• University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
University of Manchester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Cambridge Featured Masters Courses
"pharmaceutical" AND "eng…×
0 miles

Masters Degrees (Pharmaceutical Engineering)

We have 213 Masters Degrees (Pharmaceutical Engineering)

  • "pharmaceutical" AND "engineering" ×
  • clear all
Showing 1 to 15 of 213
Order by 
The interdisciplinary master’s programme Chemical and Pharmaceutical Engineering at TU Graz connects the natural sciences of chemistry and pharmacy with the engineering field of chemical and process engineering. Read more

The interdisciplinary master’s programme Chemical and Pharmaceutical Engineering at TU Graz connects the natural sciences of chemistry and pharmacy with the engineering field of chemical and process engineering. In this one-of-a-kind study, you work together with internationally recognized lecturers in well-equipped laboratories. The study qualifies you to conduct high-quality national and international and to develop innovative chemical and pharmaceutical production systems for industry.

Klara Treusch, master's degree student in Chemical and Pharmaceutical Engineering:

"This master's programme is an interesting challenge for all who want to gain access to the chemical and pharmaceutical industries from the perspective of engineering technology. It opens doors to other fields of work, such as chemical and process engineering."

Compulsory Subjects

  • You become familiar with the most current theories, principles and methods in the engineering sciences.
  • You consider the economic and legal aspects of chemical and process engineering.
  • You deal with, for example, chemical engineering, particle process engineering, chemical thermodynamics and applied analytics.
  • You can specialize in the area of pharmaceutical process engineering.

Specialisation subjects

You may choose one of 2 areas of specialization:

CHEMICAL ENGINEERING

In this area specialization, you gain expertise in chemical and process engineering and learn about the mission of the chemical industries of the future – to develop sustainable and economical chemical processes.

PHARMACEUTICAL ENGINEERING

Intelligent pharmaceutical products will revolutionize medical care: Personalised products can be customized to fit the age, sex and lifestyle of individual patients. You learn ways to develop pharmaceutical products more quickly and reduce production costs.

Catalogues of elective courses

You may choose courses from the following catalogues of elective courses:

  • Chemical Engineering
  • Pharmaceutical Engineering
  • Technical Chemistry

During your studies, you will have the chance to improve and enhance your social and soft skills, for example, through project work, during lectures, while conducting written work and working in teams.

For the individual courses, please see the semester plan.



Read less
WHAT YOU WILL GAIN. - Practical guidance from biomedical engineering experts in the field. - 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading. Read more
WHAT YOU WILL GAIN

- Practical guidance from biomedical engineering experts in the field
- 'Hands on' knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college reading
- Credibility as a biomedical engineering expert in your firm
- Skills and know-how in the latest technologies in biomedical engineering
- Networking contacts in the industry
- Improved career prospects and income
- An EIT Advanced Diploma of Biomedical Engineering

Next intake is scheduled for June 06, 2017. Applications are now open; places are limited.

INTRODUCTION

Biomedical engineering is the synergy of many facets of applied science and engineering. The advanced diploma in biomedical engineering provides the knowledge and skills in electrical, electronic engineering required to service and maintain healthcare equipment. You will develop a wide range of skills that may be applied to develop software, instrumentation, image processing and mathematical models for simulation. Biomedical engineers are employed in hospitals, clinical laboratories, medical equipment manufacturing companies, medical equipment service and maintenance companies, pharmaceutical manufacturing companies, assistive technology and rehabilitation engineering manufacturing companies, research centres. Medical technology industry is one of the fast-growing sectors in engineering field. Join the next generation of biomedical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive and practical program. It provides a solid overview of the current state of biomedical engineering and is presented in a practical and useful manner - all theory covered is tied to a practical outcomes. Leading biomedical/electronic engineers with several years of experience in biomedical engineering present the program over the web using the latest distance learning techniques.

There is a great shortage of biomedical engineers and technicians in every part of the world due to retirement, restructuring and rapid growth in new industries and technologies. Many companies employ electrical, electronic engineers to fill the vacancy and provide on the job training to learn about biomedical engineering. The aim of this 18-month eLearning program is to provide you with core biomedical engineering skills to enhance your career prospects and to benefit your company/institution. Often universities and colleges do a brilliant job of teaching the theoretical topics, but fail to actively engage in the 'real world' application of the theory with biomedical engineering. This advanced diploma is presented by lecturers who are highly experienced engineers, having worked in the biomedical engineering industry. When doing any program today, a mix of both extensive experience and teaching prowess is essential. All our lecturers have been carefully selected and are seasoned professionals.

This practical program avoids weighty theory. This is rarely needed in the real world of industry where time is short and immediate results, based on hard-hitting and useful know-how, is a minimum requirement. The topics that will be covered are derived from the acclaimed IDC Technologies' programs attended by over 500,000 engineers and technicians throughout the world during the past 20 years. And, due to the global nature of biomedical engineering today, you will be exposed to international standards.

This program is not intended as a substitute for a 4 or 5 year engineering degree, nor is it aimed at an accomplished and experienced professional biomedical engineer who is working at the leading edge of technology in these varied fields. It is, however, intended to be the distillation of the key skills and know how in practical, state-of-the-art biomedical engineering. It should also be noted that learning is not only about attending programs, but also involves practical hands-on work with your peers, mentors, suppliers and clients.

WHO WOULD BENEFIT

- Electrical and Electronic Engineers
- Electrical and Electronic Technicians
- Biomedical Equipment/Engineering Technician
- Field Technicians
- Healthcare equipment service technicians
- Project Engineers and Managers
- Design Engineers
- Instrumentation Engineers
- Control Engineers
- Maintenance Engineers and Supervisors
- Consulting Engineers
- Production Managers
- Mechanical Engineers
- Medical Sales Engineers

In fact, anyone who wants to gain solid knowledge of the key elements of biomedical engineering in order to improve work skills and to create further job prospects. Even individuals who are working in the healthcare industry may find it useful to attend to gain key, up to date perspectives.

COURSE STRUCTURE

The program is composed of 18 modules. These cover the basics of electrical, electronic and software knowledge and skills to provide you with maximum practical coverage in the biomedical engineering field.

The 18 modules will be completed in the following order:

- Basic Electrical Engineering
- Technical and Specification Writing
- Fundamentals of Professional Engineering
- Engineering Drawings
- Printed Circuit Board Design
- Anatomy and Physiology for Engineering
- Power Electronics and Power Supplies
- Shielding, EMC/EMI, Noise Reduction and Grounding/Earthing
- Troubleshooting Electronic Components and Circuits
- Biomedical Instrumentation
- Biomedical Signal Processing
- C++ Programming
- Embedded Microcontrollers
- Biomedical Modelling and Simulation
- Biomedical Equipment and Engineering Practices
- Biomedical Image Processing
- Biomechanics and Assistive Technology
- Medical Informatics and Telemedicine

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
This programme will provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and process industries. Read more

This programme will provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and process industries. This programme also prepares graduates for a PhD study.

If you’ve studied chemical engineering before, you’ll develop your knowledge in key areas such as reaction engineering, process modelling and simulation, pharmaceutical formulation, and fuel processing. If your degree is in chemistry or another related science or engineering discipline, you’ll build your knowledge and skills to convert to a specialisation in chemical engineering.

The course has been designed to provide a greater depth of knowledge in aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes and associated manufacturing plants and to provide leadership in innovation, research and development, and technology transfer.

Specialist facilities

Your Research Project module gives you the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical engineering.

We have world-class facilities for carrying out research in manufacturing (including crystallisation), processing and characterising particulate systems for a wide range of technological materials, as well as facilities for nanotechnology and colloid science/technology.

We also have high performance computing facilities and state-of-the-art computer software, including computational fluid dynamics (CFD), for modelling and simulation of a wide range of processes. This will provide a strong background knowledge in industrial process and equipment design and optimisation.

Accreditation

This course is accredited by the Institution of Chemical Engineers (IChemE) under licence from the UK regulator, the Engineering Council. This adheres to the requirements of further learning for Chartered Engineer (CEng) status.

Course content

The path you take through this programme will depend on your background. If your degree is in Chemical Engineering, you’ll take a suite of compulsory modules on advanced topics such as recent advances in chemical engineering, reaction engineering, multi-scale modelling (including CFD), pharmaceutical formulation and fuel processing. If your degree is not in Chemical Engineering, you’ll build the knowledge you need to succeed in this area with modules such as Separation Processes, Reaction Engineering and Chemical Process Technology and Design.

You’ll then complement this with a choice of optional modules, allowing you to gain specialist knowledge in a topic that suits your career plans or personal interests. Different modules will be available to you depending on your background – for example, if your degree is in Chemical Engineering you could study Process Optimisation and Control, while if your degree is in another subject you might want to gain an understanding of energy management.

Every student undertakes a research project that runs throughout the year. You’ll focus on a topic of your choice that fits within one of the School’s research areas and produce an independent study, reflecting the knowledge and skills you’ve acquired. This will enable you to gain experience of planning, executing and reporting a research work of the type you will undertake in an industrial/academic environment.

Want to find out more about your modules?

Take a look at the Chemical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits

Optional modules

  • Team Design Project 15 credits
  • Chemical Products Design and Development 15 credits
  • Separation Processes 30 credits
  • Chemical Process Technology 15 credits
  • Chemical Reaction Processes 15 credits
  • Batch Process Engineering 15 credits
  • Chemical Engineering Principles 15 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Pharmaceutical Formulation 15 credits
  • Advanced Reaction Engineering 15 credits
  • Nuclear Operations 15 credits
  • Advances in Chemical Engineering 15 credits
  • Fuel Processing 15 credits
  • Materials Structures and Characterisation 15 credits

For more information on typical modules, read Chemical Engineering MSc in the course catalogue

Learning and teaching

We use a variety of teaching and learning methods including lectures, practicals, tutorials and seminars. Independent study is also an important element of the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including problem sheets, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessments.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in MSc Chemical Engineering have included:

  • Control of heat release and temperature levels in jacketed stirred tank vessels
  • Pool boiling heat transfer of nanofluids
  • Effect of surface wettability and spreading on Nanofluid boiling heat transfer
  • Aspen Plus simulation of CO2 removal by amine absorption from power plant
  • Modelling of CO2 absorption using solvents in spray and packed towers
  • Historical data analysis using artificial neural network modelling
  • Computational modelling of particulate flow
  • Characterisation of sedimentation process in two-phase flow based on continuity theory using impedance tomography
  • Finding a new technique for on-line monitoring of crystallisation process using an electrode probe.

A proportion of projects are formally linked to industry, and may include spending time at the collaborator’s site over the summer

Career opportunities

Career prospects are excellent. There is a wide range of career opportunities in the chemical and allied industries in process engineering, process design and research and development as well as in finance and management.

Graduates have gone on to work in a variety of roles at companies like National Environmental Standards and Regulations Enforcement, the National Centre of Science and Technology Evaluation, Invensys Operations Management, Worley Parsons, Hollister-Stier Laboratories, BOC, ASM Technologies and more. 



Read less
As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career. Read more

As a Master of Engineering (ME) graduate you will have the opportunity to either seek employment as a professional engineer, or start a research career.

The ME normally takes 12 months to complete full-time.  It builds on prior study at undergraduate level, such as the four-year BE(Hons) or BSc(Tech).  The degree requires 120 points, which can either be made up of 30 points in taught papers and a 90-point dissertation (research project), or one 120-point thesis.

If you enrol in an ME via the Faculty of Science & Engineering you can major in Engineering, and your thesis topic may come from our wide range of study areas such as biological engineering, chemical engineering, civil engineering, mechanical engineering, materials engineering, environmental engineering and electronic engineering.

The Faculty of Science & Engineering fosters collaborative relationships between science, engineering, industry and management.  The Faculty has developed a very strong research base to support its aims of providing you with in-depth knowledge, analytical skills, innovative ideas, and techniques to translate science into technology in the real world.

You will have the opportunity to undertake research with staff who are leaders in their field and will have the use of world-class laboratory facilities. Past ME students have worked on projects such as a ‘snake robot’ for disaster rescue and a brain-controlled electro-mechanical prosthetic hand.

Facilities

The University of Waikato School of Engineering’s specialised laboratories includes the Large Scale Lab complex that features a suite of workshops and laboratories dedicated to engineering teaching and research.  These include 3D printing, a mechanical workshop and computer labs with engineering design software.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Software engineering students will have 24 hour access to computer labs equipped with all the latest computer software.

Build a successful career

Depending on the thesis topic studied, graduates of this degree may find employment in the research and development department in a range of engineering industries, including energy companies, environmental agencies, government departments, biomedical/pharmaceutical industries, private research companies, universities, food and dairy industries, electronics, agriculture, forestry and more. The ME can also be a stepping stone to doctoral studies.

Career opportunities

  • Aeronautical Engineer
  • Automotive Engineer
  • Biotechnologist
  • Computer-aided Engineer
  • Engineering Geologist
  • Food and Drink Technologist
  • Laboratory Technician
  • Mechanical Engineer
  • Medical Sciences Technician
  • Patent Attorney
  • Pharmaceutical Engineer
  • Quality Assurance Officer
  • Research Assistant
  • Theoretical Physics Research


Read less
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www.gre.ac.uk/pg/engsci/mps

What you'll study

Full time

Students are required to study the following compulsory courses:

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time

- Year 1:

Students are required to study the following compulsory courses:

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:

Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)

- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out how to apply here - https://www.gre.ac.uk/study/apply



Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field. Read more

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

In addition to the compulsory courses you will take a range of optional courses, please review the "Degree Structure" portion the MSc website listed below to find further information on available courses and course descriptions:

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find our more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:



Read less
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances. Read more
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances.

The course aims to produce high quality pharmaceutical science graduates with the generic, subject-specific and transferable knowledge and skills suited to a career in the pharmaceutical industry or other related laboratory based scientific discipline.

The course provides a number of optional routes, leading to a named award in Pharmaceutical Science, appropriate for students already in, or planning a career in the Pharmaceutical Sciences profession. Other route options are:

Drug Design and Discovery

Pharmaceutical Manufacturing,

Pharmacological Sciences and

Pharmaceutical Quality Assurance.

Read less
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances. Read more
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances.

The course aims to produce high quality pharmaceutical science graduates with the generic, subject-specific and transferable knowledge and skills suited to a career in the pharmaceutical industry or other related laboratory based scientific discipline.

The course provides a number of optional routes, leading to a named award in Pharmaceutical Science, appropriate for students already in, or planning a career in the Pharmaceutical Sciences profession.

Other route options are:

Drug Design and Discovery

Pharmaceutical Analysis

Pharmacological Sciences

Pharmaceutical Quality Assurance

Read less
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances. Read more
Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances.

The course aims to produce high quality pharmaceutical science graduates with the generic, subject-specific and transferable knowledge and skills suited to a career in the pharmaceutical industry or other related laboratory based scientific discipline.

The course provides a number of optional routes, leading to a named award in Pharmaceutical Science, appropriate for students already in, or planning a career in the Pharmaceutical Sciences profession.

Other route options are:

Drug Design and Discovery

Pharmaceutical Analysis

Pharmaceutical Manufacturing

Pharmacological Sciences

Read less
The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. Read more

Mission and goals

The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. The educational path is intended to train students for designing equipment, devices, materials and procedures and for a correct introduction, development and management of biomedical technologies inside Companies and Health Structures, as well as freelance. The peculiar multidisciplinary structure of the programme allows developing a strong knowledge in electronics and informatics, mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines (biology, physiology and medicine).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Career opportunities

Graduated biomedical engineers find employment for the design, development and commercialization of biomedical devices, as well as in the pharmaceutical sector. Career opportunities are found: 1) in manufacturing companies which are active on health-care market with systems for prevention, diagnostics, therapy and rehabilitation; 2) in public and private hospitals for the management of health technologies; 3) in medical plant and equipment service companies; 4) in specialised biomedical laboratories; 5) in biomedical research 6) as freelance.
For a more specific training in scientific research in the area, a Ph.D. in Bioengineering is available.

The programme has 4 advised paths (besides the possibility to develop a personal path with some constraints):
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Presentation

See http://www.polinternational.polimi.it/uploads/media/Biomedical_Engineering_01.pdf
This postgraduate programme provides students with an engineering education applied to medical and biological issues. The educational path is intended to train students in the design of biomedical equipment, devices, materials and procedures and to offer a correct introduction to the management of biomedical technologies in companies and health bodies. The peculiar multidisciplinary structure of the programme allows the development of a strong knowledge in electronics and informatics, in mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines like biology, physiology and
medicine. The programme is taught in English.

Subjects

Four specializations available:
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Mandatory courses for all areas:
- mathematical and digital methods for engineering
- bioengineering of the motor system
- mechanics of biological structures
- bioengineering of autonomic control and respiratory systems
- biofluid dynamics
- biomechanical design
- biomachines (with laboratory)
- biomaterials
- endoprostheses
- biomimetics and tissue engineering
- biotechnological applications and bioreactors
- design of life support systems
- laboratory of tissue characterization
- laboratory of biomaterials + lab. of instrumental analysis
- laboratory of biofluid dynamics
- laboratory of biomechanical design
- computational biomechanics laboratory

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules
Semester 1:
- Applied Engineering Practice
- Downstream Processing
- Research and Communication

Semester 2:
- Applied Heterogeneous Catalysis

Semester 1 and 2:
- MSc Project

Optional Modules (select four)
Semester 1:
- Chemical Product Design
- Colloid Engineering and Nano-science
- Filtration
- Hazard Identification and Risk Management

Semester 2:
- Mixing of Fluids and Particles
- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. Read more

In just a brief duration of time - in a few minutes or even in a fraction of a second - a fire or an explosion can have catastrophic consequences in residential buildings or in industrial plant. In UK alone, hundreds get killed and tens of thousands are injured every year. Some single incidents cost millions of pounds, the total monetary cost of fire and explosions in the UK is estimated at £12 billion per year or approximately 1% of GDP.This course offers students from diverse academic backgrounds advanced training in the field of Fire and Explosion Engineering for those wishing to embark on a career, or further develop their career, in the industry. Particular emphasis is placed on fire and explosion protection systems within a legislative framework that is complex and fast-changing.Core modules will cover both foundation and advanced aspects of fire and explosion engineering, from the factors that influence flame spread to the latest research in explosion prediction. You’ll also gain a firm grounding in fire safety design and have the chance to design a fire protection system for a complex building.

Specialist facilities

  • An Enclosed Fire Rig Test facility
  • The Cone Calorimeter (standard and modified with controlled ventilation)
  • A 1m³ indicative standard fire furnace (planned for 2017)
  • Purser furnace
  • The Limiting Oxygen Index apparatus
  • The standard ISO vessel for dust explosions (in storage until at least 2017)
  • TGA (trace gas analyzer) and GC (gas chromatography) analytical equipment (off-line).
  • The on-line FTIR (Fourier transform infrared) toxic product analysis.
  • Mass spectrometer (MS).
  • Particulate emissions measurements (including particle size)
  • Access to the world class Leeds Electron Microscopy and Spectroscopy Centre (LEMAS), within the School, and high speed photography for visualisation of fast processes and optical analysis of particles before and after reaction.

Some of the modules on this programme are offered as short courses by the Faculty of Engineering’s Continuing Professional Development unit.

Find out more about our Fire Engineering short courses

This programme is also available to study part-time over 36 months.

Course content

You’ll study core modules that allow you to understand issues such as flame spread and steady burning, as well as developing your knowledge of fire protection designs for complex buildings. You’ll also review research around explosions, how they can be predicted and mitigated.

A major part of the MSc are two projects that will give you valuable experience and skills.

The first project involves the design of a protection system, so you’ll learn about the application of techniques such as sprinklers, pressurisation, smoke venting, automatic fire detectors, means of escape and emergency lighting systems.

The other is a lab or computational based project taking into account your own preferences. You can choose from the list of topics we offer each year, but most part-time students choose to put forward their own topic which may be related to the interests of the employer or sponsor. If you take this course part-time with the support of your employer, you can undertake your projects in the workplace.

Both projects are assessed on the basis of a written dissertation and an oral presentation.

If you choose to study part-time, you’ll need to visit Leeds six or seven times over three years. You’ll attend two presentation days and either four or five teaching weeks, depending on whether you choose the e-learning module Fire Risk Assessment and Management.

Course features include:

  • Extensive participation in course delivery by lecturers from industry brings strong industrial involvement to the course
  • Most taught modules are delivered in intensive CPD one week format. Modules are spread evenly throughout the year
  • Extensive participation in course delivery by lecturers from industry brings strong industrial involvement to the training package
  • Projects can be undertaken in the workplace (part-time) or at the University (full time and part time)
  • Block module format allows both full-time and part-time students a choice of modules.

The taught modules are assessed by coursework and 'open book' tests; typically within a period of 6-10 weeks from start to finish.

Want to find out more about your modules?

Take a look at the Fire and Explosion module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Fire Safety Design 45 credits
  • Fire Risk Assessment and Management 15 credits
  • Fire Dynamics and Modelling 15 credits
  • Fire and Explosion Investigation 15 credits
  • Explosion Prediction and Mitigation 30 credits

For more information on typical modules, read Fire and Explosion Engineering MSc Full Time in the course catalogue

For more information on typical modules, read Fire and Explosion Engineering MSc Part Time in the course catalogue

Learning and teaching

Each taught module is delivered in an intensive one-week block, allowing full and part-time students to study alongside each other. These teaching weeks will allow you to benefit from the expertise of our own academics – informed by their groundbreaking research – as well as a range of visiting lecturers from industry to gain an understanding of fire and explosion engineering in theory and practice.

Assessment

Taught modules are assessed by via coursework and ‘open book’ tests, typically within 6-10 weeks from start to finish.

Career opportunities

Challenging career opportunities for fire and explosion professionals are available in just about every type of business, industry and government operation.

They include fire and explosion consultancies, fire safety planning offices of local authorities, civil engineering and architectural companies, chemical/pharmaceutical companies, the oil and gas industries, fire and explosion protection equipment manufacturers, government bodies and departments, specialist research and testing labs and insurance companies.

Links with industry

Throughout the course you will have the opportunity to meet potential employers at the week-long taught courses.

The Fire programme at Leeds is actively supported and sponsored by, amongst others, the following companies/organisations:




Read less

Show 10 15 30 per page



Cookie Policy    X