• Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
Swansea University Featured Masters Courses
"pharmaceutical" AND "tox…×
0 miles

Masters Degrees (Pharmaceutical Toxicology)

We have 46 Masters Degrees (Pharmaceutical Toxicology)

  • "pharmaceutical" AND "toxicology" ×
  • clear all
Showing 1 to 15 of 46
Order by 
In the Bio-Pharmaceutical Sciences master’s programme you are trained at the leading edge of drug-design and fundamental research of new drugs, optimization of existing drugs, and personalised medicine. Read more

In the Bio-Pharmaceutical Sciences master’s programme you are trained at the leading edge of drug-design and fundamental research of new drugs, optimization of existing drugs, and personalised medicine.

Specialisations

What does this master’s programme entail?

Despite major advances in drug-research, many common diseases such as cancers, neurological diseases, cardiovascular disease and other auto-immune diseases, lack effective treatment, or are found incurable. You are trained for a scientific career in drug research and development. Depending on your interest, you can choose from seven specialisations to further extend your scientific training and theoretical background.

Read more about our Bio-Pharmaceutical Sciences programme.

Why study Bio-Pharmaceutical Sciences at Leiden University?

  • The programme is offered by the Leiden Academic Centre for Drug Research (LACDR) – one of the world leading academic pharmaceutical research groups.
  • We offer you a research-oriented programme in which you can specialize in different areas in the wide spectrum of drug research; from Analytical BioSciences, Biopharmaceutics, Drug Delivery Technology, Medicinal Chemistry to Pharmacology, and Toxicology.
  • The programme offers flexibility and tailoring to meet your individual scientific interests and career aspirations.

Find more reasons to study Bio-Pharmaceutical Sciences at Leiden University.

Bio-Pharmaceutical Sciences: the right master’s programme for you?

The master’s programme of Bio-Pharmaceutical Sciences (BPS) aims to train you in the research area of bio-pharmaceutical sciences and drug research in such a way that you have extensive knowledge and hands-on experience to be able to work independently as a scientific researcher. Moreover, you have a wide range of other career opportunities bio-pharmaceutical industry, science communication, and education.



Read less
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries. Read more
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries.

This course provides expert critical and technical knowledge related to the development, analysis and production of medicines, the drug industry and regulatory affairs.

You'll study recent trends in chemical, biological and biotechnological therapeutics and evaluate the latest technologies used in the pharmaceutical industry.

You'll also gain an understanding of the processes and methods used in clinical trials and the regulation of medicines and acquire the skills and knowledge to pursue your career in pharmaceutical science.

See the website http://www.napier.ac.uk/en/Courses/MSc-Pharmaceutical-Science-Postgraduate-FullTime

What you'll learn

This course provides the opportunity to acquire all the attributes necessary for a successful career in pharmaceutical science, undertaking lead research and development, or analytical management roles in the drug and healthcare industries.

You’ll acquire broad knowledge of contemporary, integrated drug discovery strategies and acquire the necessary skills to communicate effectively across the key, diverse component disciplines with other professional scientists and non-specialist audiences.

You’ll develop broad knowledge of current pharmaceutical analysis and quality control strategies and will learn about GMP and GLP compliance. You’ll also gain an in-depth critical understanding of current research in biotechnology and pharmaceutical science.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices including specialist equipment such as HPLC, UV/Vis, and FTIR. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or pharmaceutical industry in the UK or overseas.

You‘ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course taken over one year and split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research.

Modules

• Current practice in drug development
• Molecular pharmacology and toxicology
• Current topics in pharmaceutical science
• Research skills
• Quality Control and Pharmaceutical Analysis
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

A large proportion of our graduates enter laboratory based and research management based product development work. They are employed in industries ranging from the big pharmaceutical companies to developing biotech companies; contract drug testing companies and service providers to the pharmaceutical and healthcare industries; hospital laboratories, NHS and local government.

If you currently work in a relevant sector, this course will enhance your prospects for career progression. This qualification also provides a sound platform for study to PhD level in pharmaceutical and biomolecular sciences and an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
The PgCert/PgDip/MSc in Medical Toxicology is a distance learning course for medical personnel. Read more
The PgCert/PgDip/MSc in Medical Toxicology is a distance learning course for medical personnel.

It is particularly designed for clinical pharmacologists in training, specialist trainees in accident and emergency medicine or acute medicine and other disciplines, and those intending to enter or already working in the pharmaceutical industry.

It is also designed for those working in poisons centres, for health professionals, including hospital and community pharmacists and for those with a degree in Life Sciences or other individuals seeking a career in the government regulatory bodies or the pharmaceutical or chemical industry.

Structure

• PgCert:

This Postgraduate Certificate in Medical Toxicology is a part-time distance learning course that takes 2 years to complete.

The Postgraduate Certificate consists of one stage: stage T.

This stage lasts for one academic year and consists of three 20-credit modules totalling 60 credits, at Level 7

Core modules:

Diagnosis and Management in Poisoning
Poisoning by commonly used pharmaceuticals
Poisoning by non-pharmaceuticals

At the end of stage T, students who have obtained a minimum of 60 credits at Level 7, including the award of credit for all required modules may exit with the award of Postgraduate Certificate or may apply to progress to the Postgraduate Diploma. 

• PgDip:

This Postgraduate Diploma in Medical Toxicology consists of six 20-credit modules which can be completed in 1 year with full-time distance learning or in 2 years by part-time distance learning.

Core modules:

PgCert core modules PLUS

Mechanisms of Toxicity
Preventive and Regulatory Toxicology
Environmental and Industrial Toxicology

If students successfully complete the Postgraduate Diploma in Medical Toxicology to an acceptable standard they may be eligible for entry to the MSc in Medical Toxicology (dissertation stage). However, places are limited and may be allocated on a competitive basis taking past performance into account.

• MSc:

The MSc in Medical Toxicology consists of one stage (post-diploma) – “stage R” (research dissertation stage), which lasts for one year and will include a dissertation of 60 credits at Level 7, to achieve a combined total of 180 credits (including 120 credits from the Cardiff University Postgraduate Diploma in Medical Toxicology) to achieve the MSc.

Your dissertation, which will normally be of not more than 20,000 words and supported by such other material as may be considered appropriate to the subject, will embody the results of your period of project work. The subject of each student’s dissertation will be approved by the Chair of the Board of Studies concerned or his/her nominee.

The dissertation is worth 60 credits and, in combination with the Postgraduate Diploma taught stage(s), is weighted 50% for the purpose of calculating the final mark:

Taught modules (from Cardiff University Postgraduate Diploma in Medical Toxicology) 50%.
Dissertation (stage R) 50%.

Career prospects

The course is suitable for clinical pharmacologists in training, specialist registrars in other disciplines, those working in the pharmaceutical industry, those working in the National Poisons Information Services, pharmacists, nurses and other life science graduates. The course may be of interest to individuals seeking a career in the government regulatory bodies or the pharmaceutical or chemical industry.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
LEARN ALL ABOUT HEALTH RISK ASSESSMENT. In the course of our day-to-day life, we come into contact with a vast number of chemical, biological, and physical agents that could do us harm. Read more

LEARN ALL ABOUT HEALTH RISK ASSESSMENT

In the course of our day-to-day life, we come into contact with a vast number of chemical, biological, and physical agents that could do us harm. These agents are present in the air we breathe, the water we drink, and even the food we eat. We encounter them when we travel and when we work or when we use consumer goods such as cosmetics or electrical equipment.

Determining the source of these risks, and quantifying their effects, requires cooperation by experts across a host of different disciplines. Our Master’s programme in Toxicology and Environmental Health has been designed with this in mind, training you in the fundamentals of toxicology, environmental epidemiology, emerging toxicological agents such as nanoparticles and zoonotic components, and exposure assessment. This programme will enable you to assess the risks present in the workplace or the food chain.

The multidisciplinary nature of this programme means that you will have the flexibility to specialise in a particular field or undertake more generalist training in risk assessment. You may also take part in experimental research in the fields of neurotoxicology, immunotoxicology, allergies, in vitro toxicology, endocrine toxicology, environmental toxicology, and chemistry. Alternatively, you may wish to undertake practical work in environmental or occupational exposure assessment engaging in activities such as exposure modelling or in-depth analysis of samples taken from a variety of sources.

As a graduate of this programme, you will be qualified to assess the impact of toxicological agents on populations or work environments by applying the principles of environmental and occupational epidemiology.

PROGRAMME OBJECTIVE

This MSc programme will give you the knowledge and skills needed to assess chemical, biological, and physical hazards, as well as the risks associated with exposure to toxicological agents.

After completing the MSc programme in Toxicology and Environmental Health, you will:

  • have a thorough understanding of risk assessment terminology, principles, and methodology;
  • be able to perform a basic risk assessment, making use of toxicological or epidemiological data;
  • have a broad appreciation of biological, chemical, and physical environmental health hazards, both indoors and outdoors, as well as their potential impact on human health;
  • understand the multi‐disciplinary nature of risk assessment;
  • have an understanding of current and emerging issues and techniques in health risk assessment; and
  • be able to design and set‐up a targeted health risk assessment, making optimal use of the information and approaches available to you.


Read less
Toxicology is the study of adverse effects of chemicals and other substances on humans, other animals, plants and the environment, and how they can be avoided or minimised. Read more
Toxicology is the study of adverse effects of chemicals and other substances on humans, other animals, plants and the environment, and how they can be avoided or minimised. These courses provide an introduction to the principles of modern toxicology in relation to environmental, occupational, and public health in the context of the chemical, food and pharmaceutical industries. These courses are aimed at individuals with a scientific qualification who wish to develop their skills and knowledge of toxicology and gain a recognised third-level qualification in the area. Current practising toxicologists will also benefit from undertaking individual modules for continuing professional development (CPD), as all of the modules will contribute towards maintenance of professional toxicological accreditation. The course content has been approved by the Irish Register of Toxicologists (IRT) and is recognised as accreditation for CPD in this area.

Key Fact

These courses have been developed in close collaboration with the Irish Register of Toxicologists (IRT) and are also approved for accreditation towards becoming a registered toxicologist and for CPD credits towards maintaining IRT/ERT accreditation. The courses are run by European Registered Toxicologists (ERT), including guest lecturers delivering ‘state-of-the-art’ contributions as practising experts in a range of toxicological roles, from basic research to national and European regulatory bodies.

Course Content and Structure

• Essential Pharmacology for the Toxicologist • Experimental Toxicology and Risk Assessment in the 21st Century • Environmental and Occupational Toxicology • Professional Skills for the Modern Toxicologist • Food Toxicology • Medical and Forensic Toxicology • Regulatory Toxicology

Lectures are delivered by staff of international renown in their field, many of whom are practising toxicologists. Study days and e-learning are utilised to maximise flexibility in how students manage their study time.

Career Opportunities

This programme provides a comprehensive overview of toxicology, and current toxicological assessments, highlighting current issues in toxicology. Graduates will gain the required level of professional ability to operate as independent toxicologists by developing a sophisticated level of data interpretation, communication skills, excellence in problem solving, and ability to critically evaluate and form judgements on complex toxicological problems.

Facilities and Resources

The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway institute of Biomedical and Biomolecular research, which provides core technologies such as NMR spectroscopy, real-time PCR, electron microscopy, light microscopy, digital pathology and flow cytometry.

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
What you will study. Students who have completed our . BSc Pharmaceutical Science degree . will follow Route A; all other students will follow Route B. Read more

What you will study

Students who have completed our BSc Pharmaceutical Science degree will follow Route A; all other students will follow Route B.

Route A: MSc Pharmaceutical Chemistry degree

  • Toxicology
  • Advanced Quality Control and Management in the Pharmaceutical Industry
  • Advanced Formulation Science
  • Advanced Separation Science
  • Project Design, Management and Enterprise with Prince 2 qualification
  • Major Project, Professional Practice for Pharmaceutical Chemists
  • Advanced Research Topics in Chemistry

Route B: MSc Pharmaceutical Chemistry degree

  • Advanced Drug Design and an Introduction to Formulation Science
  • Advanced Formulation Science
  • Quality Assurance in the Manufacture and Distribution of Medicines
  • Advanced Separation Science
  • Project Design, Management and Enterprise with Prince 2 qualification
  • Major Project, Professional Practice for Pharmaceutical Chemists
  • Advanced Research Topics in Chemistry

 

Teaching

The MSc Pharmaceutical Chemistry course is delivered primarily in block mode. A blended learning and teaching approach is used to provide you with key and subject specific skills. Typically all modules will consist of a mix of lectures, tutorials, and workshops/practical laboratory sessions. Students are provided with numerous learning activities including written coursework; project work; group work; practicals (with group sizes tailored to the activity); problem solving sessions; self­-study assignments; oral and poster presentations; independent study; work related learning and on-line self assessments.

The pharmaceutical chemistry course is full time for one year, and each module is generally around 48 hours of contact spread over two to three weeks. The first term is spent doing mainly taught modules, the second term is for the work placement/project.

Assessment

Assessments are undertaken on an individual, pair or small group basis, and include:

  • Formal unseen closed-book examinations
  • In-class tests
  • Laboratory/practical reports and skills
  • Oral presentations
  • Themed portfolios of work
  • Essays and dissertations
  • Computer assignments
  • Project work including planning, conducting, documenting and reporting
  • Overall monitoring of safe practice in the laboratory


Read less
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health. Read more
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health.

Based in our state-of-the-art Science Centre, you will explore the biochemical and cellular make-up of the human body, investigate what happens when things go wrong through, for example disease or illness, and how these may be prevented or cured by the action of drugs.

Alongside this, you will build a clear understanding of drugs and medicines, their structures, discovery and development, their biological delivery and activity, and their testing, regulation, production and quality assurance by analytical methods.

The MSci course combines Bachelors-level and Masters-level study in one integrated programme, giving you the opportunity to undertake professional work experience or an extended research project. However, whichever degree you choose to complete, you’ll develop wide ranging specialist skills and an in-depth knowledge of pharmaceutical science and its industry.

If you would like to study this degree but your current qualifications do not meet our entry requirements for degree level study, our Pharmaceutical Science with a Foundation Year is available.

Course content

In Year 1, you’ll be introduced to the theoretical principles and practical techniques of pharmaceutical science and pharmacology. You’ll study the underpinning biology and chemistry and learn about the activity of drugs on the human body.

During Year 2, you’ll look more thoroughly at the analysis and quality assurance of drugs using a range of laboratory techniques and QA methodologies. Your understanding of the human body will extend to the molecular and cellular levels, giving you the depth of knowledge to understand the functions of a healthy body and when disease and illness strike.

Between years 2 and 3 you will take the sandwich placement year. By doing this, you’ll complete a one-year placement with a company within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production that will further develop your employability skills. You will be supported by an onsite placement supervisor and receive regular visits and support from your academic supervisor too.

In Year 3, your final year, you’ll follow the complete process – from the stages involved in identifying potential new drugs, synthesising them for laboratory and then clinical trials, and subsequently, how their approval and production for commercial markets. You will also undertake independent research in an area of your choice, designing your research to probe a current issue in pharmaceutical science.

As an MSci student, your fourth year will provide the opportunity to gain an even greater breadth and depth of specialist knowledge. You’ll also hone your professional skills by completing a work placement or research assistantship, where there may be the opportunity to work closely with a leading employer.

Year 1 (Core)
-Introduction to Pharmaceutical Science and Pharmacology
-Introduction to Scientific Practice
-Molecules to Cells
-Basic Chemical Principles
-Molecular Structure and Synthesis

Year 2 (Core)
-Drug Analysis and Quality Assurance
-Genetics and Cell Biology
-Human Biochemistry and Physiology
-Professional Practice and Placement

Year 3 (Core)
-Drug Testing, Trials and Legislation
-Pharmaceuticals Industry and Drug Production
-Independent Project
-Drug Design, Synthesis and Characterisation

Year 3 (Options)
-Neuropharmacology
-Clinical Immunology
-Toxicology
-Medical Genetics

Year 4 (Core)
-Placement or Research Assistantship
-Advanced Research Methods
-Advanced Pharmaceutical Science

Year 4 (Options)
-Choice of one Year 3 option

Employment opportunities

Graduates can progress into a wide range of roles either within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production. Graduates with an in-depth scientific knowledge are also highly sought after to work in marketing, sales and business management in this and other scientific industries.

Our courses aim to provide you with the relevant knowledge, approach and skill set demanded of a practicing scientist. You will develop skills and knowledge to study a variety of topics relevant to your degree, and the acquisition of Graduate skills and attributes developed in core modules will allow you to find employment in a variety of laboratory based environments such as the biopharmaceutical industry, food processing and quality assurance, veterinary and agricultural laboratories.

Some graduates apply for Graduate Entry Programmes in various healthcare professions such as Medicine, Dentistry, Physiotherapy and Nursing. A significant number of our graduates apply for postgraduate study. Those who aspire to a career in teaching progress to a PGCE, whereas graduates with an interest in a research choose to continue onto Masters and PhD programmes.

Graduates from science courses are increasingly sought after due to their skills in numeracy, IT, problem solving and abilities to analyse and evaluate. Consequently, many of the non-laboratory based industries such as regulatory affairs, scientific editing, technical sales and marketing, insurance and management preferentially employ graduate scientists. All students carry out a work placement in year 2. These are flexible so you can angle your experience towards your career aspirations. Your final year research project in a topic of your choice enables you to undertake a major piece of investigative work culminating in a professional style paper, suitable to present to prospective employers.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
How does a disease develop in a patient or model system? Which substances can influence this process? How is effective medication designed and tested? Can you cure diseases with stem cells?. Read more
How does a disease develop in a patient or model system? Which substances can influence this process? How is effective medication designed and tested? Can you cure diseases with stem cells?

You study the causes and pathophysiology of diseases and intervention with drugs. The programme is interdisciplinary covering the whole range of drug development disciplines. From basic drug target discovery to molecular modeling of targets. And from synthesis andanalysis, pharmacology, toxicology and biopharmacy to clinical pharmacoepidemiology and post marketing surveillance.

The main feature of the programme are research projects in which you will learn about conducting research by actually doing it. You will independently perform experiments and go through the whole process of conducting science developing skills such as studying scientific literature, formulating hypotheses, designing and performing experiments, and interpreting and presenting your results. The programme therefore is a good preparation for a PhD programme or for independent practice of science in a future job.

You can either choose to design your programme tailored to your individual research interest or choose a specialisation. Available specialisations:Toxicology and Drug Disposition, with focus on adverse drug reactions and toxicokinetics of drugs, or Pharmacoepidemiology which studies intended and unintended effects of drugs in daily life.

Why in Groningen?

- Groningen drug research is among the best in the world
- Unique interdisciplinary cooperation between clinical, preclinical and pharmaceutical research fields
- Specialisations: Toxicology and Drug Disposition | Pharmacoepidemiology

Job perspectives

When you have finished the Master's programme in Medical Pharmaceutical Sciences you have multiple career options. You are optimally prepared to start a research career but you can also choose for a position that links science to business and policy.

Researcher (usually as a PhD) in a variety of organisations:
- Universities
- Academic and general hospitals
- Pharmaceutical, biomedical industries and food industries

Positions linking medical pharmaceutical sciences to a business or policy strategy in:
- Governmental and semi-governmental institutions such as the Medicines Evaluation Board or the Ministry of Health and Welfare
- Societal and patient organisations

Read less
This course will give you a detailed understanding of the practical and theoretical aspects of pharmaceutical science and help develop the skills needed for individual and collaborative research in areas such as drug development. . Read more

This course will give you a detailed understanding of the practical and theoretical aspects of pharmaceutical science and help develop the skills needed for individual and collaborative research in areas such as drug development. 

Pharmaceutical Science is at the interface of biochemistry, physiology, pharmacology, toxicology, analytical and medicinal chemistry, all of which will be studied in the degree course. Your studies will take place in laboratories fitted with the latest analytical equipment. Within the research area of drug development you will focus on both drug design, drug discovery and drug awareness as well as neuropharmacology and bioinformatics. You will complete four taught modules, and an independent research project.It will offer you the chance to study a core MSc alongside a specialisation within different areas of Pharmaceutical Sciences.

This course is designed and tailored to your own preferred specialism in either of the following: Pharmaceutical Analysis; Pharmacology; Physiology; Phyto-pharmaceuticals or Toxicology.

Teaching will be based on lectures, seminars, workshops, independent web-based learning and laboratory-based learning in our state-of-the-art facilities.The broad field of learning also suits people who are simply interested in furthering their knowledge of the subject.The course can be worked around a full-time job and there are intermediate awards available – a PG Diploma and a PG Certificate.



Read less
Before any new therapy can be used, a thorough identification of its toxicity and safety is required. Therefore, drug toxicology and safety pharmacology are central to the chemical and pharmaceutical industries, and demand for 'pre-trained' employees is extremely high. Read more
Before any new therapy can be used, a thorough identification of its toxicity and safety is required. Therefore, drug toxicology and safety pharmacology are central to the chemical and pharmaceutical industries, and demand for 'pre-trained' employees is extremely high.

Hosted by the Institute of Cancer Therapeutics, the course addresses key aspects of preclinical drug evaluation through the study of drug discovery and development; safety pharmacology; mechanisms of drug-induced toxicities; regulatory affairs and bioanalytical sciences.

It will provide you with state-of-the-art training in the area of preclinical toxicology with an emphasis on the molecular and in vivo aspects of toxicological assessment.

It is designed for individuals with a first degree in a scientific disciple who want to specialise in new medicines development or undertake employment in the pharmaceutical industry.

Why Bradford?

-Includes seminars by scientists from regulatory agencies and pharmaceutical companies
-This course is designed to meet the demand of employers and provide you with a comprehensive overview of the drug safety discipline within the drug development process

Modules

-Critical Appraisal of a Current Topic in Safety Pharmacology
-Preclinical Models for Drug Evaluation
-Research and Analytical Methods in Pharmacology
-Toxicology and Safety Pharmacology
-Experimental Design
-Molecular Mechanisms of Toxicity
-Research Project (Safety Pharmacology)

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
MSc Forensic Toxicology combines aspects of analytical chemistry, biochemistry and pharmacology that are crucial to the role of the drugs chemist working within a toxicological environment. Read more
MSc Forensic Toxicology combines aspects of analytical chemistry, biochemistry and pharmacology that are crucial to the role of the drugs chemist working within a toxicological environment. While the primary focus of this course will be drugs of abuse, the underpinning science and methodologies are equally relevant to a toxicologist analytical chemist working in the pharmaceutical or other related industries.

As a Forensic Toxicologist you may be called to provide evidence in a court of law, training in this important aspect is provided through an Expert Witness module which includes a moot court presentation. In addition to acquiring a sound theoretical understanding of the subject area there is a strong emphasis on developing practical skills throughout the course.

This cumulates in a 60 credit project whereby students have the opportunity to specialise in various areas of drugs toxicology. This course will appeal to graduates from a wide range of disciplines including forensic science, chemistry, biology and other related disciplines.

PROFESSIONAL ACCREDITATION

We will be seeking accreditation from the Royal Society of Chemistry.

LEARNING ENVIRONMENT AND ASSESSMENT

Computing Facilities are available in the general computing suites found within the building and throughout campus. Extensive Resources are available to support your studies provided by Learning & Information Services (LIS) – library and IT staff. You are advised to take advantage of the free training sessions designed to enable you to gain all the skills you need for your research and study.

LIS provide access to a huge range of electronic resources – e-journals and databases, e-books, images and texts.

Course and module materials are not provided in ‘hard copy’ format, however, wherever practicable, lecture notes and/or presentations, seminar materials, assignment briefs and materials and other relevant information and resources are made available in electronic form via eLearn. This is the brand name for the on-line Virtual Learning Environment (VLE) that the University uses to support and enhance teaching and learning.

All students can access the eLearn spaces for the course and modules that they are registered for. Once logged into your eLearn area you can access material from the course and all of the modules you are studying without having to log in to each module separately.

The modules are assessed by both coursework and examination. To ensure that you do not have an excessive amount of assessment at any one time, the coursework assessment will take place uniformly throughout the course.

OPPORTUNITIES

The course is designed to equip students with the skills, knowledge and understanding to work in forensic toxicology, toxicology and other areas of chemical analysis.

Read less
MSc Forensic Toxicology combines aspects of analytical chemistry, biochemistry and pharmacology that are crucial to the role of the drugs chemist working within a toxicological environment. Read more
MSc Forensic Toxicology combines aspects of analytical chemistry, biochemistry and pharmacology that are crucial to the role of the drugs chemist working within a toxicological environment. While the primary focus of this course will be drugs of abuse, the underpinning science and methodologies are equally relevant to a toxicologist analytical chemist working in the pharmaceutical or other related industries.

As a Forensic Toxicologist you may be called to provide evidence in a court of law, training in this important aspect is provided through an Expert Witness module which includes a moot court presentation. In addition to acquiring a sound theoretical understanding of the subject area there is a strong emphasis on developing practical skills throughout the course.

This cumulates in a 60 credit project whereby students have the opportunity to specialise in various areas of drugs toxicology. This course will appeal to graduates from a wide range of disciplines including forensic science, chemistry, biology and other related disciplines.

PROFESSIONAL ACCREDITATION

We will be seeking accreditation from the Royal Society of Chemistry.

LEARNING ENVIRONMENT AND ASSESSMENT

Computing Facilities are available in the general computing suites found within the building and throughout campus. Extensive Resources are available to support your studies provided by Learning & Information Services (LIS) – library and IT staff. You are advised to take advantage of the free training sessions designed to enable you to gain all the skills you need for your research and study.

LIS provide access to a huge range of electronic resources – e-journals and databases, e-books, images and texts.

Course and module materials are not provided in ‘hard copy’ format, however, wherever practicable, lecture notes and/or presentations, seminar materials, assignment briefs and materials and other relevant information and resources are made available in electronic form via eLearn. This is the brand name for the on-line Virtual Learning Environment (VLE) that the University uses to support and enhance teaching and learning.

All students can access the eLearn spaces for the course and modules that they are registered for. Once logged into your eLearn area you can access material from the course and all of the modules you are studying without having to log in to each module separately.

The modules are assessed by both coursework and examination. To ensure that you do not have an excessive amount of assessment at any one time, the coursework assessment will take place uniformly throughout the course.

OPPORTUNITIES

The course is designed to equip students with the skills, knowledge and understanding to work in forensic toxicology, toxicology and other areas of chemical analysis.

FURTHER INFORMATION

Semester 1 of the course is designed to ensure that you have the basic skills needed to obtain an MSc. It is important that you enhance the skills you have that will be of benefit when you gain employment after the course. The main skills that you will enhance will be presentational skills, report writing, independent working and problem solving.

Read less

Show 10 15 30 per page



Cookie Policy    X