• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Ulster University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Coventry University Featured Masters Courses
Bath Spa University Featured Masters Courses
"pharmacogenetic"×
0 miles

Masters Degrees (Pharmacogenetic)

  • "pharmacogenetic" ×
  • clear all
Showing 1 to 3 of 3
Order by 
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents. Read more
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.

Degree Information

The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).

A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.

A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.

Core Modules
- Advanced Human Genetics: Research Principles
- Human Genetics in Context
- Core Skills
- Basic Statistics for Medical Sciences

Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
- Applications in Human Genetics (A)
- Either Genetics of Cardiovascular Disease or Genetics of Neurological Disease (A)
- Clinical Applications of Pharmacogenetic Tests (B)
- Anti-Cancer Personalised Medicine or Pharmacogenomics, Adverse Drug Reactions and Biomarkers (B)
- Applications in Human Genetics (C)
- Statistics for Interpreting Genetic Data (C)

Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.

Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.

Careers

Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.

Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.

Why study this degree at UCL?

UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.

Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.

Read less
Cardiovascular diseases remain a major cause of death and ill health worldwide. Read more
Cardiovascular diseases remain a major cause of death and ill health worldwide. This established MSc programme, taught by scientists and clinicians who are leaders in their field, offers students the opportunity to learn about topical areas in cardiovascular science, preparing them for further research or a career in industry.

Degree information

Students will develop a detailed knowledge of molecular and cellular cardiovascular science, animal models of cardiovascular disease, microvascular biology and mechanisms by which the heart and vasculature function in health and disease, as well as laboratory and statistical methods. They will gain valuable research skills and an awareness of the ethical, legal and social aspects of developments in cardiovascular disease.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (90 credits), two optional modules (30 credits) and the research project (60 credits).

Core modules
-Cardiovascular Diseases
-Animal Models of Cardiovascular Disease
-Congenital Heart Disease - Fundamentals
-Heart and Circulation (30 credits)
-Basic Statistics for Medical Science

Optional modules - 30 credits of optional modules drawn from the following:
-Genetics of Cardiovascular Disease
-Clinical Application of Pharmacogenetic Test
-Drug Discovery II
-Microvascular Biology
-An introduction to Molecular Laboratory Methods in Cardiovascular Research
-Clinical Cardiology (open to clinicians only)

Clinical Cardiology is an academic MSc module rather than a standard clinical placement. The emphasis is to appreciate the impact of advances in cardiovascular science upon clinical practice.

Dissertation/research project
All MSc students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words and an oral presentation (60 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, presentations, tutorials, journal clubs, a quiz, statistical and laboratory practicals and anatomical examination of human congenital heart disease specimens. Assessment is through written and oral examinations, coursework essays, case reports, journal club and other oral presentations and the dissertation.

Careers

All graduates of this programme will be well placed for a PhD in this field and a career in research, and will have a sound basis for entry into the pharma industry.

Basic scientists may use the MSc as a stepping stone to MBBS studies. The programme also provides an excellent training for related fields such as scientific journalism and in areas requiring critical appraisal of complex data.

Top career destinations for this degree:
-Senior Lecturer, Lahore Medical & Dental College
-Doctor, Papworth Hospital NHS Foundation Trust
-GDL (Graduate Diploma in Law), BPP
-PhD Cardiac Electrophysiology, University of Surrey
-PhD Cardiovascular Science, University College London (UCL)

Employability
In addition to the academic insight into Cardiovascular Science, this programme supports the development of a wide range of skills which students will use at work. Oral and written communication skills are enhanced. Writing essays and the research project dissertation involves searching the literature, selection and interpretation of publications, and organisation of complex ideas into the final report.

Learning activities in the Statistics module develop quantitative analytical skills. Student develop group and independent projects. They gain insight into research planning and time management. They are supported by a personal tutor and informed by careers events and the UCL Careers Service.

Why study this degree at UCL?

The UCL Institute of Cardiovascular Science brings together world-leading scientists and clinicians working in cardiovascular research to conduct innovative research for the prevention and treatment of diseases of the heart and circulation, and provide world-class teaching and training, and forward-thinking policy development.

UCL has one of the largest, most dynamic cardiovascular research bases in the UK. This interdisciplinary programme is taught in collaboration with UCLH, the Institute of Ophthalmology, the Institute of Child Health, Great Ormond Street Hospital and Barts Heart Centre, offering students access to a world-leading community at the forefront of cardiovascular research.

Read less
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences. Read more
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences.

About the Program

Modern pharmaceutical science encompasses a number of disciplines, including biochemistry, molecular biology, physiology, immunology, pharmacology, pharmaceutics, and medicinal chemistry. The field is unified by the search for novel drug targets and the development of new agents and formulations for the treatment biomedical disease. This includes cutting edge techniques to target drugs to sites of therapeutic action and to reduce adverse effects related to drug metabolism, lack of target selectivity, and pharmacogenetic differences within the human population. PhD’s in pharmaceutical science are well trained for drug discovery and development positions in academic labs, government (e.g., Food and Drug Administration), and the pharmaceutical or biotech industries.
Each student completes a core curriculum including foundation training in biochemistry, physiology, pharmacology and pharmaceutics designed to give students a basic understanding of the biomedical processes by which the body operates and the pharmaceutical agents and delivery systems available to interact with these systems. Electives studies offer the student the opportunity for specialization in more focused areas of interest, including receptor biology, molecular drug action, cell signaling, cancer research, pharmacokinetics, drug metabolism, and biotechnology. Communication, research design, professional skills and ethics are developed throughout the curriculum in complementary courses. Students become immersed in the philosophy of life-long learning and the importance of maintaining and updating their knowledge base as critical, independent thinkers and scientists. The faculty sees this integrated approach as one of the primary strengths of the program, combining cutting-edge molecular and biomedical breakthroughs with modern drug development, targeting and formulation. A broad range of biomedical and pharmaceutical research opportunities are available throughout the department. Focus areas of the Department with links to specific faculty interests are listed below:
Aging/Brain/Neuroprotection/Stroke
Blood Brain Barrier and Neurovascular
Cancer and Molecular Biology & Therapy
Cardiovascular Disease & Regulation
Drug Discovery and Formulation & Pharmacokinetics
Receptor Biology, Cell Signaling & Immunotherapy

Funding

Typically, students may complete a course of study for a Ph.D. degree within 4-5 years or a Masters degree in about half that time (2-2.5 years). Funding is available in the form of stipends ($23,000) from the Department/Graduate School and from individual faculty research resources. These stipends are awarded on a competitive basis to qualifying Ph.D. candidates. Currently, the Department has 43 funded graduate students.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X