• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Glasgow Featured Masters Courses
"pharmaceutical" AND "che…×
0 miles

Masters Degrees (Pharmaceutical Chemistry)

We have 219 Masters Degrees (Pharmaceutical Chemistry)

  • "pharmaceutical" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 219
Order by 
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research. Read more
The Masters in Chemistry with Medicinal Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, but with some specialisation in medicinal chemistry, suitable for a professional medicinal chemist capable of conducting research.

Why this programme

-The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
-You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
-All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
-You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry.
-The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses
-Inorganic, organic and physical chemistry
-Medicinal chemistry
-Frontiers of chemistry
-Chemistry problems.
-Special topics from inorganic, organic, and physical chemistry

Accreditation

MSc Chemistry with Medicinal Chemistry is accredited by the Royal Society of Chemistry (RSC).

Career prospects

Career opportunities in the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to positions such as:
-Researcher at Piramal Healthcare UK Ltd
-Assistant Lecturer and Researcher at a university

Read less
Why choose this course?. This course aims to. extend your comprehension of key chemical concepts and so provide you with an in-depth understanding of specialised areas of chemistry. Read more

Why choose this course?

This course aims to:

  • extend your comprehension of key chemical concepts and so provide you with an in-depth understanding of specialised areas of chemistry.
  • provide you with the ability to plan and carry out experiments independently and assess the significance of outcomes.
  • develop your ability to adapt and apply methodology to the solution of unfamiliar types of problems.
  • instil a critical awareness of advances at the forefront of the chemical sciences.
  • prepare you effectively for professional employment or research degrees in the chemical sciences.

What happens on the course?

You will build upon your previous undergraduate studies to develop an in depth knowledge of selected aspects of advanced cutting edge topics in chemistry.

MSc Chemistry Level 7 Programme (all modules are 20 credits unless otherwise specified)

*Advanced Topics in Organic Chemistry

*Advanced Topics in Inorganic Chemistry

*Advanced Topics in Physical Chemistry

*Advanced Topics in Chemical Analysis

MSc Research Project (120 credits)

*Select three from these four core option modules.

Why Wolverhampton?

  • Chemistry, and related science students, have excellent job prospects or go on to further study and/or research.
  • Our existing chemistry-related programmes, BSc Biochemistry and BSc Pharmaceutical Science have excellent student satisfaction rates (95% respectively) and we anticipate that our new Chemistry developments will achieve similar results.
  • Our compliment of existing, experienced staff (including several research professors), will expand as the course develops. We recently moved into our new £25m “state of the art” science facility. The new laboratory facilities were accompanied by generous investment in a range of new teaching, research and consultancy equipment.
  • Our chemistry-based subjects have maintained links with several local/regional chemical companies and we’ve had many successful collaborative research and development knowledge transfer programmes (KTP’s), our most recent was independently rated as “outstanding”, the highest grading possible. We shall continue to build upon our existing and expanding capacity to develop links with local employers.

Career Path

The UK’s chemical industry is one of the leading industrial contributors to the national economy and there are many opportunities to apply chemical knowledge, principles and skills to a successful career in the chemistry, pharmaceutical science, chemical engineering or other chemistry-related disciplines. “Chemistry will underpin economic growth, say industry leaders”, it was reported in the Royal Society of Chemistry (RSC) publication, Chemistry World, on the “Strategy for delivering chemistry-fuelled growth of the UK economy”. Currently the Chemistry-using industries contribute ~£195bn to the UK economy with approximately £10bn coming from chemical manufacturing and £9bn from pharmaceutical manufacturing. The areas of chemical manufacture, process technology, product development and application, and formulation skills are key areas of these chemical sciences. In chemicals (including pharmaceuticals) 95.6% of UK companies are SME’s employing 42% of the total workforce and account for 29% of turnover.

If you choose not to go into the chemical industry there are still extensive career opportunities in teaching and academic research

What skills will you gain?

You will have evidenced good practical skills, be literate, numerate, have high level of IT skills and be capable of logical, scientific, critical thinking and problem solving. You will have developed a great deal of autonomous decision making and research capability and you will be able to evidence a range of professional, personal transferable skills and be well versed with the concept of continuous professional development. These skills will make you well equipped for the workplace, be it in a chemistry environment or the wider world of work in general, or for further research if you so choose.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr02/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits) or

Research Project Nodule (30 credits)

CM6022 Research Project and Dissertation in Pharmaceutical Analysis (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr04/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
EV4002 Environmental Monitoring (10 credits)

Research Project Module (30 credits)

CM6021 Research Project and Dissertation in Environmental Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more

The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Teaching and learning methods

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

Research project

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

Outcomes

The aims of the programme are to:

  • Acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences
  • Enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry
  • Develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations
  • Gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems
  • Enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www.gre.ac.uk/pg/engsci/mps

What you'll study

Full time

Students are required to study the following compulsory courses:

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time

- Year 1:

Students are required to study the following compulsory courses:

English Language Support (for Postgraduate students in the Faculty)

Analytical Methods and QA/QC Principles (30 credits)

Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:

Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)

Drug Discovery and Medicinal Chemistry (30 credits)

MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:

- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)

- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out how to apply here - https://www.gre.ac.uk/study/apply



Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research. Read more
The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research.

Why this programme

◾The School of Chemistry is a member of ScotCHEM that brings together seven Universities in Scotland. ScotCHEM is committed to excellence and to providing the highest quality postgraduate education and researcher experience.
◾All of our Masters programmes in the School of Chemistry are accredited by the Royal Society of Chemistry.
◾You will benefit from our links with industrial scientists, often from pharmaceutical companies, who regularly visit the School of Chemistry to give presentations.
◾You will undertake a research project embedded within one of our internationally-leading research groups, and supplemented by specialist lecture courses.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, preparing and presenting oral and poster presentations, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾Our Masters programmes will, therefore, provide an excellent foundation for any kind of career of scientific leadership in academia and industry
◾The chemistry research school of the Universities of Glasgow and Strathclyde are linked in WestCHEM, forming a broad, dynamic research environment.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Chemistry at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

Programme structure

From September to March, you will attend lectures and tutorials. You will undertake a 12-week research project from June to August, which will provide practical application and consolidation of earlier work and enhance your ability to do independent work and present results effectively.

Core courses

◾Inorganic, organic and physical chemistry
◾Frontiers of chemistry
◾Chemistry problems.
◾Special topics from inorganic, organic, and physical chemistry.

Accreditation

MSc Chemistry is accredited by the Royal Society of Chemistry (RSC)

Career prospects

Career opportunities include the chemical or pharmaceutical industry, from bench work and instrumentation to regulatory affairs, health & safety, and intellectual property/patents. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Graduates of this programme have gone on to the following positions:
Teacher at a UK Secondary School.

Read less
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. Read more
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. This MSc in Medicinal Chemistry will allow you to specialise in this area and explore the wider context of drug discovery, business and healthcare.

On the course, you will develop the specific technical knowledge, understanding and laboratory skills needed to design drugs. You will also investigate the relationship between medicinal chemists and drug discovery companies with stakeholders such as patients, investors and governments.

Distinctive features:

• Available on a one year full-time or three year part-time basis.
• Explore medicinal chemistry in a wider industrial context, including how businesses interact with patients and investors.
• Specialise in an area of interest to you with an end of course research project.
• Some industrial and academic placements are available in the UK or abroad for the research project.
• Network and build contacts with industry professionals who are frequently invited to present guest seminars.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the skills required by contemporary medicinal chemists, such as the techniques and trends in modern drug discovery. We will also look in more detail at the modelling of biological macromolecules and drug targets. We will then follow the process of drug development through from laboratory to clinic.

Upon successful completion of part one, you will progress to part two, the summer research project. We will make a range of project options available to you from the field of medicinal chemistry. For this project, depending on the subject you choose, you may work with a research group in the School of Chemistry or our partner, the School of Pharmacy and Pharmaceutical Studies. You may, if available, also be able to complete this project with one of our industrial partners or within another academic institution in the UK or abroad.

Core modules:

Colloquium
Key Skills for Postgraduate Chemists
Drug Discovery Chemistry
Techniques in Drug Discovery
Drug Targets
Drug Development from Laboratory to Clinic
Trends in Drug Discovery
Practical Medicinal Chemistry
Research Project

Optional modules:

Module title Module code Credits
Modelling of Biological Macromolecules
Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Biocatalysis II - Industrial Applications of Biocatalysis
Bioinorganic Chemistry
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Advanced Techniques in Organic and Biological Chemistry
Analytical and Structural Techniques in Chemical Biology
Bio-imaging Applications of Coordination Chemistry
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, case studies, computer-aided sessions, practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field. You may have the opportunity to complete your project during a placement in industry or with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We will also invite industry experts for seminars with our students within one of the core modules. Students will also benefit of the weekly seminars organized by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We will provide regular feedback on your workload, written and oral depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are happy to give advice and guidance on your progress. We aim to provide you with feedback within two weeks of you submitting an assessment.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use coursework, assessed workshops and presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Employment opportunities for successful graduates include the expanding worldwide pharmaceutical industry, where many choose to specialise in the research and development of new drugs. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Placements

For the end of course research project we may have some placements available with one of our industrial partners or at another UK or overseas academic institution that we have an agreement with. Please enquire for further details.

Read less
Why choose this course?. This course aims to. extend your comprehension of key chemical concepts particularly in the field of instrumental chemical analysis and so provide you with an in-depth understanding of specialised areas of chemistry. Read more

Why choose this course?

This course aims to:

  • extend your comprehension of key chemical concepts particularly in the field of instrumental chemical analysis and so provide you with an in-depth understanding of specialised areas of chemistry
  • provide you with the ability to plan and carry out experiments independently and assess the significance of outcomes
  • develop your ability to adapt and apply methodology to the solution of unfamiliar types of problems
  • instil a critical awareness of advances at the forefront of the chemical sciences with special emphasis on instrumental chemical analysis
  • prepare you effectively for professional employment or research degrees in the chemical sciences.

What happens on this course?

You will build upon your previous undergraduate studies to develop an in depth knowledge of selected aspects of advanced cutting edge topics in chemistry.

MSc Chemistry Level 7 Programme (all modules are 20 credits unless otherwise specified)

*Advanced Topics in Organic Chemistry

*Advanced Topics in Inorganic Chemistry

*Advanced Topics in Physical Chemistry

#Advanced Topics in Chemical Analysis

#Laboratory Quality Assurance and Management

#Pharmaceutical Analysis

#MSc Research Project (120 credits)

If you are a direct entrant to the University of Wolverhampton you are expected to do the core modules (#) but if you have previously done the BSc Hons) Chemistry degree at Wolverhampton then you can replace Laboratory Quality assurance and Management with one of the three options*

Why Wolverhampton?

  • Chemistry, and related science students, have excellent job prospects or go on to further study and/or research.
  • Our existing chemistry-related programmes, BSc Biochemistry and BSc Pharmaceutical Science have excellent student satisfaction rates (95% respectively) and we anticipate that our new Chemistry developments will achieve similar results.
  • Our compliment of existing, experienced staff (including several research professors), will expand as the course develops. We recently moved into our new £25m “state of the art” science facility. The new laboratory facilities were accompanied by generous investment in a range of new teaching, research and consultancy equipment.
  • Our chemistry-based subjects have maintained links with several local/regional chemical companies and we’ve had many successful collaborative research and development knowledge transfer programmes (KTP’s), our most recent was independently rated as “outstanding”, the highest grading possible. We shall continue to build upon our existing and expanding capacity to develop links with local employers.

Career Path

The UK’s chemical industry is one of the leading industrial contributors to the national economy and there are many opportunities to apply chemical knowledge, principles and skills to a successful career in the chemistry, pharmaceutical science, chemical engineering or other chemistry-related disciplines. “Chemistry will underpin economic growth, say industry leaders”, it was reported in the Royal Society of Chemistry (RSC) publication, Chemistry World, on the “Strategy for delivering chemistry-fuelled growth of the UK economy”. Currently the Chemistry-using industries contribute ~£195bn to the UK economy with approximately £10bn coming from chemical manufacturing and £9bn from pharmaceutical manufacturing. The areas of chemical manufacture, process technology, product development and application, and formulation skills are key areas of these chemical sciences. In chemicals (including pharmaceuticals) 95.6% of UK companies are SME’s employing 42% of the total workforce and account for 29% of turnover.

If you choose not to go into the chemical industry there are still extensive career opportunities in teaching and academic research

What skills will you gain?

You will have evidenced good practical skills, be literate, numerate, have high level of IT skills and be capable of logical, scientific, critical thinking and problem solving. You will have developed a great deal of autonomous decision making and research capability and you will be able to evidence a range of professional, personal transferable skills and be well versed with the concept of continuous professional development. These skills will make you well equipped for the workplace, be it in a chemistry environment or the wider world of work in general, or for further research if you so choose.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries. Read more
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries.

This course provides expert critical and technical knowledge related to the development, analysis and production of medicines, the drug industry and regulatory affairs.

You'll study recent trends in chemical, biological and biotechnological therapeutics and evaluate the latest technologies used in the pharmaceutical industry.

You'll also gain an understanding of the processes and methods used in clinical trials and the regulation of medicines and acquire the skills and knowledge to pursue your career in pharmaceutical science.

See the website http://www.napier.ac.uk/en/Courses/MSc-Pharmaceutical-Science-Postgraduate-FullTime

What you'll learn

This course provides the opportunity to acquire all the attributes necessary for a successful career in pharmaceutical science, undertaking lead research and development, or analytical management roles in the drug and healthcare industries.

You’ll acquire broad knowledge of contemporary, integrated drug discovery strategies and acquire the necessary skills to communicate effectively across the key, diverse component disciplines with other professional scientists and non-specialist audiences.

You’ll develop broad knowledge of current pharmaceutical analysis and quality control strategies and will learn about GMP and GLP compliance. You’ll also gain an in-depth critical understanding of current research in biotechnology and pharmaceutical science.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices including specialist equipment such as HPLC, UV/Vis, and FTIR. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or pharmaceutical industry in the UK or overseas.

You‘ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course taken over one year and split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research.

Modules

• Current practice in drug development
• Molecular pharmacology and toxicology
• Current topics in pharmaceutical science
• Research skills
• Quality Control and Pharmaceutical Analysis
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

A large proportion of our graduates enter laboratory based and research management based product development work. They are employed in industries ranging from the big pharmaceutical companies to developing biotech companies; contract drug testing companies and service providers to the pharmaceutical and healthcare industries; hospital laboratories, NHS and local government.

If you currently work in a relevant sector, this course will enhance your prospects for career progression. This qualification also provides a sound platform for study to PhD level in pharmaceutical and biomolecular sciences and an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Why choose this course?. Read more

Why choose this course?

Pharmaceutical Science is a relatively new discipline and is concerned with fostering a multi-disciplinary approach towards the study of exciting new developments in the chemical, biological and biomedical science areas focusing upon the biochemistry, pharmacology, design, methods of analysis and delivery of pharmaceutical substances.

The course aims to produce high quality pharmaceutical science graduates with the generic, subject-specific and transferable knowledge and skills suited to a career in the pharmaceutical industry or other related laboratory based scientific discipline.

The course provides two routes, leading to a named award in Pharmaceutical Science, appropriate for students already in, or planning a career in the Pharmaceutical Sciences profession.

What happens on the course?

Your modules will include:

  • Pharmaceutical Analysis
  • Research Methods
  • Sources of Drugs and Drug Actions
  • Formulation Science
  • Strategies and Methods in Drug Discovery, Design and Development
  • Natural Products and Medicinal Chemistry
  • Research Project

Why Wolverhampton?

The course will provide you with a thorough grounding in the basic principles of Pharmaceutical Science and will equip you with the skills necessary for successful postgraduate study.

Pharmaceutical science is well established at Wolverhampton and benefits from a long tradition of teaching and research in the chemical and biological sciences.

This course gives students an excellent opportunity to study core science as well as the modern developments that are occurring at the boundaries between biology, chemistry and clinical practice.

Career Path

The Pharmaceutical Science course is attractive if you are seeking an academic research career and/or wish to make yourself highly employable as a pharmaceutical scientist, enabling you to specialize in the key area of drug discovery and design.

What skills will you gain?

Specialist modules offer you the opportunity to gain knowledge in key and emerging areas of Pharmaceutical Science, focusing on drug discovery and design.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
Your programme of study. Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. Read more

Your programme of study

Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. The programme at Aberdeen is accredited by the Royal Society of Chemistry. Aberdeen is noted for Nobel prizes within Chemistry which include the invention of modern chromatography (Synge 1952) and the discovery of a new element - protactinium (Soddy 1921).  Teaching at Aberdeen is informed by world class research within food security. Class sizes are kept small to enable you to have strong teaching interaction and support in your studies. You will be taught by many staff in the environment group (TESLA) https://www.abdn.ac.uk/ncs/departments/chemistry/trace-element-speciation-laboratory-111.php and (MBC) https://www.abdn.ac.uk/ncs/departments/chemistry/marine-biodiscovery-centre-112.php

The programme focuses on specialised modern analytical methodology. The range of industries or institutes where these skills are asked for includes the pharmaceutical industry, environmental institutions, research institutes and also the oil & gas industry. There are many new innovations which require chemists with advanced skills to analyse and test new methods of providing health via IOT devices, smart phones and small sensors deployed throughout the body to quickly provide analysis and customised recommendations.

Courses listed for the programme

Semester 1

Advanced Analytical Methodologies A and B

Practical Exercise and Professional Skills in Analytical Chemistry

Semester 2

Research Techniques and Professional Skills and Problem Solving Theory and Practice

Research Project in Analytical Chemistry

Semester 3

Research Project in Analytical Chemistry

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/3/analytical-chemistry/

Why study at Aberdeen?

  • A Royal Society of Chemistry accredited degree programme
  • Alumni feedback and mentor students on this programme
  • Main areas are Bimolecular Chemistry (Natural products, medicinal chemistry, environmental chemistry, surface and catalysis

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
The pharmaceutical industry and pharmacies are developed in a complex and highly regulated environment. Research of new drugs is quite expensive and you need enough time for it. Read more

The pharmaceutical industry and pharmacies are developed in a complex and highly regulated environment. Research of new drugs is quite expensive and you need enough time for it.

For that reason, pharmaceutical marketing professionals must be prepared to meet the challenges they encounter on the way to the success of the brands they manage.

This Master MBA with specialization in Pharmaceutical Marketing offers the opportunity to train and develop the skills in the field of business management, marketing, branding and digital communication in order to implement strategic plans to products, services or companies with the best strategy adapted to all current regulations.

ADDRESSED TO:

  • Graduates who wish to specialize in the field of pharmaceutical marketing, especially recommended for graduates in Pharmacy, Chemistry, Medicine, Biology and Veterinary.
  • Community pharmacists interested in learning to develop and implement a strategic and tactical marketing plan in your community pharmacy.
  • People who work in companies linked to the pharmaceutical industry sector.
  • Any professional community pharmacy or pharmaceutical company looking for a specialization in commercial and marketing areas.

Objectives

This master aimed at the pharmaceutical industry claims that the student is able to implement a strategy to address successfully as well as enable you so you can evaluate the suitability of a business strategy, analyzing the marketing plan in which it is based, thus ensuring the desired results for your company.

  • Understanding the complexity of the pharmaceutical environment to be able to perform efficient management of the community pharmacy or pharmaceutical laboratory.
  • Learn to develop a marketing plan on-off, both the pharmaceutical industry and in the community pharmacy and track it, defining objectives and monitoring their behavior in order to reorient the actions of the plan if necessary.
  • Get the skills and resources that enable professionals constriur "brands pharmacy" sustainable "product brands" that meet market demands and successful over time.

Methodology and Evaluation

METHODOLOGY

MFI offers a flexible methodology adapted to your needs, whatever your geographical location or time availability. This master can be studied under:

  • Online Methodology: All the agenda will be on hand from our virtual campus 24 hours a day, 7 days a week.
  • Distance methodology: have course material in book form.

All contents are fully updated and have great technical, easily understandable and with a clear practical vocation rigor. IMF offers you:

  • e-face tutoring staff (via forums, chat, phone, email).
  • Webinars.
  • Debates and discussion groups through forums and chats.
  • Self-assessment test.
  • Readings, case studies and documentation.
  • Live classes.

EVALUATION

Continuous assessment as advances in the study of the Master. Each module will be assessed by combining online and development of case examination; overcoming will free each subject.

Likewise, obtaining master's degrees and Master MFI University Camilo José Cela, subject to overcoming each module testing and the development of a master work order.

Career prospects

Students who pass this master can work in:

  • Community pharmacies
  • Marketing companies or agencies of the pharmaceutical industry
  • advertising agencies in the health sector
  • pharmaceutical distributors
  • Pharmaceutical business schools
  • hospital pharmacies


Read less

Show 10 15 30 per page



Cookie Policy    X