• University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Leeds Featured Masters Courses
"pharmaceutical" AND "ana…×
0 miles

Masters Degrees (Pharmaceutical Analysis)

We have 264 Masters Degrees (Pharmaceutical Analysis)

  • "pharmaceutical" AND "analysis" ×
  • clear all
Showing 1 to 15 of 264
Order by 
The course involves a comprehensive treatment of the science and technology of pharmaceutical analysis with particular emphasis on the regulatory environment in which the pharmaceutical industry operates. Read more
The course involves a comprehensive treatment of the science and technology of pharmaceutical analysis with particular emphasis on the regulatory environment in which the pharmaceutical industry operates. It is intended for suitably qualified graduates currently working in or aspiring to work in the pharmaceutical industry - in particular non-pharmacy graduates employed in quality control or quality assurance roles requiring specialised training, retraining or upgrading of skills. The course may also be attractive to technical managers in regulatory affairs, product development and other related areas. The objective is to equip graduates with the appropriate analysis skills required by the pharmaceutical and veterinary manufacturing industries.

The course is available for full-time study over one calendar year or part-time over two years and consists of lectures, workshop and laboratory work. Part-time teaching is normally scheduled for Fridays during academic terms. The course comprises lectures, workshops, seminars, laboratory work, written assignments and factory visits. In addition each student must write a major essay on a designated topic in the area of pharmaceutical analysis. Students proceeding to a M.Sc. degree will be required to undertake a research project and present a detailed scientific report at the end of the course.

The course consists of eight basic modules: regulatory aspects of pharmaceutical analysis, statistics, GLP chromatographic analysis, spectroscopic and physical methods of analysis, pharmacopoeial methods of drug analysis, analysis of low level drug analysis, specialized pharmaceutical methods of analysis, biological and pharmacological methods and pharmaceutical formulation.

The taught modules are supported by lectures and workshops on presentation and research skills and visits to industrial laboratories. The course is taught mainly by College staff, although there is a contribution from specialist visiting lecturers. The research project may be conducted either in the School of Pharmacy or at the student's place of employment but in either case supervision is exercised by a member of the School of Pharmacy academic staff.

Overall assessment of candidates is based on tutor marked assignments (TMAs) during the course work and written examinations in May/June each year. Credits are available for all assignments including laboratory reports. The M.Sc. project report should be of 20,000 words and is examined in September. Candidates must successfully complete the taught component of the course at the Trinity term examinations, before proceeding to the M.Sc. project. Provision is available for a supplemental examination in September each year if required. A reasonable attempt is required in all aspects of the examination process. A pass mark of 40% is normally required but compensation is applied where appropriate.

Read less
This. MRes Pharmaceutical Analysis. course enables you to develop and further your knowledge of pharmaceutical and chemical analysis, with a carefully put together range of core modules. Read more

This MRes Pharmaceutical Analysis course enables you to develop and further your knowledge of pharmaceutical and chemical analysis, with a carefully put together range of core modules. You can expand your interests by selecting a pharmaceutical analysis led research project within one of the diverse range of internationally recognised pharmaceutical analysis research groups (alongside PhD students and post doctoral research fellows).

We have links scientists from AstraZeneca and Vectura deliver some of the module content relevant to their workplace. Other guest lecturers from a variety of other companies and universities also present their research.

This course has been accredited by the Royal Society of Chemistry.

Modules

  • Organic synthesis and characterisation of biologically active compounds
  • Drug detection, analysis, and screening
  • Research methods and independent study
  • Research project

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
The overall aim of the programme is to provide advanced training in chemical analysis, with a focus on applications in the pharmaceutical sector, providing students with an appropriate skill-set, knowledgebase and practical experience in preparation for a career either in industrial or academic chemical analysis research in a supportive learning environment. Read more

COURSE OVERVIEW

The overall aim of the programme is to provide advanced training in chemical analysis, with a focus on applications in the pharmaceutical sector, providing students with an appropriate skill-set, knowledgebase and practical experience in preparation for a career either in industrial or academic chemical analysis research in a supportive learning environment. The aims and objectives are to:
• prepare the student to move directly into graduate level employment in the chemical / pharmaceutical industry, or in a non-chemistry related industry,
• enhance their employability skills including the ability to work in a team, written and oral presentation skills, numeracy and preparation for self-motivated lifelong learning, professional development and service to society,
• gain appropriate knowledge and subject specific practical skills to permit students to progress to either an academic research degree (PhD) or an industrial research position,
• provide a practical research training through successful completion of a substantial piece of research in pharmaceutical analysis, and
• undertake research at the forefront of the analytical sciences at an advanced level.
The programme is designed to train students in the appropriate skills for them to be able to pursue a career in chemical analysis, either in an academic or industrial context, with particular focus on pharmaceutical analysis. The course is structured in a way that will ensure hands-on experience with the majority of techniques and instrumentation used nowadays in modern analytical laboratories.The course comprises of four taught modules that cover the key aspects of Pharmaceutical Analysis, including Advanced Separation Science, Advanced Spectroscopic Techniques, Solid State Characterisation Techniques and Quality Assurance and Control in the Pharmaceutical Industry.

RESEARCH PROJECT

All students will undertake a research project supervised by an academic member of staff from either the School of Chemistry and Chemical Engineering or the School of Pharmacy, followed by a written dissertation and an oral presentation, while the option to carry out an industry based project will be available.

MODE OF STUDY

The course is offered on a full-time and part-time basis, in order to accommodate students already in employment. The full-time course will last one year and the part-time course two years.

Read less
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. Read more
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. You will gain a strong background in the theory of analytical techniques used in pharmaceutical science and how to apply them to complex problems in an industrially relevant context. You can choose to combine your studies with training in the fundamentals of management theory.

The Pharmaceutical Analysis MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, which is the statutory qualification for a public analyst.

What will you study?

You will gain key skills in the specialised area of pharmaceutical analysis, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. In addition to studying core analytical techniques and their applications, you will be introduced to various pharmaceutical technologies, for example, formulations and topics such as clinical pharmacokinetics.

You may be offered a placement within industry (depending on your results and project availability) where you will carry out your independent research project.

The Management Studies option enables you to explore the fundamentals of management theory within the commercial and public sectors.

Assessment

Exams, laboratory reports, assignments, case studies, oral presentations, poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Molecular and Atomic Spectroscopy
-Separation Science
-Pharmaceutical and Analytical Technology
-Statistics and Quality Systems
-Project

Read less
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. Read more
This course enables you to gain a recognised qualification that will further your career in the pharmaceutical industry or public services, while also providing an excellent foundation for a further research degree. You will gain a strong background in the theory of analytical techniques used in pharmaceutical science and how to apply them to complex problems in an industrially relevant context. You can choose to combine your studies with training in the fundamentals of management theory.

The Pharmaceutical Analysis MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, which is the statutory qualification for a public analyst.

What will you study?

You will gain key skills in the specialised area of pharmaceutical analysis, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. In addition to studying core analytical techniques and their applications, you will be introduced to various pharmaceutical technologies, for example, formulations and topics such as clinical pharmacokinetics.

You may be offered a placement within industry (depending on your results and project availability) where you will carry out your independent research project.

The Management Studies option enables you to explore the fundamentals of management theory within the commercial and public sectors.

Assessment

Exams, laboratory reports, assignments, case studies, oral presentations, poster presentations, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Management Studies pathway modules
-Molecular and Atomic Spectroscopy
-Separation Science
-Pharmaceutical and Analytical Technology
-Business in Practice
-Project

Read less
Our Pharmaceutical Analysis & Quality Control MSc will enable you to develop your expertise in the quality assurance and quality control of products as molecular entities. Read more

Our Pharmaceutical Analysis & Quality Control MSc will enable you to develop your expertise in the quality assurance and quality control of products as molecular entities. The programme has a strong scientific approach, and we have specifically designed it to improve the skills of pharmacists and other chemical graduates. You will have the opportunity to work with leading experts on projects in our research-focused labs, where you will gain hands-on experience with the latest techniques and instruments.

Key benefits

  • We are ranked 7th in the world for Pharmacy & Pharmacology (QS World University Rankings by Subject 2017).
  • Well-equipped laboratories give you lots of 'hands-on' time for a range of modern techniques and instruments.
  • Located in the centre of London in an institute that is renowned for its international research profile.
  • You will learn about Quality Assurance (QA), Quality Control (QC) and regulatory affairs, which are crucial when working in industry.
  • Opportunity to undertake an extended project of your choosing in the labs of internationally-rated scientists.

Description

This course will allow you to study the science and application of modern and traditional techniques for analysis of pharmaceutical products at an advanced level. We will give you the knowledge and expertise to assist in the discovery and development of better medicines and to provide regulatory data to ensure product integrity. You will study the scientific principles underlying quality control for a career in the pharmaceutical industry, health service, research institutes or regulatory authorities.

Course format and assessment

Teaching

You will be taught by and work alongside scientists who are experts in the field and who work in an internationally leading team. Your study time will be as follows:

  • Lectures: approximately 160 hours
  • Lab classes/tutorials: approximately 160 hours
  • Research project module: six months
  • Self-study time: Approximately 40 hours per week

Typically, one credit equates to ten hours of work.

Assessment

We will assess you through a variety of methods;

  • Written exam
  • Lab assessment
  • Research project

 The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, this may change if the course modules change.

Regulating body

King’s College London is regulated by the Higher Education Funding Council for England.

Career prospects

Some of our recent graduates have gone on to study for a PhD. Others have transferred the skills and knowledge they developed with us to work in R&D laboratories in the pharmaceutical industry (including Pfizer, GSK and Novartis) or to positions with regulatory agencies. Our overseas students have taken up similar positions in their home countries.



Read less
This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances. Read more

Why this course?

This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances.

You’re introduced to techniques for evaluating analytical data and validating analytical methods. You’ll also examine strategies for analytical research and development.

You’ll gain practical experience in a wide range of modern instrumentation and techniques.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/pharmaceuticalanalysis/

You’ll study

The course consists of four theory and two practical modules running between October and April followed by examinations.
If you pass all exams and wish to proceed to MSc then you’ll undertake a 10-week research project. This will be in the University or at an external company or organisation. You’ll submit a thesis at the end of August.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.
The course has access to the full range of analytical spectroscopic and chromatographic instrumentation including:
- Nuclear Magnetic Resonance (NMR)
- Ultra-Violet (UV)
- Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
- Mass Spectrometry (MS)
- High-Pressure Liquid Chromatography (HPLC)
- Gas Chromatography (GC)
- Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)

Teaching staff

- Dr David Watson, Course Leader
Dr Watson’s general research interests include:
- mass spectrometry-based metabolomics
- mass spectrometry imaging
- chromatographic retention mechanisms
- chemical profile and biological properties of propolis

- Dr Darren Edwards
Dr Edwards teaches at both undergraduate and postgraduate level in analytical chemistry, specifically:
- spectroscopy (UV/visible, AA, ICP, FP)
- chromatography (HPLC/TLC)
- bioanalysis and use of pharmacopeias

- Dr Iain D H Oswald
Dr Oswald is part of the team that teaches spectroscopic methods such as IR, spectrofluorimetry and circular dichroism. His research focuses on materials at high pressure and he has a general interest in the solid-state and polymorphism/co-crystallisation of materials.

- Dr Christine Dufes
Dr Dufes teaches Binding Assays on the MSc course. Her research interests are:
- Design and development of novel tumour-targeted anti-cancer therapeutic systems
- Design and development of novel therapeutic systems able to reach the brain after systemic administration, with the ultimate aim to facilitate drug delivery to brain tumours and neurodegenerative disorders.

- Dr RuAngelie Edrada-Ebel
Dr Edrada-Ebel teaches NMR spectroscopy and Mass Spectrometry in Pharmaceutical Analysis. Her research focuses on natural products chemistry of macro-organisms and micro-organisms from both the marine and the terrestrial habitat.

English language requirements

English language minimum IELTS 6.5.
We offer a range of English Language course for students who wish to improve their English. Module 3 is free of charge to all applicants and we strongly recommend all international students to take advantage of this free course.
We also offer comprehensive English language pre-sessional and foundation courses for students whose IELTS scores are below 6.5.
For students with IELTS of 6.0, an offer can be made conditional on completing Modules 2 and 3 of Pre-sessional English.
For students with IELTS of 5.5, an offer can be made conditional on completing Modules 1, 2 and 3 of Pre-sessional English.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course is taught by experts based in SIPBS. There’s also specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical and analytical industries and legislative bodies, including the European Pharmacopoeia.
Teaching of theory and applications is through lectures, tutorials and web-based learning. The material is further reinforced with practical sessions which provide you with hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through written and practical examinations and submission of a thesis (MSc students only).

Careers

Many of our graduates obtain positions in the pharmaceutical & chemical industries and some have continued into PhD research.

Previous graduates of the course include:
- a number of world-renowned academics
- the current Head of the United Nations Office on Drugs and Crime
- the previous Head of the European Pharmacopoeia Laboratory based in Strasbourg

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations. Read more

Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations.

You learn the skills of an analyst and become familiar with the principles of modern instrumental analytical techniques, analytical methods and statistics. You learn how to conduct your tests according to regulations which demand that you work under a strict quality assurance and quality control regime.

Because we have designed the course in close consultation with the pharmaceutical industry, your training is excellent preparation for a career in the industry. In addition to giving input on course structure, industrial practitioners deliver lectures on a variety of topics which relate to industry. You can take modules individually for continuing professional development.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. We also have excellent research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers, which are used in taught modules and research projects.

As a student, you

  • gain knowledge and practical skills to operate commonly used analytical laboratory instruments
  • become familiar with automated approaches to analysis and process analytical technology
  • apply good experimental design techniques and use statistical methods for data evaluation
  • develop your knowledge of validated analysis methods for determining chemical compounds and elements in a range of sample types
  • understand the principles and practice of laboratory quality systems
  • interpret mass spectra and nuclear magnetic resonance data.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Quality issues, laboratory accreditation and the analytical approach (15 credits)
  • Separation, detection and online techniques (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Drug detection and analysis (15 credits)
  • Methods for analysis of molecular structure (15 credits)
  • Process analytical technology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Assessment

Mostly by coursework including

  • problem solving exercises
  • case studies
  • practical laboratory work
  • written examinations.

Research project assessment includes a written report and viva voce. 

Employability

You improve your career prospects in areas such as • pharmaceutical research and drug development • medical research in universities and hospitals • care products • biotechnology companies • government research agencies.

It also offers you the training and knowledge to go on to research at PhD level in pharmacology, biotechnology pharmaceutical and analytical science.

How we support your career

Sheffield Hallam University is committed to the employability of its students. That’s why we design so many of our courses with employers. Find out how we can support your career.



Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries. Read more
Explore drug development, manufacture and production and enhance your prospects for a career as a drug discovery or development scientist in the pharmaceutical, healthcare, nutraceutical or bioscience industries.

This course provides expert critical and technical knowledge related to the development, analysis and production of medicines, the drug industry and regulatory affairs.

You'll study recent trends in chemical, biological and biotechnological therapeutics and evaluate the latest technologies used in the pharmaceutical industry.

You'll also gain an understanding of the processes and methods used in clinical trials and the regulation of medicines and acquire the skills and knowledge to pursue your career in pharmaceutical science.

See the website http://www.napier.ac.uk/en/Courses/MSc-Pharmaceutical-Science-Postgraduate-FullTime

What you'll learn

This course provides the opportunity to acquire all the attributes necessary for a successful career in pharmaceutical science, undertaking lead research and development, or analytical management roles in the drug and healthcare industries.

You’ll acquire broad knowledge of contemporary, integrated drug discovery strategies and acquire the necessary skills to communicate effectively across the key, diverse component disciplines with other professional scientists and non-specialist audiences.

You’ll develop broad knowledge of current pharmaceutical analysis and quality control strategies and will learn about GMP and GLP compliance. You’ll also gain an in-depth critical understanding of current research in biotechnology and pharmaceutical science.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices including specialist equipment such as HPLC, UV/Vis, and FTIR. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or pharmaceutical industry in the UK or overseas.

You‘ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course taken over one year and split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research.

Modules

• Current practice in drug development
• Molecular pharmacology and toxicology
• Current topics in pharmaceutical science
• Research skills
• Quality Control and Pharmaceutical Analysis
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

A large proportion of our graduates enter laboratory based and research management based product development work. They are employed in industries ranging from the big pharmaceutical companies to developing biotech companies; contract drug testing companies and service providers to the pharmaceutical and healthcare industries; hospital laboratories, NHS and local government.

If you currently work in a relevant sector, this course will enhance your prospects for career progression. This qualification also provides a sound platform for study to PhD level in pharmaceutical and biomolecular sciences and an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr02/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits) or

Research Project Nodule (30 credits)

CM6022 Research Project and Dissertation in Pharmaceutical Analysis (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Summary. The aim the of MSc in Pharmaceutical Sciences programme is to provide an academically challenging and vocationally relevant education and training in pharmaceutical sciences, both theoretical and practical. Read more

Summary

The aim the of MSc in Pharmaceutical Sciences programme is to provide an academically challenging and vocationally relevant education and training in pharmaceutical sciences, both theoretical and practical. Students will acquire an up-to-date knowledge and understanding of the subject, and achieve learning outcomes that enable them to be able to appreciate and apply acquired knowledge, skills and technological understanding primarily for the benefit of the pharmaceutical and related industrial sectors in Northern Ireland, Republic of Ireland and Great Britain.

About

This course is designed to provide an up-to-date knowledge and understanding of core areas of pharmaceutical sciences, including drug discovery, development, formulation and delivery, quality assurance and evaluation of drugs, analysis of medicines and medicinal natural products and pharmaceutical instrumental methods.

The course increases the awareness of ethical issues and scientific integrity in the pharmaceutical sciences. It will provide you with the chance of specialisation in one of the core specialisms of pharmaceutical sciences through elective modules.

As an MSc student you will learn how to formulate hypotheses, design and conduct a research project, analyse research data, and report results of research to peers.

Attendance

This is a fully online course.

Students working in the pharmaceutical/chemical/healthcare industry can carry out their MSc research project in their workplace.

Students who are not working can do their research projects at the School of Pharmacy, Ulster University, Coleraine campus.

Career options

This postgraduate programme is tailor-made to meet the demands of employers in the pharmaceutical industry sectors. It is suitable for those who wish to follow careers in pharmaceutical and related industries and also as academics in various universities to enhance and promote education in the pharmaceutical sciences area. As the proposed programme will have significant amounts of research elements, it is assumed that a number of postgraduate students from this programme may choose further postgraduate research studies such as a PhD.



Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Read more
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Its graduates will be ideally positioned to initiate their own start-up companies or join existing biotech or pharmaceutical businesses.

Degree information

Students will learn how to develop and assess a new business concept, and how to raise finance for and market a business and its outputs. They will build their scientific skill set by exploring four scientific research areas in pharmaceutics, and will interact closely with and be mentored by those who have direct experience of initiating a start-up business.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), a scientific research project (30 credits) and a business case development project (30 credits).

Core modules
-Mastering Entrepreneurship
-Entrepreneurial Marketing
-Entrepreneurial Finance
-Initiating a Pharmaceutical Start-Up

Optional modules
Term One
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicine

Term Two
-Pharmaceutical Biotechnology
-Clinical Pharmaceutics
-Nanomedicine
-Formulation of Natural Products and Cosmeceuticals

Dissertation/report
All students undertake two projects which comprise the major component of this MSc programme and culminate in two written reports and oral presentations. One of these is a short laboratory research project, while the second involves the development of a business case for a new pharmaceutical endeavour.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, seminars and practical sessions as well as industrial visits. Assessment is through a combination of written examinations, coursework assignments and the project.

Careers

Graduates of this programme are expected to become involved in businesses in various areas of the pharmaceutical and biotechnology industries. They will be fully equipped with the skills to start their own businesses, and will be able to approach UCL Innovation and Enterprise to assist with this if desired. Alternatively, they may join small biotech or major pharmaceutical companies, pursue further research in academia, work in consulting, or join world-leading technology companies where there is increasing emphasis on healthcare and the life sciences.

The first cohort of students on the Pharmaceutical Formulation and Entrepreneurship MSc will graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

This programme is unique in equipping students with a broad skill set in both medicine design and entrepreneurship. It is delivered by world-leading academics in both the UCL School of Pharmacy and UCL School of Management.

UCL staff with direct experience of launching a pharmaceutical start-up will teach students best practice and how to overcome the major challenges involved in enterprises of this kind.

UCL’s central London location combines state-of-the-art research with an entrepreneurial dynamic that fosters start-up creation, and provides access to venture capitalists, business angels, and world-leading pharmaceutical companies. UCL Innovation and Enterprise, UCL’s centre for entrepreneurship and business interaction, offers UCL students direct practical support in launching a business

Read less

Show 10 15 30 per page



Cookie Policy    X