• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
University of Bradford Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
FindA University Ltd Featured Masters Courses
"photon"×
0 miles

Masters Degrees (Photon)

  • "photon" ×
  • clear all
Showing 1 to 13 of 13
Order by 
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
The School of Physics and Astronomy at Manchester is one of the largest and most active schools of physics in the UK. We have a long tradition of excellence in both teaching and research, and have interests in most areas of contemporary research. Read more
The School of Physics and Astronomy at Manchester is one of the largest and most active schools of physics in the UK. We have a long tradition of excellence in both teaching and research, and have interests in most areas of contemporary research.

The School has a strong presence in a number of Manchester-based centres for multidisciplinary research: The National Graphene Institute, the Photon Science Institute; the Manchester Centre for Non-Linear Dynamics; the Dalton Nuclear Institute; and the Mesoscience and Nanotechnology Centre. In addition, the Jodrell Bank Observatory in Cheshire is a part of the School.

Strong research activity exists in a broad range of physics topics funded by the Research Councils including EPSRC, STFC, BBSRC, the EU and industry. All the research groups offer well-equipped laboratories and computing facilities and are involved in a wide range of collaborative projects with industry and other academic departments in the UK and overseas. For more information please visit our research page.

Programme description

The School of Physics and Astronomy at Manchester is one of the largest and most active schools of physics in the UK. We have a long tradition of excellence in both teaching and research, and have interests in most areas of contemporary research.

The School has a strong presence in a number of Manchester-based centres for multidisciplinary research: The National Graphene Institute, the Photon Science Institute; the Manchester Centre for Non-Linear Dynamics; the Dalton Nuclear Institute; and the Mesoscience and Nanotechnology Centre. In addition, the Jodrell Bank Observatory in Cheshire is a part of the School.

Strong research activity exists in a broad range of physics topics funded by the Research Councils including EPSRC, STFC, BBSRC, the EU and industry. All the research groups offer well-equipped laboratories and computing facilities and are involved in a wide range of collaborative projects with industry and other academic departments in the UK and overseas.

Career opportunities

A research degree in physics is highly regarded by employers as evidence of a thorough training in numerate problem-solving and opens a wide range of possible career choices. In addition to continuing physics research in industry, an MSc provides the entry level training to undertake a PhD in physics.

Read less
The course’s aim is to prepare physical scientists, life scientists and engineers to work in the rapidly expanding disciplines of biophotonics and imaging. Read more
The course’s aim is to prepare physical scientists, life scientists and engineers to work in the rapidly expanding disciplines of biophotonics and imaging. For those with a background in the Biological Sciences, emphasis will be placed on the quantitative methods that now play a crucial role in the development of biology.

Students with previous experience in engineering or physics will be tutored in the challenges of working at the interface with biology.
In addition to a sound knowledge of interdisciplinary science, students will develop:
key skills enabling them to communicate with researchers in
other disciplines
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports
project management skills in relation to the scientific and
technological aspects of the subject, including design, data collection and analysis
critical and decision making skills

This masters course is taught on a full-time basis over one year and consists of 60 credits of taught modules and a 120 credit
independent research project. The individual research project is taken over the full year with guidance from an academic member of staff.

A previous research project on this course has been:
Towards single photon detection with a practical EMCD

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Read more
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Dramatic developments in imaging both anatomy and molecular processes, especially using Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI). Research and development in the field is highly multi-disciplinary with key roles played by computing scientists and mathematicians, chemists, pharmacists, physicists, biologists, and of course clinicians. The Division of Imaging Sciences & Biomedical Engineering hosts a multidisciplinary team of academics directing a wide range of cutting-edge research projects, with an emphasis on translation “from bench to bedside”.

Key benefits

- Access to state of the art preclinical and clinical imaging facilities

- Clinically applied modules

- Two 4 month research projects within the Imaging Sciences’ Wellcome/EPSRC Medical Engineering Centre or CRUK/EPSRC Comprehensive Cancer Imaging Centre

- Research facilities based within a hospital environment enabling basic imaging science to be translated quickly into the clinic

- May constitute first year of a 4-year PhD

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/medical-imaging-sciences-mres.aspx

Course detail

- Description -

Medical Imaging Sciences aims to provide graduates of chemistry, physics, computing, mathematics, biology, pharmacy or medicine, with advanced training in the imaging field. Intended mainly as preparation for a PhD, but also serves as training for employment in hospitals and industry. Key components are two research projects, which may be linked around different aspects of a single research area in medical imaging.

- Course purpose -

Medical imaging is a rapidly expanding field that needs input from team members with knowledge and skills in these different areas (chemistry, physics, computing, mathematics, biology, pharmacy, medicine) to achieve its promise in improving patient care. The aim of this MRes programme is to provide students who have graduated in any of these subject areas with advanced training to prepare them to apply their specialist graduate skills in the imaging field. The programme is intended mainly as a preparation for a PhD in the field, at King's or elsewhere, but it also serves as training for employment in hospitals and industry.

- Course format and assessment -

Taught modules are presented in a variety of formats, including lectures, workshops, laboratory practicals, site visits etc. Assessment is based on coursework and examination.

Both research projects are carried out under the supervision of academics within the Division’s five departments (Biomedical Engineering; Cancer Imaging; Cardiovascular Imaging; Imaging Chemistry and Biology and Perinatal Imaging and Health). Some research projects may take place in a collaborating laboratory elsewhere in King's or at a collaborating institution.

Career prospects

Expected destinations are study for PhD, employment (research or service) in the NHS and commercial nuclear medicine services, the pharmaceutical or medical engineering industry.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

Degree information

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area, through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits. The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Core modules
-Advanced Quantum Theory
-Particle Physics
-Atom and Photon Physics
-Order and Excitations in Condensed Matter
-Mathematics for General Relativity
-Climate and Energy
-Molecular Physics

Please note: students choose three of the above.

Optional modules
-Astrophysics MSc Core Modules
-Space and Climate Science MSc Core Modules
-Medical Physics MSc Core Modules
-Intercollegiate fourth-year courses
-Physics and Astrophysics MSci fourth-year courses
-Physics and Astrophysics MSci third-year courses
-Plastic and Molecular (Opto)electronics

Dissertation/report
All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Physics-based careers embrace a broad range of areas e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics.

Employability
A Master's degree in Physics is highly regarded by employers. Students gain a deep understanding of both basic phenomena underpinning a range of technologies with huge potential for future development, e.g. quantum information, as well as direct knowledge of cutting-edge technologies likely to play a major role in short to medium term industrial development while addressing key societal challenges such as energy supply or water sanitisation.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for graduate study.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include work at the Large Hadron Collider in Geneva, and at the EISCAT radar instruments in Scandinavia for studying the Earth's upper atmosphere.

For students whose interests tend towards the theoretical, the department is involved in many international projects, some aimed at the development of future quantum technologies, others at fundamental atomic and molecular physics. In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.

Read less
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. Read more
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. This is a broad-based MSc, designed for graduates who wish to acquire skills in energy and materials science in order to participate in the emerging challenges to meet climate change targets.

Degree information

Students gain an advanced knowledge of materials science as it applies to energy and environmental technologies and research skills including information and literature retrieval, critical interpretation and analysis, and effective communication. They can benefit from modules in chemistry, physics, chemical engineering or mechanical engineering, thus offering future employers a wide-ranging skills base. Graduates will be well qualified to deal with the problems of energy decision-making and the implications for the environment.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (90 credits), two optional modules (15 credits each) and a research project (60 credits). An exit-level only Postgraduate Diploma (120 credits) is available. An exit-level only Postgraduate Certificate (60 credits) is available.

Core modules - students take all of the following, totalling 90 credits, and a 60 credit research dissertation.
-Advanced Topics in Energy Science and Materials
-Microstructural Control in Materials Science
-Energy Systems and Sustainability
-Transferable Skills for Scientists
-Research Project Literature Review

Optional modules - students take 30 credits drawn from the following:
-Climate and Energy
-Materials and Nanomaterials
-Electrical Power Systems and Alternative Power Systems
-Atom and Photon Physics
-Solid State Physics
-Mastering Entrepreneurship

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000 words, an oral presentation and a viva voce examination (60 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through unseen written examination and coursework. The literature project is assessed by written dissertation and oral presentation, and the research project is assessed by a written report, an oral presentation and a viva voce examination.

Careers

The UK has committed to 80% reduction in CO2 emissions on a 1990 baseline by 2050. CERES, the organisation that represents the largest institutional investors would like to see 90% reduction by 2050. National Systems of Innovation (NSI), which includes the universities, research centres and government departments working in conjunction with industry, will need to apprehend new opportunities and change direction, diverting personnel to energy and climate issues in response to changing markets and legislation. This MSc will contribute to the supply of personnel needed for the era of sustainability.

Top career destinations for this degree:
-Process Innovation Executive, Samsung Electronics UK
-Chemical Engineer, Jing Eong Fang
-Research Intern, CECP
-PhD Nanomaterials, University of Oxford
-PhD Sugar Chemistry, Monash University

Why study this degree at UCL?

This programme is designed for graduates from a wide range of science and engineering backgrounds who wish to broaden their knowledge and skills into materials science with an emphasis on the energy and climate change issues that will drive markets over the next century. It delivers courses from five departments across three faculties depending on options and includes a self-managed research project which is intended to introduce the challenges of original scientific research in a supportive environment.

Research activities span the whole spectrum of energy-related research from the development of batteries and fuel cells to the prediction of the structure of new water-splitting catalytic materials.

Students develop experience in scientific method, techniques for reporting science and in the many generic skills required for a future career.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power. We cover:
-Ion-trap quantum processors
-Ion-photon interfaces for the projected quantum internet
-Quantum simulators
-Superconducting quantum circuits
-Devices for quantum-enhanced metrology

How will I study?

Assessment is split equally between the project and modules.

Your project culminates in a dissertation (with a contribution from a research talk). The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

This course may be attractive to you if you aim to:
-Go on to doctoral study (theory or experiment)
-Work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
-Work in business/data analysis, research, computer programming, software development, or teaching

Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

Degree information

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research project with a dissertation/report (60 credits).

Core modules
-Advanced Quantum Theory
-Atom and Photon Physics
-Quantum Communication and Computation
-Research Case Studies for Quantum Technologies
-Transferable Skills in Research Case Studies for Quantum Technologies

Optional modules - students choose three of the following optional modules:
-Advanced Photonic Devices
-Introduction to Cryptography
-Nanoelectronic Devices
-Nanoscale Processing for Advanced Devices
-Optical Transmission and Networks
-Order and Excitations in Condensed Matter
-Physics and Optics of Nano-Structures
-Research Computing with C++
-Research Software Engineering with Python

Dissertation/report
All students undertake an independent research project (experimental or theoretical) related to quantum technologies, which culminates in a presentation and a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability
Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering. Read more
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering.

Our philosophy

The Department of Chemical Engineering is a multidisciplinary centre focusing on research into future sustainable materials and technologies. Chemical engineering research is crucial and supports development and production of new materials, fuels, drugs, consumer products, health care products, foods and beverages, electronic components, medical implants, and more.

As the number and complexity of chemical, biochemical and biological materials used in consumer products and supporting technologies increases, this research will play an increasingly vital role in the development of modern societies across the world.

Our applicants

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres. You can apply for one of our pre-defined research projects or develop your own proposal. Our academic staff are always open to ideas that extend existing work or introduce new topics to their subject areas.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/chemphd/index.html

Structure

The MPhil programme combines taught research training and applied research practice.

Candidates join the Department as a member of the Research Centre (http://www.bath.ac.uk/chem-eng/research/index.html) in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

International students

Please see the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

In addition all non-native speakers of English are required to have passed English language tests as follows.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

Only English language tests taken in the last two years are valid for entrance purposes.

About the department

This is a dynamic department, actively pursuing advanced research in many areas of chemical, biochemical and biomedical engineering, and also offering taught Masters courses. The Department is internationally recognised for its contributions to research, many of which are achieved in partnership with industry and prestigious research organisations. Our staff are highly skilled with excellent international reputations, and our facilities are amongst the best in the country.

Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

International and industrial links
We have active links with UK universities - Bristol, Durham, Glasgow, Leeds, Imperial College, Liverpool, Oxford, Cambridge, Southampton, Edinburgh - and with European institutions including the CNRS laboratory at Toulouse and Lappeenranta University of Technology in Finland together with the Universities of Alicante, Delft, Oveido, Porto, Paris, Aachen and Wroclaw.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Other resources
Postgraduate students are encouraged to become members of professional societies and to present the results of their research at national and international scientific meetings. The Department runs a vibrant weekly research seminar programme where students are given the opportunity to present their research.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X