• Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Northumbria University Featured Masters Courses
"pharmaceutical" AND "ent…×
0 miles

Masters Degrees (Pharmaceutical Enterprise)

  • "pharmaceutical" AND "enterprise" ×
  • clear all
Showing 1 to 15 of 25
Order by 
The MSc Pharmaceutical Enterprise programme is an applied multidisciplinary course designed for entrepreneurial high-achieving individuals with ambition to take leading roles in SME pharmaceutical companies. Read more
The MSc Pharmaceutical Enterprise programme is an applied multidisciplinary course designed for entrepreneurial high-achieving individuals with ambition to take leading roles in SME pharmaceutical companies.

As the major pharma business model changes, established and emerging SME pharmaceutical companies are increasingly delivering novel candidate pharmaceuticals (small molecules and biologicals). This trend is expected to continue and offers a very nourishing environment for spin-out and other SME pharmaceutical companies that require high calibre personnel who are knowledgeable about all aspects of pharmaceutical enterprise.

he MSc Pharmaceutical Enterprise programme is delivered by experts in the field, many with on-going experience of the sector; and this ensures the programme maintains relevance in this fast moving industry.

The interactive teaching equips you with the medical, scientific, regulatory and business skills to achieve success. Internships and consultancy project opportunities arising from associated SME companies offer highly prized ‘real life’ experiences.

The MSc Pharmaceutical Enterprise programme aims to provide you with a toolbox of skills to enable you to:

- select, develop and commercialise projects with therapeutic potential
- create, seek funding and take leading executive roles in companies to exploit the commercial potential of projects in a spin-out/SME environment,

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Read more
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Its graduates will be ideally positioned to initiate their own start-up companies or join existing biotech or pharmaceutical businesses.

Degree information

Students will learn how to develop and assess a new business concept, and how to raise finance for and market a business and its outputs. They will build their scientific skill set by exploring four scientific research areas in pharmaceutics, and will interact closely with and be mentored by those who have direct experience of initiating a start-up business.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), a scientific research project (30 credits) and a business case development project (30 credits).

Core modules
-Mastering Entrepreneurship
-Entrepreneurial Marketing
-Entrepreneurial Finance
-Initiating a Pharmaceutical Start-Up

Optional modules
Term One
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicine

Term Two
-Pharmaceutical Biotechnology
-Clinical Pharmaceutics
-Nanomedicine
-Formulation of Natural Products and Cosmeceuticals

Dissertation/report
All students undertake two projects which comprise the major component of this MSc programme and culminate in two written reports and oral presentations. One of these is a short laboratory research project, while the second involves the development of a business case for a new pharmaceutical endeavour.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, seminars and practical sessions as well as industrial visits. Assessment is through a combination of written examinations, coursework assignments and the project.

Careers

Graduates of this programme are expected to become involved in businesses in various areas of the pharmaceutical and biotechnology industries. They will be fully equipped with the skills to start their own businesses, and will be able to approach UCL Innovation and Enterprise to assist with this if desired. Alternatively, they may join small biotech or major pharmaceutical companies, pursue further research in academia, work in consulting, or join world-leading technology companies where there is increasing emphasis on healthcare and the life sciences.

The first cohort of students on the Pharmaceutical Formulation and Entrepreneurship MSc will graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

This programme is unique in equipping students with a broad skill set in both medicine design and entrepreneurship. It is delivered by world-leading academics in both the UCL School of Pharmacy and UCL School of Management.

UCL staff with direct experience of launching a pharmaceutical start-up will teach students best practice and how to overcome the major challenges involved in enterprises of this kind.

UCL’s central London location combines state-of-the-art research with an entrepreneurial dynamic that fosters start-up creation, and provides access to venture capitalists, business angels, and world-leading pharmaceutical companies. UCL Innovation and Enterprise, UCL’s centre for entrepreneurship and business interaction, offers UCL students direct practical support in launching a business

Read less
Take advantage of one of our 100 Master’s Scholarships to study Life Science and Healthcare Enterprise at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Life Science and Healthcare Enterprise at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Masters of Research in Life Science and Healthcare Enterprise is a taught research programme portfolio designed to give Health Professionals, Life Scientists, Biomedical Scientists, Medics and Academics the opportunity to conduct masters-level research in a supported environment, with relevant training and application to Life Science-related expert witnesses from Industry and Academia through the provision of a series of master-classes.

Key Features of MRes in Life Science and Healthcare Enterprise

We combine a multidisciplinary approach of industrial collaboration and integrated and innovative teaching that promises to bring significant advances in the development of leaders of research and innovation in the Life Science sector:

- The opportunity to specialise in to five different areas of Medical Manufacturing, Medical Technology and Pharmaceutical and -Regenerative Medicine with supervision by experienced academics, leading researchers in the field and experts at the forefront of the life sciences industry
- Develop research skills by working with an interdisciplinary research team
- Comprehend, design and implement business models across life science enterprise and innovation
- Engage with clinicians through new and established links with local hospitals and NHS Health Boards.

Programme Outline

Each programme within the Life Science and Healthcare Enterprise portfolio consists of two Phases:

• Phase 1 (October – January): 3 taught modules (compulsory modules) totaling 60 credits, which can lead to the award of a Postgraduate Certificate in Life Science and Healthcare Enterprise

• Phase 2 (February – September): an 8 month research project. At the end of this phase, you will submit a 40,000-words thesis worth 120 credits leading to the award of the MRes in Life Science Healthcare Enterprise

The Life Science and Healthcare Enterprise programme ethos is eclectic, innovative and novel in respect to developing you to be ready for the world of business within the Life Science sector. You will be immersed in and exposed to a learning environment with an open, innovative, global multidisciplinary culture.

By the end of the Life Science and Healthcare Enterprise programme, you will be prepared to be entrepreneurs or a senior employee within large and small business, and capable of leading change to a more entrepreneurial and innovative culture.

Attendance Pattern

During the taught element of this Master's programme in Life Science and Healthcare Enterprise, students are required to attend for 1 week (5 consecutive days) teaching block, followed by 1 week of independent study (i.e. no formal teaching sessions) for the generation of a white paper and ending in the Presentation, Defence and Assessment period in Week 3 for each module.

Attendance during Part Two is negotiated with the supervisor. You are also encouraged to attend the Postgraduate Taught Induction Event during the induction week and any programme associated seminars.

Read less
This MSc aims to equip students with an advanced understanding of management thinking relating to the management of enterprises and projects, particularly with regard to the roles that enterprises play in construction; and to give students a sound appreciation of the way projects should best be defined, developed, and delivered. Read more
This MSc aims to equip students with an advanced understanding of management thinking relating to the management of enterprises and projects, particularly with regard to the roles that enterprises play in construction; and to give students a sound appreciation of the way projects should best be defined, developed, and delivered.

Degree information

The programme teaches concepts, tools and techniques employed in managing projects from their earliest stages through to operations and maintenance. Projects will primarily be in construction (building, civil engineering, process engineering), but there will also be reference to other projects, including aerospace, automotives, electronics, organisational change, pharmaceuticals, software and IT.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation (60 credits). In addition, there are two non-assessed, but compulsory modules in management and research methods. A Postgraduate Diploma (120 credits, full-time nine months) is offered.

Core modules
-Project Management
-Owner-Based Management of Projects
-Principles of Enterprise Management
-Projects, Economics, Sectors and Behaviour

Optional modules - a full-time student must choose at least two modules from the project-based optional modules, and at least one module from the enterprise-based optional modules. A student's fourth module can come from any of the three (project-based, enterprise based or economics-based) sets of modules.
-Managing the Enterprise-Project Relationship
-The Procurement of Construction, Engineering and Professional Services
-Organisations and People in Projects
-Managing Construction
-Environmental Sustainability in the Construction Sector
-Supply Chain Management: Principles and Case Studies
-The Management of Large Project and Programmes
-Social Networks in Project and Enterprise Organisations
-Integrating Project Information Systems with Building Information Modelling
-The Management of Value
-The Management of Innovation in Construction Firms
-Contractual Claims and Dispute Resolution
-Transforming Projects into Business Operations
-Managing Professional Practice
-Relationships Between Firms
-Capturing and Delivering Value
-The Construction Firm: Contractors and Sub-Contractors
-Marketing and Project Business Development
-Managing Change in Organisations
-The Economics of Speculative Construction Development

Dissertation/report
All MSc students submit a 10,000-word dissertation on a topic related to the main themes of the programme. The topic can be chosen to enhance career development or for its inherent interest.

Teaching and learning
The programme is delivered through a combination of formal and interactive lectures, small-group seminars, tutorials, workshops, visiting speakers and site visits. Assessment is through coursework, essays, written papers and examinations, and the dissertation.

Fieldwork
Half-day site visits will be undertaken.

Careers

Graduate career options are varied. Students are expected to go on to work in many related areas: public sector infrastructure client organisations, construction, engineering and design enterprises, professional consultants and commercial research organisations, and client enterprises with significant project portfolios such as large manufacturing, transport, financial, electrical, gas, water, petrochemical, pharmaceutical, defence enterprises as well as government departments and agencies. A number of students use the MSc as a foundation for MPhil/PhD research.

Top career destinations for this degree:
-Business Manager, China Water Electricity International Investment Corporation
-Procurement Specialist, Procter & Gamble
-Graduate Project Manager, AECOM

Employability
A comprehensive and stimulating programme, delivered by leading academics and with RICS accreditation, this MSc also offers each student the opportunity to tailor their study to those areas which are of most interest, by choosing from a wide range of optional modules. In addition, there is a strong focus on student career progression. Each year the school hosts a series of networking events and presentations attended by professionals from industry/organisations and UCL Careers also offers a regular programme of careers fairs and practical sessions on careers advice.

Why study this degree at UCL?

UCL is one of the best universities in the world and is located in the heart of London.

The UCL Bartlett is the UK's largest multidisciplinary Faculty of the Built Environment with an excellent global reputation for both research and teaching across the many areas that comprise the built environment. The programme is taught by academics with current research and publications, experienced practitioners and guest speakers from industry.

The MSc programme prepares you for a dynamic career within some of the world's most successful organisations.

Read less
Biotechnology is the application of biology in industry and exploits living things and processes commercially to make useful products and provide practical solutions. Read more
Biotechnology is the application of biology in industry and exploits living things and processes commercially to make useful products and provide practical solutions. In the 21st century, biotechnology is set to continue to have a major impact on all our lives from improvements in medicine and pharmaceuticals to food quality, agricultural systems and biofuels.

Using the considerable interdisciplinary research strengths and business initiatives that exist within the Faculty of Biology, Medicine and Health and the Manchester Enterprise Centre, we are able to offer a challenging and innovative programme that combines expertise in entrepreneurial business development with cutting edge research.

Manchester Enterprise Centre (MEC) is based within Manchester Business School at The University of Manchester. We are recognised as one of the UK leaders in the area of enterprise education. The Faculty of Biology, Medicine and Health is one of the leading centres for life sciences research in the UK.

This research based MSc course will provide you with the scientific research skills and the business knowledge required to convert scientific discoveries into inventions and commercial products. You will also explore how these translate into a business plan for start-up technologies or innovative processes within biotechnology industries. The combination of research skills and business knowledge will ensure you are well equipped for career opportunities in the global biotechnology market.

Career opportunities

The combination of research skills and business knowledge will ensure you are well equipped for career opportunities in the global biotechnology market. Around three-quarters of recent graduates have moved on to careers in industry including Business Development and knowledge transfer positions in bioscience and pharmaceutical companies. The remaining graduates have moved on to industry related PhD research.

Read less
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare. Read more
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare.

This is coupled with rigorous practical training in the design, production and characterisation of biomolecules using state-of-theart biotechnological and bioengineering analytical and molecular technologies.

You acquire practical, academic and applied skills in data analysis, systems and modelling approaches, and bioinformatics, together with transferable skills in scientific writing, presentation and public affairs. On successful completion of the programme, you will be able to integrate these skills to develop novel solutions to modern biotechnological issues from both academic and industrial perspectives.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/213/biotechnology-and-bioengineering

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Biotechnology and Bioengineering involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Industrial Biotechnology Centre, an interdisciplinary research centre whose aim is to solve complex biological problems using an integrated approach to biotechnology and bioengineering. It is administered by the School of Biosciences who also contribute to the programme.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
CB613 - Enterprise (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI845 - Research project (60 credits)

Assessment

Assessment is by coursework and the research project.

Programme aims

You will gain the following transferable skills:

- the ability to plan and manage workloads

- self-discipline and initiative

- the development of reflective learning practices to make constructive use of your own assessment of performance and use that of colleagues, staff and others to enhance performance and progress

- communication: the ability to organise information clearly, create and respond to textual and visual sources (eg images, graphs, tables), present information orally, adapt your style for different audiences.

- enhanced understanding of group work dynamics and how to work as part of a group or independently.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/213

Read less
The programme is designed for graduates with a biological background and builds on existing core biosciences modules in the area of applied biotechnology. Read more
The programme is designed for graduates with a biological background and builds on existing core biosciences modules in the area of applied biotechnology. It gives a grounding in the early stage drug discovery process for those interested in careers in biotechnology or the pharmaceutical industry.

The MSc covers application of technologies to early stage drug discovery focusing on target identification, target validation, and lead discovery and design follow-up through understanding protein ligand interactions and biophysics at a molecular level in order to produce good drug candidate molecules via rational drug design.

The programme also includes site visits to biotechnology companies and industry, plus workshops/lectures from invited industrial experts.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/227/drug-design

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Drug Design involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Biosciences, Industrial Biotechnology Centre and industrial scientists who all have experience of working with the drug industry (both large pharma and biotech).

In additional to traditional scientific laboratory reports, experience is gained in a range of scientific writing styles relevant to future employment.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI827 - Advanced Drug Design (30 credits)
BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
BI845 - MSc Project (60 credits)

Assessment

Assessment is by coursework and the dissertation.

Programme aims

This programme aims to:

- provide students with an academic framework to underpin your career in the pharmaceutical, biotechnology industry or applied translational research in an academic environment

- give you an understanding of the process of academic investigation in a range of academic disciplines relevant to drug design

- provide a stimulating, research-active environment for teaching and learning in which you are supported and motivated to achieve your academic and personal potential

- facilitate a valuable learning experience through a variety of teaching and assessment methods that will promote the assimilation, comprehension, analysis application, synthesis and evaluation of the knowledge base

- give you the experience of undertaking an independent research project or dissertation

- prepare students for further training and employment both in science and non-science based careers by developing transferable and cognitive skills

- develop the qualities needed for employment in situations requiring the exercise of professionalism, independent thought, personal responsibility and decision-making in complex and unpredictable circumstances

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/227

Read less
Analytical bioscience - the investigation of biomolecules as exploitable biomarkers - is a growing field, driven by improving analytical methods with increasing sensitivity. Read more
Analytical bioscience - the investigation of biomolecules as exploitable biomarkers - is a growing field, driven by improving analytical methods with increasing sensitivity. Following completion of the Human Genome Project, the pharmaceutical industry is preparing for a revolution in cancer and inherited disorder therapies.

This course is training a new generation of bioscientists to meet challenges at the interface between biology and chemistry, and to apply pharmaceutical and analytical knowledge directly to improve quality of life.

Please note: this course was previously called Analytical Bioscience and Drug Design.

Key benefits:

• Train for a career in the newly emerging industries of the post-genomic era
• Work at the interface between biology and chemistry – a truly multidisciplinary Masters degree
• Excellent career prospects in pharmaceuticals and biotechnology

Visit the website: http://www.salford.ac.uk/pgt-courses/drug-design-and-discovery

Suitable for:

This course is aimed at students who wish to acquire the specialised skills needed to design drugs for the 21st century.

Course content

This course is designed to enable you to gain a systematic knowledge, critical awareness of current problems and new insights regarding the analysis of biomolecules. There is particular reference to drug design and discovery, along with a comprehensive and critical understanding of applied techniques and their current application in research in the field of biomolecule analysis and drug design.

Format

Teaching is by lectures to provide thorough grounding in the techniques of biomolecule characterisation and drug design.

Practical sessions and workshops demonstrate techniques and methods used in biomolecule characterisation and drug design, and provide a structured opportunity for you to practise techniques and methods in analytical biosciences and drug design.

Guided reading will recommend texts, key articles and other materials in advance of, or following, lecture classes.

The research project will enable you to practice the application of appropriate, and selected, bioscientific techniques in an academic or industrial context, and demonstrate research methodologies and skills appropriate to and valuable with biomolecule characterisation and drug design.

You will be supervised by expert staff who are actively engaged in international research programmes.

Module Titles

• Research Methods 1
• Drug Pharmacology
• Drug Design
• Novel Theraputics
• Analytical Methods
• Natural Products
• Identification of Drugs
• Bioscience Enterprise
• Research Project

Assessment

• Literature Review and Presentation
• Portfolio
• Examination
• Oral Presentation
• Dissertation

Career progression

Although particularly relevant if you are looking for a career in the pharmaceutical and biotechnology industries, this course will also equip you for a career in research, teaching and many other professions including cosmetic science, animal health, food science, medical laboratory research, patent law, scientific journalism and health and safety.

Research projects may be carried out at Salford or other institutions (e.g. universities in Germany, France and the Paterson Institute, UK). We also invite visiting lecturers to share their expertise on the subject areas.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
Driven by the rapid growth of global manufacturing and services, the management of global supply chains and logistics have become vital to business success for organisations around the world. Read more
Driven by the rapid growth of global manufacturing and services, the management of global supply chains and logistics have become vital to business success for organisations around the world. This course gives you the knowledge and skills required to manage global supply chains and associated logistics.

This course is suitable for:
-Recent graduates aiming a career in rapidly growing logistic and supply chain sectors.
-Supply chain practitioners wanting to become specialists or managers.
-Engineers and managers needing to develop their knowledge skills in logistics and supply chain management.

Developed by academics with extensive research and consultancy experiences, the course covers strategies, management, technology and systems. You learn modern approaches to supply chain management such as lean, six-sigma and operations management which are integral elements of the course. SupplyChainGuru, an award winning modelling platform is used to demonstrate design and operation principles.

In modern supply chains, technology plays a critical role. For example, Radio Frequency Identification (RFID) is now widely used to track shipments through supply chain. This course covers essential technologies required to operate global supply chains which also include warehouse automation and transportation.

Modern IT systems integrate different elements of supply chain to provide the total visibility and information required to drive supply chain operations. The course uses the world’s leading Enterprise Resource Planning (ERP) platform, SAP, to demonstrate how modern ERP systems are used to integrate supply chain operations.

As a member of the SAP University Alliance, we use SAP software modules to enhance your learning experience and the course includes a SAP training academy. You also can take examinations at extra cost, which lead to SAP qualifications in one of the world's leading business technologies.

The dissertation project enables you to apply what you learn on the course. The course team has extensive links with the industry, which means it is likely that you will be able to work with a company during your dissertation. It is also possible to work on on-going research projects which are managed by the course team.

You attend a series of guest lectures and industry visits to enhance your learning experience and to make you understand how theories and technologies are used in industry. Guest speakers include supply chain professionals from manufacturing, retail, health, food and pharmaceutical industries.

The courses enhances your career potential by improving your knowledge and skills in:
-The management of logistics and global supply chains.
-Supply chain strategies.
-Logistics and supply chain design, planning and control techniques required in industry.
-Supply chain technologies which include topics such as warehouse automation and RFID (Radio Frequency Identification).
-Systems used for integration and modelling aspects of logistics and supply chain in today’s global environment.
-Technical and problem solving skills.
-Transferable skills sought employers, such as problem solving, team-working and presentation skills.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-logistics-and-supply-chain-management

Professional recognition

This course is accredited by the Chartered Institute of Logistics and Transport (CILT UK) and offers full exemption from the education requirements for Chartered Membership for graduates achieving an overall average mark of 50% or more. This course is also accredited by the Chartered Institute of Procurement and Supply(CIPS).

Course structure

Full time – 12 to 18 months. Part time – typically 3 years, maximum 6 years. Starts September and January.

Core modules
-Finance and marketing
-Project and quality management
-Srategic sourcing and procurement
-Lean operations and six sigma
-Supply chain modelling and simulation
-Global supply chain and manufacturing strategy
-Warehouse systems and transportation
-Logistics and enterprise information systems

MSc
Project and dissertation (60 credits)

Assessment: examination; coursework; project reports.

Other admission requirements

India – a first class BE in an relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.
China – a four year bachelors degree in an relevant discipline, with an overall average of at least 80% or equivalent.
Other countries – a good honours degree or equivalent in an relevant subject.

Applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI837 - The Molecular and Cellular Basis of Cancer (15 credits)
BI838 - Genomic Stability and Cancer (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI857 - Cancer Research in Focus (15 credits)
BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/226

Read less
Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!. Read more

Passion for the human system

Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!

Where studying Biology starts with a fascination for life, Medical Biology shares this trait and specifies it towards the human system. The Master's in Medical Biology in Nijmegen focuses strongly on molecular and cellular life processes at the cutting edge of fundamental biology and medical scientific research.

Our programme is unique because it is a combination of fundamental research and the translation of its findings into clinical applications. This is facilitated by our close cooperation with the University Medical Centre.

See the website http://www.ru.nl/masters/medicalbiology

Specialisations within the Master's in Medical Biology

At the beginning of the first year, all students follow an orientation course before they choose one of the three Master's specialisations:
- Clinical Biology
- Medical Epigenomics
- Neuroscience
- Science in Society
- Science, Management and Innovation

Career prospects

This programme provides you with the qualifications you need to start working on your PhD and in the field of communication, business and management or education. Medical biologists often continue their research careers in universities, research institutes, pharmaceutical companies and public health authorities. On graduation, our students quickly take up positions as researchers or analysts in government departments, research organisations and medical or pharmaceutical companies.

What medical biologists do:
- Researchers at universities or in companies
- Supervisors of clinical trials
- Consultants
- Lecturers
- Teachers

Where medical biologists work:
- Research/education
- Health care
- Business services
- Industry
- Government
- Trade

Our approach to this field

Other Master's specialisations
The Master's programme has a strong emphasis on research, especially during the first year, but allows you to broaden your horizons towards the fields of Management, Communication and Education during the second year. This way, you have the opportunity to experience whether these specialisations might suit you when you start looking for a job. There are four Master's specialisations which you can choose from:
- Research trains students for fundamental and applied research. This specialisation is required for people pursuing a PhD position or a position in industrial or institutional research.
- Science, Management and Innovation prepares students for a management position as an academic professional. It prepares students for a career in science related business and administration and for innovation and enterprise from an academic perspective.
- Science in Society trains students in the direction of science communication, which prepares them for a career in communication research, applications and media.
- Education prepares students to become a (first degree) teacher (this variant is only available in Dutch).

Our research in this field

Experts
Education is closely linked to on-going research within the:
- Institute for Water and Wetlands Research;
- Institute of Neuroscience;
- Nijmegen Centre for Molecular Life Sciences.

Nijmegen's biologists are experts in the fields of animal physiology at system level as well as at cellular and molecular level. But they also are top researchers in the fields of human health, disease and development.

- Personal tutor
The programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Each time you start a research internship you will select a research group and be allocated a supervisor. Together you will decide which research to carry out and the specialisations and subject choices that most effectively support it. In practice you will be occupied for four days a week with your own research and one day will be devoted to lectures.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/medicalbiology

Read less
Apply scientific methods in a real-world context on the MSc Project Management, Finance and Risk programme, and discover how to measure risk on any scale. Read more
Apply scientific methods in a real-world context on the MSc Project Management, Finance and Risk programme, and discover how to measure risk on any scale.

Who is it for?

This postgraduate Project Management, Finance and Risk programme is for those pursuing or planning a career in managing the introduction of capital goods or applying the latest project management techniques to complex projects. It is particularly suited to students with a scientific or financial engineering background as we cover quantitative risk assessment in depth, which requires an aptitude for measuring and analysing data.

Objectives

Consider the risks contained within a project such as the Euro Tunnel. Two governments sponsoring the project and nine billion pounds of finance ring-fenced through a special purpose company to complete it. Will it be finished on time and will it secure the revenues to service the debt? These are the kinds of questions we address on this programme.

MSc Project Management, Finance and Risk gives you a foundation in quantitative risk assessment and decision-making under uncertain conditions, coupled with classical engineering economics and financial engineering.

From analysing indecision within games theory to rebuilding a country’s infrastructure, we explore the drivers in which businesses operate, and the challenges and opportunities that project managers face. Bringing in expertise from the Sir John Cass Business School, together with people from industry and the banking sector, we pool diverse skill sets to solve complex problems.

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their final project within a company.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

As well as lectures, you learn through tutorial support, guided private study, coordinating group activities, and coursework. Not every module has an exam and in some cases you will be assessed through a module project.

Full-time students complete the programme in one year and we expect you to devote a significant part of the non-taught hours to project work, group activities, as well as your own independent study. The duration of a part-time programme is two years (this may be extended to three years in individual cases).

Modules

There are four core modules and two electives. Out of the two electives you can choose from four or five topics including games theory, perspectives on management and leadership and entrepreneurship, innovations and enterprise.

You can also take part in a rolling programme of one-day events to build your communication and team-building skills while you study. These sessions cover topics including conducting research, improving your presentation skills and dealing with people.

The course is modular and each module lasts four days. The structure has been designed in this way so that both full and part-time students can follow the programme. In addition, the course offers practical skills in management, leadership, entrepreneurship, software and communications tools.

A Prince 2 Project Management Practitioner’s Course will be offered to students in the summer term. This five-day course, paid for by the institution, is presented by an outside training agency. By successfully completing the course you will be awarded a coveted practitioner’s certificate.

Core modules
-Managing Risk and Uncertainty (20 credits)
-Optimisation and Decision Making (20 credits)
-The Project Lifecycle 20 credits)
-Financial Engineering and Project Planning (20 credits)
-Introductory mathematics (zero credits)
-Dissertation (60 credits)

Elective modules - you will choose two elective modules
-Communication and Presentation (20 credits)
-Perspectives on Management and Leadership (20 credits)
-Supply Chain Management (20 credits)
-Entrepreneurship, Innovations and Enterprise (20 credits)
-Decision Sciences 1 - Complex Systems and Networks (20 credits)

Career prospects

Graduates completing the course will be prepared for a wide range of careers involving project management, risk management and financial planning. From banking to management and from engineering consultancies to the pharmaceuticals industry, this programme gives you diverse options when it comes to developing your career and being part of key decision-making processes.
If you want to work in infrastructure management and development, which involves management of supply chain and/or financial risks, the programme will be particularly relevant. Additionally, the course is ideal if you are planning a career in any of the following areas:
-Capital goods
-Management consultancy
-Risk analysis in the pharmaceutical industry
-Project management in the construction Industry
-Investment banking
-Banking analysis
-Financial risk analysis
-Real estate management
-Marketing management
-Aircraft engineering
-Entrepreneurship

Read less
City's MSc in Health Policy helps you understand, navigate and influence the 21st century health and health care environment. City’s MSc Health Policy is the ideal route for graduates looking to start, change or develop their career within the health policy field. Read more
City's MSc in Health Policy helps you understand, navigate and influence the 21st century health and health care environment.

Who is it for?

City’s MSc Health Policy is the ideal route for graduates looking to start, change or develop their career within the health policy field. It combines an international focus and academic rigour with the development of practical, transferable skills that can be applied in a wide range of real-world health policy, planning and management settings.

We welcome applications from graduates (UK or international) from any academic discipline. The course is also suitable for established professionals from a wide range of backgrounds, including:
-Medical, nursing and allied health professions
-Health management and administration
-Public health
-National and local government
-National NGOs
-International agencies
-Research institutions and consultancies
-Pharmaceutical, insurance and other health-related industries.

Objectives

Health and health care policy are at the top of the political agenda around the world. People are living longer, consumers are expecting more from their health services and chronic illnesses are becoming prevalent. Medical technology is advancing rapidly, creating ever-increasing demand for the latest treatments.

Health policy affects and is affected by all of these factors. It aims to meet the growing challenges facing health systems by providing answers to such questions as:
-How can we best meet people’s changing health needs?
-How can we control spiralling health costs, while maintaining high quality and comprehensive health services?
-What is the most effective way of organising and paying for health care?
-How can we tackle inequalities in health and access to care?
-How can we measure and improve the performance of health systems?

City’s MSc in Health Policy gives you the knowledge and tools you need to understand, analyse and influence the health policy process, and to operate within an increasingly complex policy environment.

You will analyse the social, political and economic factors that affect policy at a local, national and international level. You will explore how and where policy is made, and who the key players are; and learn how to present your ideas clearly and persuasively to a range of influential stakeholders to bring about change.

Placements

You have the opportunity to do a placement, but it is not a formal requirement of the course. We encourage you to create your own. One recent student worked within the refugee camp in Calais alongside the NGO Doctors of the World as part of her dissertation research on refugee access to health care.

Academic facilities

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will learn through a mix of lectures, class discussions and seminars, student presentations, case study analysis, interactive computer-based exercises, a virtual learning environment (Moodle) and self-directed reading.

Lecturers are drawn from City's Schools of Health Sciences and Arts and Social Sciences. A number of distinguished external honorary and guest lecturers have also taught on the programme, including:
-Professor David Oliver (President of the British Geriatrics Society, former National Clinical Director for Older People at the Department of Health, and Visiting Fellow at the King's Fund)
-Professor Paul Burstow (Chair of the Tavistock and Portman NHS Foundation Trust, and Minister of State for Care Services in the Coalition Government, 2010-12)
-Brigadier Tim Hodgetts CBE (Medical Director, Defence Medical Services, and former Medical Director, NATO Allied Rapid Reaction Corps)
-Beccy Baird (Fellow in Health Policy, the King's Fund)

City has an international reputation for academic excellence in the areas of health and food policy, health services research, health management, health economics and executive leadership across a broad range of professional disciplines. You will learn from and alongside colleagues who aim to influence health policy and lead health-related initiatives.

Modules are assessed through a combination of written coursework, group work and examination. The assessments reflect the learning objectives of the modules.

Modules

You will take five core taught modules, which cover the main topics and issues within health policy, the health policy process, the principles of policy analysis, and research methods.

You will also choose two or three further elective modules covering a range of related areas, including public health, global health and health management and leadership.

Core modules
-HPM001 The health policy process, politics and power
-PHM004 Social determinants of health
-HPM004 International health systems
-HPM006 Health economics
-HRM020 Foundations in research methods and data analysis*

Elective modules
-HRM001 Introduction to research methods and applied data analysis*
-HPM003 Health policy in Britain
-PHM001 Public health**
-PHM003 Global health**
-HMM002 Strategic management in healthcare†
-HMM008 Health innovation and change†
-HMM026 Finance and enterprise performance†
-HMM022 Management and leadership in healthcare†
-HMM025 Economic evaluation and pharma†
-APM006 Contemporary issues in mental health
-APM017 Engaging technology
-FPM001 Food and public policy

*The core module HRM020 covers basic research skills and enables you to perform entry-level statistics. It forms the first part of the 30-credit module HRM001 Introduction to research methods and applied data analysis, which goes on to cover more advanced research skills. If you choose to take HRM001, this will replace the core module HRM020.

**A maximum of one public health module (PHM001 or PHM003) may be chosen as an elective.

†A maximum of two health management (HMM) modules may be chosen as electives. Depending on module capacity, it may only be possible to take one HMM module.

Dissertation - you will also write a final health policy-related dissertation, on a topic of your choice, of between 12,000 and 15,000 words.

Career prospects

Because health and health care are such high priorities for both the public and policy makers, health policy specialists will continue to be in high demand. Therefore, if you are working or want to work within any health-related organisation in the public, private or third sectors, this course will help you develop the key transferable skills you need to succeed.

Graduates of the MSc Health Policy have gone on to a variety of policy, campaigning/advocacy and research roles within the public sector such as:
-The NHS and international ministries of health.
-NGOs and third-sector organisations including the Patients Association and a number of professional associations.
-The private sector such as consultancy, corporate communications and pharmaceutical companies.

Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biologoy. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1235/biochemistry

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Associated centres

- Kent Fungal Group

The Kent Fungal Group (KFG) brings together a number of research groups in the School of Biosciences that primarily use yeasts or other fungi as ‘model systems’ for their research. One strength of the KFG is the range of model fungi being exploited for both fundamental and medical/translational research. These include Bakers’ yeast (Saccharomyces cerevisiae) and Fission yeast (Schizosaccharomyces pombe) and yeasts associated with human disease, specifically Candida albicans and Cryptococcus neoformans.

In addition to studying key cellular processes in the fungal cell such as protein synthesis, amyloids and cell division, members of the KFG are also using yeast to explore the molecular basis of human diseases such as Alzheimer’s, Creutzfeldt-Jakob, Huntington’s and Parkinson’s diseases as well as ageing. The KFG not only provides support for both fundamental and medical/translational fungal research, but also provides an excellent training environment for young fungal researchers.

- Industrial Biotechnology Centre

The School houses one of the University’s flagship research centres – the Industrial Biotechnology Centre (IBC). Here, staff from Biosciences, Mathematics, Chemistry, Physics, Computing and Engineering combine their expertise into a pioneering interdisciplinary biosciences programme at Kent, in order to unlock the secrets of some of the essential life processes. These approaches are leading to a more integrated understanding of biology in health and disease. In the Centre, ideas and technology embodied in different disciplines are being employed in some of the remaining challenges in bioscience. With such an approach, new discoveries and creative ideas are generated through the formation of new collaborative teams. In this environment, the IBC is broadening and enriching the training of students and staff in science and technology.

- The Centre for Interdisciplinary Studies of Reproduction (CISoR)

The centre comprises several like-minded academics dedicated to the study of reproduction in all its forms. Drawing on a range of academic disciplines, CISoR's core philosophy is that the study of this fascinating field will advance further through a multidisciplinary approach. Impactful, excellent research forms the basis of CISoR’s activities including scientific advance, new products and processes, contribution to public policy, and public engagement.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/index.html

Read less

Show 10 15 30 per page



Cookie Policy    X