• Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
University of Greenwich Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Strathclyde Featured Masters Courses
Loughborough University Featured Masters Courses
"pharmaceuticals"×
0 miles

Masters Degrees (Pharmaceuticals)

  • "pharmaceuticals" ×
  • clear all
Showing 1 to 15 of 136
Order by 
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

You will gain an overview of the drug development process from concept to market, gaining hands-on experience of pharmaceutical formulation and drug delivery.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Drug Delivery and Targeting

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (MSc in Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

During this course, you will gain the skills and knowledge required as a pharmacist - the ability to provide effective pharmaceutical formulation strategies for current and future drug therapies and medicinal products.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skill
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Principles of Product Analysis and Validation
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics). Read more
This course is one of our three specialist pharmacy MSc courses (Pharmaceutical Sciences, Drug Delivery, or Pharmacokinetics).

You’ll gain a thorough understanding and awareness of your chosen area of pharmacy, the research methods required to complete a final supervised research project and an overview of the drug discovery process.

These courses are primarily designed to prepare you for an academic or industrial career in the relevant area. You may be a scientist already working within the pharmaceutical industry or a recent science graduate.

You will undertake a variety of compulsory modules and a research project. This project will last approximately four months and you will work under the supervision of recognised experts in their field. The project allows you to undertake a detailed investigation and develop practical expertise in a specialist pharmaceutical sciences area. The University also has strong links with numerous pharmaceutical companies - there may be the opportunity to undertake your project in collaboration with one of these companies.

Pharmacokinetics is a key aspect of drug safety and investigates the fate of a drug in the body, and how the substance is absorbed, distributed, metabolised and eliminated. Develop your skill and knowledge in the application of pharmacokinetics to the design and optimisation of new therapeutics. This course has been developed with an emphasis on describing mechanistic approaches to assessing and predicting the pharmacokinetics of drugs throughout the drug development process. You will encounter a broad range of experiences in the application of pharmacokinetics from early discovery and development, through to market authorisation and clinical applications.

What you will study

All students studying one of our three pharmacy MSc courses will take the following core modules:
-Research Methods 1: Professional Development
-Research Methods 2: Communication Skills
-Research Project
-Drug Discovery

Depending upon the course you chose, you will also undertake the following modules:
-Chemotherapy & Selective Toxicity
-Drug Dosage Form & Design
-Pharmacology

Learning, teaching & assessment

Ranked in the UK's top 10 in the 2017 Complete University Guide, Aston Pharmacy excellent links with the profession. In addition, our research profile ensures relevant, expertise-led teaching for the students who enrol onto our courses each year. We have a long history of proving sector-leading courses - did you know that Aston Pharmacy School can trace its roots back to 1841?

You will learn in lectures, seminars, workshops and tutorials. Some modules may also use computer modelling and simulation sessions.

Our courses are assessed by a mixture of coursework, examinations, practical work and oral and written presentations. The research project module will be assessed on the basis of a submitted project report and an oral defence of a poster.

Your future career prospects

Graduates from our MSc programmes have taken up careers within the Pharmaceutical Industry in various disciplines such as analytical sciences, formulation development and project management. Our programmes provide the wider context and practical laboratory experience for pursuing careers in regulatory affairs, scientific writing and further studies.

Recent graduates have entered roles such as:
-Assistant Lecturer, University of Sulaimaniyah
-Associate Product Manager, AstraZeneca
-Business Development Manager, Crete Designs Limited
-Clinical Technician / Worker, Bridgewater Hospital
-Compound Technician, Sterling Pharmaceuticals
-Drug Designer, Unspecified Drug Company
-Drug Safety Specialist, PPD
-Drug Store Manager, Qaiwan group company
-Inhalation R & D Analyst, Aesica Pharmaceuticals Ltd (R5)
-Lecturer, University of Lagos, Nigeria
-Locum Pharmacist, various
-Molecular Modeller / Community Pharmacist, Verax Care Pharmacy
-OSD Technologist, GSK
-Pharma Benefit Associate, UnitedHealth Group
-Pharmacist, Government of India
-Pharmacist, Kerbala University
-Pharmacologist, Unspecified
-PhD Research Scholar, NIRMA University
-Recruitment Consultant, SRG
-Regulatory affairs trainee, PharmaLeaf India Pvt Ltd
-Research assistant, University of Leeds
-Research Scientist, Pluss Polymers
-Research Scientist, Wintean
-Researcher, Sunny Pharmtech Inc.
-Sales Relationship Coordinator, Wesley Assurance Society
-Science Teacher, Perry Beeches School
-Senior Regulatory officer, Roche Pharmaceuticals

Read less
At the graduate level, the Chemistry Department features a research-based Master of Science degree. After completion of core coursework in the major sub-disciplines, students in the Chemistry M.S. Read more
At the graduate level, the Chemistry Department features a research-based Master of Science degree. After completion of core coursework in the major sub-disciplines, students in the Chemistry M.S. program have the opportunity to participate in a wide range of research experiences, including environmental, organic synthesis, natural product isolation, computational and theoretical, analytical, nanomaterials, catalysis, polymers, biochemistry, and chemical education. The research experience is considerably enhanced by MTSU’s new 250,000-square-foot science building and upgraded instrumentation. Talented undergraduates also have the opportunity to participate in a new Accelerated Bachelor’s/Master’s (ABM) program which enables them to complete a bachelor’s and master’s degree in five years. Graduates find employment in a wide range of areas as well as continuing their education in high-quality doctoral and/or professional programs. The department also participates in three interdisciplinary Ph.D. programs (Molecular Biosciences, Computational Science, and Math and Science Education).

Career

Jobs in science, technology, engineering and mathematics are projected to grow 13 percent by 2022. Chemistry graduates with advanced degrees will particularly find better job opportunities with pharmaceutical and biotech companies. MTSU's state-of-the-art science building offers both large and small lab spaces so faculty can pursue research projects with both graduate and undergraduate students. A memorandum of understanding between the university and Oak Ridge National Laboratory also has been renewed three times. Some potential professional pursuits:

Analytical chemist
Biochemist
Biomedical engineer
Chemical engineer
Chemist
Chemistry teacher
Food scientist
Forensic scientist
Gas chromatography/mass spectrometry (GC/MS) specialist
Materials scientist
Molecular informatics specialist
Organic chemist
Patent attorney
Product development/design
Professor/educator
Research assistant/associate
Researcher
Sales/marketing – scientific equipment/pharmaceuticals

Employers of MTSU alumni include:

Abbott Pharmaceutical
Aegis
Albany Molecular Research
ALCOA
Bedford County School System
Belcher Pharmaceutical
California public school system
Commonwealth Technologies
Eli Lilly Inc.
Garratt Callahan
Google
Harcross Chemicals
Hewlett-Packard
Kyzen Corp.
Lipscomb University
L. King High School
Mead Johnson
Merck Pharmaceutical
Metro-Nashville Public Schools
Middle Tennessee State University
Nissan
Novartis Pharmaceuticals
Oak Ridge National Laboratory
Palm Corp.
Pellissippi State Community College
Purdue University
Rutherford County Schools
Schering-Plough Pharmaceuticals
Specialized Assays
Jude Children’s Research Hospital
Sylvan Learning
TBI Crime Laboratory
Tennessee Department of Health
Tennessee Dept. of Environment & Pollution Control
Tennessee Dept. of Health Lab Services
Test America
University of Cincinnati
Vanderbilt Drug Discovery Program
Vanderbilt-Ingram Cancer Center
Varian
Vi-Jon Laboratories
Williamson County Schools
Wilson County Schools

Doctoral/professional programs where alumni have been accepted include:

Arizona State University
Colorado State University
Florida State University
Loyola Stritch School of Medicine, Chicago
Michigan State University
Middle Tennessee State University
Niger Life University
Ohio State University
Rutgers University
Syracuse University
University of Alabama
University of British Columbia
University of Buffalo
University of Louisville
University of New Hampshire
University of New Mexico
University of Notre Dame
University of South Carolina
University of Tennessee-Knoxville
University of Tennessee-Memphis
University of Texas Southwestern Medical School
University of Utah
University of Vermont
University of Wyoming
Vanderbilt University
Virginia Commonwealth University
Wright State University

Read less
This programme is designed for professionals in health and related areas, such as pharmaceuticals and biotechnology, who wish to acquire knowledge and understanding of molecular biology and its impact on biomedicine and related disciplines. Read more
This programme is designed for professionals in health and related areas, such as pharmaceuticals and biotechnology, who wish to acquire knowledge and understanding of molecular biology and its impact on biomedicine and related disciplines. It introduces you to recent advances made in the study of disease, with the emphasis on how advanced molecular technologies inform and impact upon clinical practice.

The theory is delivered using the online Blackboard virtual learning environment that provides the flexibility of studying at your own pace and from any location in the world. You will interact with other students on the course through online discussion groups and receive excellent support from your tutors who are only an email or phone call away.

Workshops at our Stoke-on-Trent campus enable you to put your learning into practice by applying molecular techniques to diagnostic and analytical practice in our state-of-the-art laboratory facilities.

The full programme incorporates the PgC Molecular Basis of Disease and PgD Molecular Biology for Health Professionals as qualifications in their own right or as step-off points on the way to achieving the MSc. Undertaking the full-time distance learning route to the MSc should take around 18 months.

Course content

Each of these awards has been designed specifically to meet the needs of professionals in Biomedicine.

The Certificate will introduce you to recent advances made in the study of disease, with the emphasis on how advanced molecular technologies inform and impact on clinical practice.

The Diploma takes theory into practice, with hands-on practical skills developed during two one week residential short courses (in January and June). These workshops will enable you to meet with your cohort, attend seminars and undertake practical work in our excellent laboratory facilities under the guidance of practicing clinical scientists and academics.

The Masters in Molecular Biology incorporates all of the Certificate and Diploma studies and provides you with an opportunity to undertake a masters research project. Projects may be completed in your place of work or at the University.

Graduate destinations

The programme comprises postgraduate certificate, diploma and masters courses and is aimed at professionals in health and related areas such as pharmaceuticals and biotechnology, who wish to acquire knowledge and develop understanding of molecular biology and its impact on biomedicine. The programme explores current understanding of molecular biology and techniques within a clinical context.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

Degree information

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules - students take both modules listed below (45 credits) and submit a research dissertation (105 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 30 credits drawn from the following:
-Researcher Professional Development
-Mastering Entrepreneurship
-Transferable Skills for Scientists
-Numerical Methods

Dissertation/report
All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Top career destinations for this degree:
-PhD Chemistry, The University of Oxford
-Engineer, Mohan Boiler and Fraser Vessel Inspection Institute
-PhD Nanomaterials, University College London (UCL)
-Phd Physics, University College London (UCL)
-PhD Chemistry, Technische Universität Berlin (Technical Universit

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Read less
There is a growing need by industry for staff trained in computational molecular sciences. Read more
There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide skills transferable to other fields, thereby broadening employment prospects.

Degree information

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules - students take the two modules listed below (45 credits) and submit a research dissertation (90 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 45 credits drawn from the following:
-Mastering Entrepreneurship
-Numerical Methods in Chemistry
-Researcher Professional Development
-Transferable Skills for Scientists
-Choice of one postgraduate lecture module at UCL

Dissertation/report
All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Top career destinations for this degree:
-Chemistry, University College London (UCL)

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
The MSc Formulation Science is innovative, multidisciplinary, distinctive and unique in the UK in offering a depth of knowledge in the science of formulating new products, whether these are new pharmaceuticals or consumer care products, paints, foods or fast moving consumer goods. Read more
The MSc Formulation Science is innovative, multidisciplinary, distinctive and unique in the UK in offering a depth of knowledge in the science of formulating new products, whether these are new pharmaceuticals or consumer care products, paints, foods or fast moving consumer goods.

The programme will allow you to understand the principles of making finished products from a blend of different individual ingredients. Drawing on current examples from the pharmaceutical industry, and using the industrial experience of academic staff, you will also apply these principles to industrially relevant problems in other areas of formulation science, such as consumer products and cosmetics.

This programme involves a series of lectures supplemented by practical lab-based investigations and seminars. Case studies will provide you with the chance to enhance your creativity and problem solving whilst working as part of a team in a way that simulates an industrial setting. A research project in a well-equipped department led by staff with a diversity of research experience will give you the opportunity to carry out novel research and enhance your ability to manage projects and foster independence. Across the degree, you will have the opportunity to communicate your science clearly in a range of forms to a range of audiences and make use of emerging information and communication technologies.

Upon completion of the degree you will have developed a research skills portfolio that will serve as a solid foundation for your continuing professional development in formulation sciences.

Our former graduates have gone on to develop successful careers in a wide range of industrial sectors, from the pharmaceutical sciences to aggrochemical and consumer goods. They have gone on to work for major multinational companies as well as thrive at specialist enterprises. Former graduates have also progressed to study successfully for PhDs.

The aims of the programme are:

- To enhance the critical, analytical and practical skills relevant to a modern, multidisciplinary formulation industry

- To provide an understanding of how the interaction between different components in a formulation affect the quality of a finished product

- To develop team work and problem solving with an emphasis on an industrial context

- To provide direct, hands-on practical research experience of currently relevant problems.

Visit the website http://www2.gre.ac.uk/study/courses/pg/sci/fs

Science - General

We offer a range of sciences programmes from biotechnology to formulation science. Whatever you choose to study you will be taught by experienced staff in state-of-the-art laboratories and gain the skills you need to succeed in your chosen field. Employability is central to all our programmes and you will benefit from our strong links with employers, industry work placements and professional accreditations.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Formulation of Consumer Goods, Cosmetics and Coatings (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Project (MSc Formulation Science) (60 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Formulation of Consumer Goods, Cosmetics and Coatings (30 credits)
Project (MSc Formulation Science) (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Taught courses are assessed by a wide array of techniques from the traditional (such as examinations, coursework assessments and laboratory work) to the innovative: students are expected to produce a portfolio of research skills upon completion of their degree. Case studies reports, oral presentations, group assignments with accompanying discussions will also be used to assess creativity, collaboration and communication skills. There is a laboratory-based project which will be assessed on practical ability and a final written thesis.

Career options

On successful completion of this programme students will be able to work in formulation industries such as pharmaceuticals, consumer healthcare, cosmetics, paints and fine chemicals or go on to higher study such as for a PhD.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence.

Key Features

Course content designed for the needs of industry:

Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute:

To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment:

MRes Applied Analytical Science (LCMS) students can experience more in-depth and ‘hands-on’ learning than most current analytical MRes programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios:

To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible thesis.

Participation of expert industrial guest lecturers:

Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessments that encourage transferrable skills essential for employment:

Including case studies, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

All MRes Applied Analytical Science (LCMS) students will complete the following taught modules:

Mass spectrometry – basics and fundamentals
Separation science and sample handling
Data analysis and method development
Professional management and laboratory practice

MRes students will also be expected to complete a 120 credit research thesis with a viva.

Professional Accreditation

Professional Development (PD) Portfolio

This will enable students to organise and highlight current competencies and training needs into a single document. This can be essential in documenting necessary requirements for continued professional development with a relevant professional body (i.e. Royal Society of Chemistry, RSC, CChem status).

A PD portfolio will typically contain:

- Educational training and experience

From external parties such as National Mass Spectrometry Facility (NMSF), industrial guest lecturers, and educational exercises recognised by the RSC.

- Practical/instrument training and experience

From external parties such as NMSf and instrument manufacturers.

- Research training and experience

MRes project - health and safety, project training, laboratory practice competency framework test and research

- Qualifications

Plus any affiliations and CV.

This will be an organised and detailed record of competencies for presenting to prospective employers with the potential to offer Swansea University (SU) PG students an edge in ensuring gainful relevant employment.

Accreditation.

An application to the Royal Society of Chemistry will be submitted after the first year of study.

Careers and Employability

Course content designed for the needs of industry

Fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute

Highly practical course and extensive in-house equipment

Experience more in-depth and ‘hands-on’ MRes than most Applied Analytical Science courses.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios

Assessments that encourage transferrable skills essential for employment

Professional Development (PD) Portfolio

Participation of expert industrial guest lecturers

Unique networking opportunities with relevant potential employers for enhanced employability in areas such as:

- Pharmaceuticals

- Food and Nutrition

- Clinical diagnostics

- Forensics

- Environment

- Agriculture

- Homeland security

- Marketing and sales

- Veterinary

- Cosmology

- Geology

- Textile manufacture

- Archaeology

Facilities

Applied Analytical Science graduates will be extensively trained in a research-led institute. The highly practical nature of the course and extensive in-house equipment will enable students to experience a more in-depth and 'hands-on' MRes than most current analytical courses.

Instrumentation/techniques within IMS include:

Liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS and LC/HRMSn)
Liquid chromatography/mass spectrometry (LC/MSn); low resolution MS.
Nano-liquid chromatography/mass spectrometry (nano-LC/MS)
Gas chromatography/mass spectrometry (GC/MS)
Liquid chromatography/ultraviolet spectrophotometry (LC/UV)
Liquid chromatography/diode array (LC/DAD)
Electrospray ionisation-mass spectrometry (ESI-MS)
Atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS)
Electron ionisation-mass spectrometry (EI-MS)
Chemical ionisation-mass spectrometry (CI-MS)
Liquid secondary ion-mass spectrometry (LSI-MS i.e. ‘Fast Atom Bombardment’, FAB),
Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS)

We routinely carry out a number of sample preparation techniques including:

Solid phase extraction (SPE)
Liquid-liquid extraction (LLE)
Electrophoretic techniques
Affinity extraction
Ion-exchange
Precipitation

Read less
Pharmacy has an essential part to play in improving health. It encompasses all aspects of medicines and their use as well as the role of the pharmacy profession. Read more
Pharmacy has an essential part to play in improving health. It encompasses all aspects of medicines and their use as well as the role of the pharmacy profession. However 2 billion people worldwide, primarily in resource-poor settings, do not have access to the most basic medicines. Understanding the many determinants underlying this lack of access is the first step to improving it. There is also an increasing acknowledgment of the part that pharmacists can play globally.

In this course we will explore the effects of pharmacists and pharmaceuticals on the health of the world’s population, particularly looking at addressing the avoidable health differences experienced by many people globally. Students are first provided with a foundation in the complex determinants of health and the global burden and management of disease. The curriculum then focuses on the twin strands of pharmaceuticals and pharmacists, and their role in improving global health, with a particular emphasis on addressing health inequities. The course brings together experts from many disciplines to deliver a vibrant and stimulating programme.

The Global Pharmacy course is particularly relevant for pharmacists, those working in the pharmaceutical industry and pharmaceutical policy makers, but is also suitable for anyone interested in taking a multidisciplinary approach to how pharmacy can improve global health.

Key Areas of Study

- Social determinants of health and ill health
- Global burden and management of disease
- Access to good quality medicines
- Affordability of medicines
- Supply chain management
- Rational use of medicines
- The role of the pharmaceutical industry in global health
- Pharmacy and global health
- Pharmacy and humanitarian responses

Modules

- Global Health Principles
- Global Burden and Management of Disease
- Research Methods & Critical Appraisal
- Access to Medicines
- Pharmacy and Global Health
- Dissertation (Research Project)

Course Benefits

This course equips students to apply their specialist knowledge and skills to make a unique contribution to improving global health through pharmacy.

The course has a particular focus on overcoming health inequities: the avoidable differences in health globally. Graduates will have the skills to work as global pharmacy practitioners, policy makers, consultants or researchers, with international health and development agencies or in global health-related aspects of the pharmaceutical industry.

Read less
Programme Structure. Start Date. September 2017. Duration. 12 months. Delivery. 12 taught modules. Mixture of written exams and continuous assessment. Read more
Programme Structure
Start Date: September 2017
Duration: 12 months
Delivery: 12 taught modules. Mixture of written exams and continuous assessment

Who should apply?
This programme is designed for students of any discipline who wish to pursue their passion in entrepreneurship and intrapreneurship. The class is made up of students from a range of different backgrounds, cultures and nationalities.

What will I study?
9 core modules and 3 electives will provide you with the necessary skills to launch new start-ups, develop existing enterprises and innovate in large multi-national corporations.
The course covers all key facets of entrepreneurship from strategic planning and forecasting, scaling up (quickly), managing people and positive disruption and innovation.
A number of Entrepreneurial workshops introduce the student to the practical skills of negotiation, how to pitch successfully, scaling up, developing business models, etc.

Career Opportunities
Our Masters students’ are in high demand after graduation. Because of the diverse backgrounds of the class, our graduates gain employment across a number of industries including own start-up, social enterprise, social media, consulting, financial services, operations, pharmaceuticals, transport, travel, education and government and sales & marketing.

Trinity Business School
Located in the heart of Europe’s digital and business hubs, Trinity Business School is minutes away from the top global financial, multinational and tech start-ups. Many of these contribute to our programmes and global business network. Trinity Business School is the No. 1 business school in Ireland and in the Top 40 Business Schools Globally (Eduniversal 2016).
- MSc Finance is ranked 3rd Best Masters in Corporate Finance in Western Europe
- MSc Management is ranked 1st Best Masters in General Management in Western Europe
- MSc International Management is ranked 5th Best Masters in International Management in Western Europe

Read less
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government. Read more
The first course of its kind to be accredited by the Royal Society of Chemistry, this taught Masters course is designed to equip you with the necessary skills in green chemistry and green chemical technology to prepare you for a range of different careers in research, process development, environmental services, manufacturing, law, consultancy and government.

Course Content

The MSc is a one year full time course consisting of taught material and a substantial research project. Teaching is delivered by academic experts within the Department of Chemistry as well as external experts from other academic institutions and industry. The Teaching component of the course is delivered via a mix of lectures, workshops, seminars and practical work. You will learn about the key principles of green chemistry and the importance of sustainable technology in a variety of areas. In addition to this, you will also have the opportunity to enhance your transferable skills.

Assessment methods include a closed examination, written assignments, presentations, posters and practical work.

Our Students

The MSc course has been running for over ten years over which time there has been a large increase in the range of nationalities represented. The content of the course is globally relevant and so attracts applications from around the world from people keen to develop their own knowledge to pass on when they return to their home country. Students have an opportunity not only to benefit from the degree that will aid them in their future career in industry or elsewhere but also to experience the cultural and social attractions that the university and the city can offer.

Students who have previously studied the MSc programme have come from France, Spain, Ireland, Tanzania, Nigeria, Oman, Thailand, Malta, Lithuania, Brunei, China and Malaysia to name but few – the full range can be seen on the map below. The diversity of our students enriches the cultural experience for all members of the group.

Career Destinations

The course will be of benefit to students who wish to follow a range of career paths including those in chemistry-based industries:
-Speciality chemical and associated manufacturing industries
-Fine chemical and associated manufacturing industries
-Catalyst development
-Pharmaceutical industry in either a research or process-development role
-Chemical formulation
-Chemical user companies along the entire supply chain including retail
-Government departments and science laboratories
-University academic career
-University research career, in particular as a route to PhD research
-Environmental monitoring and evaluation
-Legal services and other organisations

Research Project

A key part of the MSc in Green Chemistry is the research project. The whole course is 180 credits and the research project accounts for 100 of these so is a very significant part of the programme.

Students are able to choose from a range of project areas in order to carry out research in their area of interest. Projects will be supervised by an academic member of staff, and may also involve collaboration with industry. Projects are chosen in the early stages of the course and you will be allocated to a PAG - Project Area Group - that corresponds with larger research projects that are currently taking place within the Green Chemistry Centre.

Projects can vary each year, but examples of recent MSc students' research includes:
-Production of natural flavours and fragrances using biocatalysis in scCO2
-Clean synthetic strategies for production of pharmaceuticals
-Extraction and utilisation of high value chemicals from food waste
-Starbon technology for catalysis
-Microwave assisted pyrolysis of wood pellets
-Bio-derived platform molecules

The research project module is assessed by a substantial written report by each student, a PAG report and an oral presentation on your individual research.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X