• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Durham University Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Leeds Featured Masters Courses
"pharmaceutical" AND "tec…×
0 miles

Masters Degrees (Pharmaceutical Technology And Quality Assurance)

We have 21 Masters Degrees (Pharmaceutical Technology And Quality Assurance)

  • "pharmaceutical" AND "technology" AND "quality" AND "assurance" ×
  • clear all
Showing 1 to 15 of 21
Order by 
This three year taught part-time master's course is suitable if you wish to improve your knowledge, understanding and research expertise in the area of pharmaceutical technology and quality assurance. Read more
This three year taught part-time master's course is suitable if you wish to improve your knowledge, understanding and research expertise in the area of pharmaceutical technology and quality assurance. The master's-level qualification meets the needs of those requiring a higher degree and the programme is designed to provide training, skills and knowledge that would help support subsequent applications.

Aims

You will become part of a university that leads research and development in areas of clinical pharmaceutical science. Our ethos fosters excellence in pure and applied research and in developing treatment approaches. The educational aims of the course are to provide you with an understanding of core principles and features of clinical pharmaceutical science and professional training.

Successful completion of the course will enable you to:
-Critically apply knowledge of pharmaceutical technology and quality assurance to a range of specialist medicines management areas in the field of pharmaceutical technology and quality assurance
-Critically analyse evidence to make judgements regarding complex quality assurance issues in pharmaceutical practice
-Lead on enhancing the achievement of standards and upholding necessary standards and legal requirements in specific areas of practice
-Apply in-depth knowledge and experience of techniques for evaluating and managing the risk to patients from pharmaceutical technology and quality assurance
-To take a proactive and self-reflective role in work

Students who complete the full master's qualification will achieve the objectives for the Postgraduate Diploma and will critically and creatively evaluate current issues in practice and conduct research which advances pharmaceutical technology, quality assurance and decision making related to patient care.

Special features

There is flexibility in the programme through the range of optional modules to allow you to develop in your chosen specialist field. Some modules also provide the you with the opportunity to learn with other healthcare disciplines.

Career opportunities

This postgraduate qualification allows pharmacy professionals to develop their chosen career path within the pharmacy profession by providing advanced clinical knowledge, problem solving skills and a critical awareness of the role of pharmaceutical services within the workplace.

Read less
This online course provides a broad practical knowledge in the field of quality management providing graduates with the capability to apply these concepts in a work environment. Read more
This online course provides a broad practical knowledge in the field of quality management providing graduates with the capability to apply these concepts in a work environment.

Our MSc will provide you with a comprehensive understanding and focuses on Total Quality Management (TQM), strategic quality management, performance management and quality improvement alongside relevant tools, techniques, models and frameworks.

It is suitable for professionals who wish to develop knowledge, understanding and business management skills in the fields of quality management and business improvement.

It will also appeal to those with an undergraduate degree who want to build career within quality management and to existing practitioners who need to enhance and develop their knowledge, competencies, understanding and quality management skills to progress within the profession.

The course is delivered online and is studied part-time over 3 years.

Visit the website https://www.rgu.ac.uk/business-management-and-accounting/study-options/distance-and-flexible-learning/quality-management

Course detail

The course comprises a range of specialist subject areas focusing on Quality Systems, Quality Improvement and Management Development. These key areas will help an organisation with the areas of quality assurance (QA), quality control (QC), and continuous improvement.

•Quality Systems: Those which help organisations deliver products and services. These provide a practical guide for managing, designing, implementing and assessing to meet quality standards.

•Quality Improvement: This is concerned with the tools and techniques that help organisations improve in all aspects of their product/ service offerings and processes, providing a toolkit of improvement mechanisms for use in the work environment.

•Management Development: Through a focus on a strategically important aspect of your organisation, you will learn to analyse risk at a strategic and operational level and identify suitable controls to eliminate, reduce or transfer such risks.

Stage 1

•Supply Chain Management
•Finance for managers
•Operations Management
•Safety, Health & Environmental Risk Management

Exit Award: PgCert Quality Management

Stage 2

•Performance Planning and Decision Making
•Quality, Environmental and Sustainable Management Systems
•Quality Management and Excellence Models
•Research Methods

Exit Award: PgDip Quality Management

Stage 3

•Dissertation

Award: MSc Quality Management

How you will learn

This course is delivered via our online virtual learning environment (Campus Moodle) allowing you to interact effectively with lectures and colleagues alongside accessing a wide variety of online resources. Our online resources and databases are very extensive with up to date research collections and materials. Our online study approach simulates the traditional classroom environment. Course materials will be made available on Moodle for you to access and study including e-engaging and e-discussion with lecturers and other online participants.

You will be working on both individual and group-based activities as well as case study based assignments. Interactivity is a key component in this course and has been specifically designed to accommodate busy professionals who want flexibility in their study. The course is delivered through a variety of online technologies like discussion forums, online materials, online tutorials, online activity work, online practical work (client based case study), student-centred learning and private study. This online study model has been proven very successful for our participants and also the value and benefit gained by completing this course.

Our Distance Learning Model

Our supported distance learning mode of delivery allows you to study online from any location and is designed to fit in around your work commitments. You will be taught and supported by experienced academics and industry professionals who will recreate the same challenging interactive format of the on-campus courses for those studying at a distance.

Our virtual learning environment, CampusMoodle offers students flexibility of where and when they can study, offering full and open access to tutors and other class members. Students have the benefit of being part of a group of learners with the invaluable opportunity to participate in active, group-related learning within a supportive online community setting. The online campus provides students with lectures and course materials and it also includes:

•Virtual tutorials
•Live chat
•Discussion forums, blogs and chats - student and tutor led
•Up-to-date web technology for delivery methods
•User friendly material
•Access to our online library

As online learners, students are part of a 'virtual cohort' and the communication and interaction amongst members of the cohort is a significant aspect of the learning process.

Placements and accreditations

This Masters in Quality Management is accepted by the Chartered Quality Institute (CQI) - formerly the Institute of Quality Assurance (IQA) - as part of the academic entry requirements for full CQI membership. Acceptance of our MSc Quality Management with the Institute is evidence that this course is committed to maintaining high standards of professional skill, ability and integrity of our learners and participants including meeting wide range of industry demands in quality management approaches.

The acceptance of this course by the CQI also demonstrates that you will acquire the necessary knowledge, competencies and skills to match these requirements and to gain recognition within the sector. The structure of the course allows you to gain the skills and knowledge which are applicable to a variety of different sectors, enabling you to enter your chosen industry with the necessary qualifications. This course is accepted as part of qualification route to full CQI Membership (MCQP).

Careers

Quality management is a skill which is sought after by industry globally and this course will equip you with the knowledge and expertise for a career as a leading quality professional. This course is designed to enhance your knowledge of Total Quality Management (TQM). This knowledge will enable you to add value to an organisation, in terms of developing and influencing strategy whilst understanding processes, performance measurement techniques and benefits management.

Our graduates have gone on to successful careers in a variety of industry sectors. These include energy, charity, pharmaceutical, and mining in roles such as-
• quality manager
• reliability manager
• project quality controller
• quality auditor
• technical inspector
• quality planner

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
The course involves a comprehensive treatment of the science and technology of pharmaceutical analysis with particular emphasis on the regulatory environment in which the pharmaceutical industry operates. Read more
The course involves a comprehensive treatment of the science and technology of pharmaceutical analysis with particular emphasis on the regulatory environment in which the pharmaceutical industry operates. It is intended for suitably qualified graduates currently working in or aspiring to work in the pharmaceutical industry - in particular non-pharmacy graduates employed in quality control or quality assurance roles requiring specialised training, retraining or upgrading of skills. The course may also be attractive to technical managers in regulatory affairs, product development and other related areas. The objective is to equip graduates with the appropriate analysis skills required by the pharmaceutical and veterinary manufacturing industries.

The course is available for full-time study over one calendar year or part-time over two years and consists of lectures, workshop and laboratory work. Part-time teaching is normally scheduled for Fridays during academic terms. The course comprises lectures, workshops, seminars, laboratory work, written assignments and factory visits. In addition each student must write a major essay on a designated topic in the area of pharmaceutical analysis. Students proceeding to a M.Sc. degree will be required to undertake a research project and present a detailed scientific report at the end of the course.

The course consists of eight basic modules: regulatory aspects of pharmaceutical analysis, statistics, GLP chromatographic analysis, spectroscopic and physical methods of analysis, pharmacopoeial methods of drug analysis, analysis of low level drug analysis, specialized pharmaceutical methods of analysis, biological and pharmacological methods and pharmaceutical formulation.

The taught modules are supported by lectures and workshops on presentation and research skills and visits to industrial laboratories. The course is taught mainly by College staff, although there is a contribution from specialist visiting lecturers. The research project may be conducted either in the School of Pharmacy or at the student's place of employment but in either case supervision is exercised by a member of the School of Pharmacy academic staff.

Overall assessment of candidates is based on tutor marked assignments (TMAs) during the course work and written examinations in May/June each year. Credits are available for all assignments including laboratory reports. The M.Sc. project report should be of 20,000 words and is examined in September. Candidates must successfully complete the taught component of the course at the Trinity term examinations, before proceeding to the M.Sc. project. Provision is available for a supplemental examination in September each year if required. A reasonable attempt is required in all aspects of the examination process. A pass mark of 40% is normally required but compensation is applied where appropriate.

Read less
Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations. Read more

Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations.

You learn the skills of an analyst and become familiar with the principles of modern instrumental analytical techniques, analytical methods and statistics. You learn how to conduct your tests according to regulations which demand that you work under a strict quality assurance and quality control regime.

Because we have designed the course in close consultation with the pharmaceutical industry, your training is excellent preparation for a career in the industry. In addition to giving input on course structure, industrial practitioners deliver lectures on a variety of topics which relate to industry. You can take modules individually for continuing professional development.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. We also have excellent research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers, which are used in taught modules and research projects.

As a student, you

  • gain knowledge and practical skills to operate commonly used analytical laboratory instruments
  • become familiar with automated approaches to analysis and process analytical technology
  • apply good experimental design techniques and use statistical methods for data evaluation
  • develop your knowledge of validated analysis methods for determining chemical compounds and elements in a range of sample types
  • understand the principles and practice of laboratory quality systems
  • interpret mass spectra and nuclear magnetic resonance data.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Quality issues, laboratory accreditation and the analytical approach (15 credits)
  • Separation, detection and online techniques (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Drug detection and analysis (15 credits)
  • Methods for analysis of molecular structure (15 credits)
  • Process analytical technology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Assessment

Mostly by coursework including

  • problem solving exercises
  • case studies
  • practical laboratory work
  • written examinations.

Research project assessment includes a written report and viva voce. 

Employability

You improve your career prospects in areas such as • pharmaceutical research and drug development • medical research in universities and hospitals • care products • biotechnology companies • government research agencies.

It also offers you the training and knowledge to go on to research at PhD level in pharmacology, biotechnology pharmaceutical and analytical science.

How we support your career

Sheffield Hallam University is committed to the employability of its students. That’s why we design so many of our courses with employers. Find out how we can support your career.



Read less
This graduate entry master course enables science graduates to become registered pharmacists. It will provide you with a comprehensive theoretical base, including chemical, biological, physiological, pharmaceutical and pharmacotherapeutics studies. Read more
This graduate entry master course enables science graduates to become registered pharmacists. It will provide you with a comprehensive theoretical base, including chemical, biological, physiological, pharmaceutical and pharmacotherapeutics studies.

In this course you’ll complete two additional study periods over the summer period, as well as two usual semesters each year. The first study period is an intensive six-week training program involving 30 hours weekly contact and continuous assessment. In this period you’ll be introduced to important concepts in pharmaceutics, pharmaceutical chemistry and pharmaceutical practice.

The rest of your first year will focus on pharmaceutical science, pharmaceutical chemistry, pharmacology and pharmaceutical practice. At the end of your first year you’ll complete a community pharmacy placement under the supervision of a practicing pharmacist to develop skills in the clinical setting.

In your second year you’ll focus on pharmacotherapy and develop research skills. You’ll also complete a hospital placement to cement your practical skills.

Throughout this course you’ll use high quality laboratories and facilities designed to enhance teaching and provide you with essential practical skills. The school laboratories include a model dispensary, a manufacturing laboratory, an asepsis suite and laboratories for microbiological, chemical and pharmacological investigations.

Professional recognition

This course is accredited by the Australian Pharmacy Council.

Graduates are required to complete a preregistration training period and register as a pharmacist before being able to commence practice in most areas of the profession. Graduates are able to register to practice in all states and territories in Australia and New Zealand.

This course provides a great stepping stone to registration in other countries throughout Asia and in the United Kingdom and the Republic of Ireland. Some countries may require fulfilment of additional practical training programs.

Career opportunities

Graduates are both highly employable and sought after. As a graduate, you may seek a career in health care working in the fields of community, hospital or consult pharmacy.

The role of the pharmacist within community pharmacy has expanded to include assisting patients with the management of their chronic diseases, such as obesity, asthma and diabetes. In the future, pharmacists in the primary care setting are going to become increasingly involved in the care of patients through multidisciplinary teams. The setting of practice of pharmacy will expand from the community pharmacist to include medical clinics and the patient’s home. The role of pharmacists as prescribers is currently under investigation.

Within hospitals, pharmacists provide a diverse range of services from drug distribution and dispensing, provision of drug information and education, through to ward-based clinical pharmacy services where they participate in patient care as part of a team. Hospital pharmacists may also engage in quality assurance programs and clinical research.

Consultant pharmacists provide medication management review services. They work in collaboration with patients and their doctors to ensure the patient achieves the best outcomes from their drug therapy. Such pharmacists work in aged care facilities and/or patients’ homes.

Graduates may also develop a career in the pharmaceutical industry which employs pharmacists in a number of areas including research roles in the development of medicines, production of pharmaceuticals, quality assurance, regulatory services, marketing and drug information.

Graduates may also work for the State or Federal Government in regulatory and policy roles.

Credit for previous study

Applications for credit for recognised learning (CRL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
Why choose this course?. This course aims to. extend your comprehension of key chemical concepts particularly in the field of instrumental chemical analysis and so provide you with an in-depth understanding of specialised areas of chemistry. Read more

Why choose this course?

This course aims to:

  • extend your comprehension of key chemical concepts particularly in the field of instrumental chemical analysis and so provide you with an in-depth understanding of specialised areas of chemistry
  • provide you with the ability to plan and carry out experiments independently and assess the significance of outcomes
  • develop your ability to adapt and apply methodology to the solution of unfamiliar types of problems
  • instil a critical awareness of advances at the forefront of the chemical sciences with special emphasis on instrumental chemical analysis
  • prepare you effectively for professional employment or research degrees in the chemical sciences.

What happens on this course?

You will build upon your previous undergraduate studies to develop an in depth knowledge of selected aspects of advanced cutting edge topics in chemistry.

MSc Chemistry Level 7 Programme (all modules are 20 credits unless otherwise specified)

*Advanced Topics in Organic Chemistry

*Advanced Topics in Inorganic Chemistry

*Advanced Topics in Physical Chemistry

#Advanced Topics in Chemical Analysis

#Laboratory Quality Assurance and Management

#Pharmaceutical Analysis

#MSc Research Project (120 credits)

If you are a direct entrant to the University of Wolverhampton you are expected to do the core modules (#) but if you have previously done the BSc Hons) Chemistry degree at Wolverhampton then you can replace Laboratory Quality assurance and Management with one of the three options*

Why Wolverhampton?

  • Chemistry, and related science students, have excellent job prospects or go on to further study and/or research.
  • Our existing chemistry-related programmes, BSc Biochemistry and BSc Pharmaceutical Science have excellent student satisfaction rates (95% respectively) and we anticipate that our new Chemistry developments will achieve similar results.
  • Our compliment of existing, experienced staff (including several research professors), will expand as the course develops. We recently moved into our new £25m “state of the art” science facility. The new laboratory facilities were accompanied by generous investment in a range of new teaching, research and consultancy equipment.
  • Our chemistry-based subjects have maintained links with several local/regional chemical companies and we’ve had many successful collaborative research and development knowledge transfer programmes (KTP’s), our most recent was independently rated as “outstanding”, the highest grading possible. We shall continue to build upon our existing and expanding capacity to develop links with local employers.

Career Path

The UK’s chemical industry is one of the leading industrial contributors to the national economy and there are many opportunities to apply chemical knowledge, principles and skills to a successful career in the chemistry, pharmaceutical science, chemical engineering or other chemistry-related disciplines. “Chemistry will underpin economic growth, say industry leaders”, it was reported in the Royal Society of Chemistry (RSC) publication, Chemistry World, on the “Strategy for delivering chemistry-fuelled growth of the UK economy”. Currently the Chemistry-using industries contribute ~£195bn to the UK economy with approximately £10bn coming from chemical manufacturing and £9bn from pharmaceutical manufacturing. The areas of chemical manufacture, process technology, product development and application, and formulation skills are key areas of these chemical sciences. In chemicals (including pharmaceuticals) 95.6% of UK companies are SME’s employing 42% of the total workforce and account for 29% of turnover.

If you choose not to go into the chemical industry there are still extensive career opportunities in teaching and academic research

What skills will you gain?

You will have evidenced good practical skills, be literate, numerate, have high level of IT skills and be capable of logical, scientific, critical thinking and problem solving. You will have developed a great deal of autonomous decision making and research capability and you will be able to evidence a range of professional, personal transferable skills and be well versed with the concept of continuous professional development. These skills will make you well equipped for the workplace, be it in a chemistry environment or the wider world of work in general, or for further research if you so choose.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. Read more

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.

You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you

  • up-to-date knowledge of cellular and molecular pathology of various human diseases
  • the basis of therapeutic rationales for treating diseases and their development
  • an advanced understanding of recombinant DNA technology and how it is used to produce drugs
  • experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry
  • the transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits. 

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Cell biology (15 credits)
  • Fundamentals of pharmacology (15 credits)
  • Molecular biology (15 credits)
  • Biotechnology (15 credits)
  • Professional development (15 credits)
  • New approaches to pharmacology (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Employability

The course improves your career prospects in areas of • biomedical sciences • medical research in universities and hospitals • the pharmaceutical industry • biotechnology companies • government research agencies.

You also develop the skills to carry out research to PhD level in pharmacology and biotechnology.

Recent MSc Pharmacology and Biotechnology graduates jobs include • project specialist at PAREXEL • quality assurance documentation assistant at Vifor Pharma • PhD at the University of Manchester • clinical research associate at AstraZeneca • workplace services analyst at Deloitte India (Offices of the US) • regulatory compliance specialist for Selerant • senior product executive at PlasmaGen BioSciences.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. Read more

Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses.

The course is taught by researchers with an international reputation in advanced analytical techniques, such as the application of mass spectrometry to the analysis of biological matrices. Tutors also have expertise in production and detection of nanoparticles and detection of pollutants, particularly in soil.

This course is suitable if you wish to increase your knowledge and skills and increase your competitiveness in the job market or pursue a PhD. It will also suit you if you work in a chemistry-related profession and are seeking to further your career prospects.

You gain experience and understanding of

  • key techniques in separation sciences, including liquid and gas chromatography
  • atomic and molecular spectroscopy, such as atomic absorption and emission, NMR and IR
  • analytical technologies applied in process control and solving complex biological problems

This is a multi-disciplinary course where you learn about various topics including statistics, laboratory quality assurance and control, environmental analysis and fundamentals of analytical instrumentation.

You also gain the transferable skills needed to continue developing your knowledge in science, such as data interpretation and analysis, experimental design and communication and presentation skills.

You complete a research project to develop your research skills and their application to real world situations. You are supported by a tutor who is an expert in analytical chemistry.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. This is supplemented by access to our research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers.

Professional recognition

This course is accredited by the Royal Society of Chemistry (RSC). Applicants should normally have a degree (bachelors or equivalent) in chemistry that is accredited by the RSC. Applicants whose first degree is not accredited by the RSC, or with overseas degrees or degrees in which chemistry is a minor component will be considered on a case by case basis on submission of their first degree transcript.

Candidates who do not meet the RSC criteria for accreditation will be awarded a non-accredited masters qualification on successful completion of the programme.

Applicants will be informed in writing at the start of the programme whether or not they possess an acceptable qualification and, if successful on the masters programme, will receive an RSC accredited degree. If you do not meet the RSC criteria for accreditation, you will be awarded a non-accredited masters after successfully completing the programme.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Quality issues, laboratory accreditation and the analytical approach (15 credits)
  • Separation, detection and online techniques (15 credits)
  • Surface analysis and related techniques (15 credits)
  • Drug detection and analysis (15 credits)
  • Methods for analysis of molecular structure (15 credits)
  • Process analytical technology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Assessment

Assessment methods include written examinations and coursework including

  • problem-solving exercises
  • case studies
  • reports from practical work.

Research project assessment includes a written report and viva voce. 

Employability

This course is aimed at either recent graduates or those already in employment who wish to develop a career in analytical chemistry or enhance their laboratory skills and knowledge in the techniques and methods used in a modern analytical science laboratory. It also offers you the training and knowledge to go on to research at PhD level in analytical science.



Read less
Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today. Read more

Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today.

In this MSc you will learn research and development skills to enable the creation of new products and services. You will investigate the economic basis for current biotechnology structures and areas of future demand, including the global pharmaceutical industry and carbon sequestration.

You will learn how technology can be applied to solve pressing real-world biological problems and gain the skills and expertise needed for future developments in biotechnology.

Programme structure

This programme consists of two semesters of taught courses followed by a research project or industrial placement, leading to a dissertation.

Compulsory courses:

  • Economics and Innovation in the Biotechnology Industry
  • Intelligent Agriculture
  • Principles of Industrial Biotechnology
  • Research Project Proposal
  • MSc Dissertation (Biotechnology).

Option courses:

  • Biobusiness
  • Biochemistry A & B
  • Bioinformatics
  • Bioinformatics Programming & System Management
  • Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Environmental Gene-Mining and Metagenomics
  • Enzymology and Biological Production
  • Gene Expression and Microbial Regulation
  • Industry & Entrepreneurship in Biotechnology
  • Molecular Modelling and Database Mining
  • Practical Skills in Biochemistry A & B
  • Programming for the Life Sciences
  • Social Dimensions of Systems and Synthetic Biology
  • Stem Cells and Regenerative Medicine
  • Vaccines and Molecular Therapies

Research and laboratory work

There will be a considerable practical element to the programme. You will work in a biotechnology laboratory and learn how experimental technology is designed and operated.

Industrial placement

Your dissertation can be based on a laboratory-based project or an industrial placement. You can work with employers in the thriving Scottish biotechnology sector in areas such as multiple sclerosis research (Aquila BioMedical), vaccines research (BigDNA) or biorecovery and bioregeneration (Recyclatec).

Career opportunities

The programme will open up a wide variety of career opportunities, ranging from sales and marketing, to research and development, to manufacturing and quality control and assurance.



Read less
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Read more
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Through tutorials, lectures, assignments and a four-month research project, the programme focuses on the adaptation and application of biological processes for commercial and industrial use. This course would be suitable for graduates with a primary degree in the Biological Sciences who wish to extend their knowledge and skills for a career in the biotechnology sector.

Graduates have found employment in the pharmaceutical and food industries, and in diagnostic and research services, with companies such as Abbott, Allergan, ICON Clinical Research, Norbrook Laboratories and Pfizer. They are pursuing careers in manufacturing, quality assurance, product development and research, as well as the broader sectors of sales, marketing, and regulatory affairs.

Programme Content:

Core Modules

Research Project:

Five-month laboratory project with an academic research team on a biotechnology topic.

Frontiers in Biotechnology:

An interactive tutorial-based module that will develop students' transferable skill and knowledge of recent advances in biotechnology.

Current Methodologies in Biotechnology:

Experts will teach methodologies fundamental to biotechnological research and application.

Diagnostic Biotechnology:

A comprehensive overview of immunological and molecular diagnostics applied in current biotechnological applications.

Fundamental Concepts in Pharmacology:

Fundamental understanding of how drugs work and how they are discovered and developed.

Protein Technology:

Enhancing protein production and function of biopharmaceutical and industrial proteins on a commercial scale.

Introduction to Business:

Concepts of marketing, management and accountancy and their application in biotechnology businesses.

Optional Modules (Choose 2)

Advanced Industrial Process:

This module is designed to develop an awareness of microbial technologies and their applications to biotechnology.

Applied Concepts of Pharmacology:

This module introduces students to autonomic pharmacology and drug discovery and development.

Scientific Writing:

This module aims to provide students with an in-dept understanding of the process of scientific publications.

Immunology:

Emphasis on the clinical value of manipulation of the immune system.

Quality Management Systems:

QMS for the efficient and safe running of commercial and industrial biotechnology enterprises.

Cell & Molecular Biology: Advanced Technologies

This module outlines the fundamentals of cell and molecular biology.

Read less
Training in biotechnology research with a strong emphasis on development of advanced practical skills and research methods. Course detail. Read more

Training in biotechnology research with a strong emphasis on development of advanced practical skills and research methods.

Course detail

MSc Biotechnology Research is designed to provide up-to-date knowledge and understanding of core areas of biotechnology with particular emphasis on enhancing practical and research skills. Within the programme, students will cover a range of diverse topics including: bioinformatics, diagnostics, genetic modification, stem cell technology and proteomics and modules will include "hands on" training in advanced laboratory techniques. Further study in research planning, scientific communication, and professional practice will provide opportunities for critical reflection and evaluation of current practice and policy, enabling lifelong learning and professional development in biotechnology.

The course has a strong practical element, with laboratory classes integrated in the modules across the first two semesters. Over the summer semester students also have the opportunity to undertake their own independent research project within one of the research groups in the internationally renowned Biomedical Sciences Research Institute (BMSRI) at Ulster. The BMSRI research covers biomedicine from the molecular to the whole human including disease development, prevention, diagnosis and therapy. BMSRI is ranked within the top five out of 94 universities submitted in the UK REF2014 panel in terms of research power in biomedical science. Significantly, in REF2014 our research environment was awarded an unprecedented 100% 4* (world-leading) and 95% of our research impact was scored world leading (4*) and internationally excellent (3*) while 81% of research published papers were judged to be world leading and internationally excellent (4* and 3*).

Career options

The course is primarily designed for those who wish to develop their career in the biosciences with particular emphasis on biotechnology research; including either academia or bio-pharmaceutical and bio-industries.

On completion of this course, students will have gained experience of advanced laboratory techniques, problem-solving and research design in a range of Biotechnology areas and be well prepared to work in research positions or to proceed on to do a research degree in a related area.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.

2. We are a top UK university for providing courses with a period of work placement.

3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.

4. We recruit international students from more than 100 different countries.

5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support



Read less
This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology. Read more

This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology.

This grounding leads into the study of the complex mechanisms of host/microbe interactions that are involved in the pathogenesis of specific animal diseases, and provides insights into diagnosis and interventions, such as vaccines, essential for disease control.

You will enhance your critical and analytical skills and gain hands-on experience in the diagnosis of veterinary diseases, such that you may identify problems, formulate hypotheses, design experiments, acquire and interpret data, and draw conclusions.

Programme structure

This programme is studied full-time over one academic year.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Who is the programme for?

This is a full or part-time programme, intended mainly for graduates, those already working in veterinary diagnostic/research laboratories and staff from other laboratories who want to enhance their understanding of the role of microorganisms in animal health and disease.

Pharmaceutical research personnel, policymakers, veterinarians, public health personnel and environmental biologists will also benefit.

Part-time and short course study

Most modules are offered as standalone short courses. The fee structure for short courses is different to that for registered students, and details may be obtained via admissions enquiries, please refer to the contact details on this page.

The option to study the MSc on a part-time basis is only available following successful completion of three modules as stand-alone/CPD. Please contact the for further information.

Programme partners

This Masters programme is delivered by a consortium comprising the University of Surrey and two world class veterinary microbiology institutions: the BBSRC funded Pirbright Institute (PI), and the Government sponsored Animal & Plant Health Agency (APHA).

The Veterinary Medicines Directorate (VMD) and Public Health England (PHE) also contribute to the programme.

Visits

You will have the unique opportunity to gain hands-on experience in the diagnosis of important veterinary diseases within the world reference laboratories of the APHA and Pirbright Institute (PI).

There will also be an opportunity to visit Public Health England (PHE) to gain a detailed knowledge of how zoonotic diseases outbreaks are investigated, and to visit the Veterinary Medicines Directorate (VMD), a livestock abattoir and an intensive livestock farm.

Colleagues from the CEFAS laboratory will also contribute to the programme, and further research training will be provided during your practical research project.

Educational aims of the programme

This is a one year full-time programme aimed at preparing graduates to work in a range of fields in which a detailed understanding of veterinary microbiology is a valuable asset.

These fields include research, commerce, government and policy, reference laboratory and diagnostic work, epidemiology and disease mapping, veterinary science, farming especially animal production, wild and zoo animal conservation and education.

As such, it is intended that graduates will achieve the highest levels of professional understanding of veterinary microbiology within a range of contexts.

The programme combines the study of the theoretical foundations of, and scholarly approaches to, understanding the application and various practices of veterinary microbiology within the contexts described above along with the development of practical and research skills.

The main aims are to enable students to:

  • Acquire sound knowledge of the major principles of veterinary microbiology
  • Develop the skills to perform relevant interpretation and evaluation of data
  • Apply those acquired skills in practice through research
  • To utilise acquired knowledge and evaluative skills to communicate successfully with stakeholders

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

The learning outcomes have been aligned with the descriptor for qualification at level 7 given in the Framework for Higher Education Qualifications (FHEQ) produced by the Quality Assurance Agency (QAA) for Higher Education.

Knowledge and understanding

Following completion of the programme, students should display knowledge of:

  • The main principles of current veterinary microbiology
  • The methods and approaches used for the molecular characterisation, and diagnosis of disease agents
  • The main principles of infectious diseases epidemiology
  • The analysis of disease and disease carriage that impact on the development and application of control measures to combat diseases
  • Modes of control of infectious diseases
  • Modes of transmission
  • The various aspects of host pathology and immune responses to disease agents
  • Analytical skills to allow interpretation of data and formulation of conclusions

Intellectual/cognitive skills

Following completion of the programme, students should be able to:

  • Critically appraise scholarly and professional writing on a wide range of subjects pertaining to the various aspects of veterinary microbiology
  • Critically analyse experimental data to enable the formulation of hypotheses
  • Design relevant experiments to test formulated hypotheses
  • Efficiently analyse new developments in technology and critically assess their utilisation to answer existing and new problems

Professional practical skills

Following completion of the programme, students should be able to:

  • Plan and execute an experiment/investigation, act autonomously and demonstrate originality
  • Analyse numerical data using appropriate computer tools including specialist computer packages
  • Communicate experiments at a project level, including report writing
  • Perform specific specialised experimental skills

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X