Flexible AC Transmission Systems and Custom Power
-MSc Project

Option Modules are:​
-Energy Management
-Control Systems
-Photovoltaic Technology

Course content

The theme of the award is Power Electronics in Electrical supply industry. The module content and the award structure are designed so that this theme permeates through the award. The key modules, which have industrial input are "Power Electronics in Electric Utility Systems" , "Flexible AC Transmission systems" and "Power System Protection" . The option modules such as Energy Management and Control systems provide the students with the additional knowledge and skills for the formation of a true power electronics engineer. You will study 4 modules in the first semester.

In the second semester you will study 4 further modules. Upon successful completion of the project you will be awarded the MSc. Your study length can be variable depending on how much time you spend in industry which could include vacation work.

Employment opportunities

Career prospects are excellent. There is a severe shortage of Electrical Engineers worldwide. In particular the renewable energy sector is expanding and it is predicted that 1.5 million jobs will be available worldwide. The worldwide investment in renewable energy was $270 billion in 2014 according to UNEP's 9th "Global Trends in Renewable Energy Investment 2015. Best students are being offered jobs even before they complete the award.

Read less
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. Read more
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. The course provides coherent and up to date coverage of Mechatronics with specialist modules available in Mechanical, Electronic and Robotics areas. The approach spans specification and design to realisation, with particular emphasis on the application of industry standard CAD tools and DSP devices to develop solutions to practical engineering problems.

NOTE Are you a student from outside the EU? If you are we have designed a version of this award especially for you! It is called the Extended International Master in Mechatronics. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success.

Course content

The course consists of a taught programme followed by an individual project. The taught programme is based on eight modules. Normally these modules are taken over two semesters for the full time route. The individual project is then studied over a further semester to complete the Masters Award.

Semester 1 runs from September to January and Semester 2 from February to June. Study of the MSc normally commences in September. This course has an industrial placement route.

Core modules are:
-Design Technologies for Master
-Research Methods & Project Management
-Embedded Real Time Systems
-MSc Project

Option Modules are:
-Energy Management
-Photovoltaic Technology
-Digital Electronic Systems
-Digital Signal Processing
-Applied Structural Integrity
-Structural Integrity
-Control Systems
-Advanced Engineering Materials
-Sustainable Design & Manufacture

“This course can be completed within 1 year. However this timescale is dependent on students starting the course in September, passing all modules, undertaking their project during the summer semester and experiencing no other delays (such as health issues). Many students choose to delay their project start and enjoy a well-deserved summer break to ‘re-charge their batteries’ which also has academic benefits. In this case a more realistic duration is 15 months for September starters and 18 months for January starters.”

Employment opportunities

Future option for graduates include employment in local, national and international industries normally initially in Research and Development roles although many progress to management positions. Alternatively graduates may choose to pursue further academic qualifications and register for a PhD programme.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X