• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
University of Manchester Featured Masters Courses
Vlerick Business School Featured Masters Courses
Bocconi University Featured Masters Courses
University of Reading Featured Masters Courses
FindA University Ltd Featured Masters Courses
"petroleum" AND "chemistr…×
0 miles

Masters Degrees (Petroleum Chemistry)

We have 18 Masters Degrees (Petroleum Chemistry)

  • "petroleum" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 18
Order by 
Heriot-Watt University's MSc in Petroleum Engineering is delivered by the Institute of Petroleum Engineering (IPE), a world-leading Institute committed to delivering research and training programmes that meet the needs of the international petroleum industry. Read more
Heriot-Watt University's MSc in Petroleum Engineering is delivered by the Institute of Petroleum Engineering (IPE), a world-leading Institute committed to delivering research and training programmes that meet the needs of the international petroleum industry.

The Petroleum Engineering programme is designed to equip students with the knowledge and skills to tackle the oil and gas industry’s challenging problems. Upon graduating students will be able to understand, frame and solve the most complex of upstream problems in today’s petroleum industry.

For more information on the programme content, please visit Heriot-Watt's online prospectus: http://www.postgraduate.hw.ac.uk/prog/msc-petroleum-engineering/

About the programme

Heriot-Watt's Petroleum Engineering degree is a programme of lectures and project work, encompassing a wide range of petroleum engineering fundamentals, relevant to the current industry.

Project work provides students with an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The courses are applied in nature and have been specifically designed so that students are technically well prepared for, and have a sound knowledge of, today's petroleum engineering industry.

Topics covered:
=============
• Reservoir engineering
• Petroleum geoscience
• Drilling engineering
• Formation evaluation
• Reservoir simulation
• Petroleum economics
• Production Technology
• Well test analysis

For more information on the programme content, including course descriptions, please visit: http://www.postgraduate.hw.ac.uk/prog/msc-petroleum-engineering/

Career opportunities

Heriot-Watt's Petroleum Engineering graduates are highly sought after by oil and gas companies both in the UK and worldwide. Our graduates go on to work for major global oil and gas operating companies, service companies as well as smaller consultancies in petroleum engineering.

Petroleum Engineering students will also be able to benefit from the excellent links with industry by staff at the Institute of Petroleum Engineering. The Institute's industry-based Strategic Advisory Board monitors activities in the wider context of the needs of the industry and offers guidance on the programme content ensuring it's up to date and relevant to current industry needs.

Flexible study options

The MSc in Petroleum Engineering is available full-time and part-time at Heriot-Watt's Edinburgh campus, or via flexible online Independent Distance Learning (IDL). Study via IDL is ideal for students in employment or with other commitments, providing flexible study options that fit around work or family. IDL students graduate with the same degree as students who undertake the programme on campus.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.

Accreditation

We are seeking accreditation from the Energy Institute.

Course content

Most of the course revolves around core modules, giving you a range of knowledge relating to different aspects of downstream petroleum production processes. These will include chemical reaction processes, drilling and production technologies and oilfield chemistry and corrosion.

You’ll look at the principles of process performance analysis, refining theory, enhanced oil recovery, chemicals used in corrosion control and strategies for new or mature assets. On top of this, you’ll take an optional module that allows you to develop your knowledge in an area that suits your own interests.

In the summer months you’ll undertake a research project, which will demonstrate the skills you’ve gained and may even be linked to your future career plans.

Want to find out more about your modules?

Take a look at the Petroleum Production Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Chemical Reaction Processes 15 credits
  • Fuel Processing 15 credits
  • Advanced Drilling and Production Technology 15 credits
  • Drilling and Production Technology 30 credits
  • Unconventional Oil and Gas Reservoirs 15 credits

Optional modules

  • Separation Processes 30 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Rock Mechanics 15 credits
  • Petroleum Reservoir Engineering 15 credits

For more information on typical modules, read Petroleum Production Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Examples of project topics would include:

  • Enhancement of mechanical strength and corrosion inhibition in oil pipelines
  • Reducing oil pipeline scaling using nano-particle seeding agents
  • Monitoring pipeline flows using electrical resistance tomography (ERT)
  • The application of nano-technology in enhancing oil recovery
  • Application of polymer-based nano-particles in absorbing and controlling oil spillages
  • Tribo-electrostatic beneficiation of oil shale using a powder dispersal system

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The programme’s main focus is on downstream petroleum industry activities such as drilling, production, refining and distribution.

With an MSc degree in Petroleum Production Engineering you could expect to pursue a successful career in the oil and gas industries in a wide range of areas as diverse as field engineering, production drilling engineering, pipeline and transportation logistics, refinery operations and management, refinery control and optimisation, and sales and marketing.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
This Course is Open for 2016-17 entry. Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Read more
This Course is Open for 2016-17 entry.

Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Our MSc Petroleum Geoscience course was established in 1985 and, with over 600 graduates from 32 countries, it is recognised around the world as one of the premier training courses for people starting out on careers in the hydrocarbon industry.

Our excellent links with the international oil industry, combined with high quality teaching and research facilities make the Royal Holloway MSc an ideal option if you are a recent graduate looking for a focused, vocational training course, or if you are an early career professional wishing to enhance your career development.

You can choose between several course modules to specialise your training in topics focussing on basin evolution or structural analysis and tectonics.

You will be joining a department where the Research Excellence Framework (REF) reported that 94% of research has been classified as 4* world leading and 3* internationally excellent in terms of originality, significance and rigour. By this criterion, Earth Sciences is 2nd place among UK universities. You will become part of a vibrant international graduate school, fully integrated into the research culture of the department.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscpetroleumgeoscience.aspx

Why choose this course?

- There is a huge demand for well qualified petroleum geoscientists. Companies worldwide are facing up to the challenge of replacing an ageing workforce with young graduates who can apply their knowledge and quickly learn from more experienced colleagues.

- We are one of the world leaders in the field of petroleum geoscience. Our MSc is recognised as a premier training course that will provide you with the practical and technical skills required to meet the challenges facing the hydrocarbon industry.

- You will develop the ability to integrate geological and geophysical data, and to apply your knowledge on a variety of scales, so that you can address a range of questions; from understanding the distribution of hydrocarbons in sedimentary basins, to quantifying the complex structural, stratigraphic and sedimentological architecture of individual reservoirs.

- We have excellent links with the international oil industry, including an Advisory Board with representatives from 14 multinational companies, which ensures that our teaching is up-to-date, relevant and will prepare you for a career in the industry.

- An MSc in Petroleum Geoscience from Royal Holloway also provides you with the geological and transferable skills to work in other Earth Science-related fields, and prepares you for further postgraduate study.

- This is a flexible course, allowing you study full-time, part-time or through distance learning. If you opt to study part-time you will have also have the option of studying through sandwich mode (complete terms in separate years).

- Field work in the UK and Spain is an important part of the programme and is fully integrated with the course units.

- The Department receives a number of studentships from industry sponsors and from the Research Council which are available to UK and EU applicants. Everyone who applies for a place on this course is automatically considered for these studentships, and no further application is required.

Department research and industry highlights

Our research follows four main themes:

- Geodynamics and Sedimentary Systems
The interaction between tectonic, volcanic and sedimentary processes to generate surface and sub-surface architectures. With a diverse range of expertise, researchers integrate geophysics, structural geology, sedimentology and modelling to improve our understanding of a wide range of geodynamic settings. Our interests range from the evolution of rift systems and passive margins to the tectonics of mountain belts and include an emphasis on sediment dynamics in all settings. Much of the research in this theme is funded by industry.

- Physics & Chemistry of Earth Processes
Quantitative characterization of Physical and Chemical processes within the Earth. This group plays a role in many research activities across the department and helps to ensure a rigorous academic approach. Research applications in geochemistry stem from development of world-class geochemical techniques in radiogenic (Sr-Nd-Pb-Hf-U-Th) and stable (C,H,O,N,S) isotopes, based on strategic partnerships with instrument manufacturers. In geophysics we have extensive expertise in both exploration geophysics and global geophysics. However, the group's main contribution extends well outside the traditional scope of geophysics and geochemistry into areas such as sedimentology, tectonics, palaeontology, oceans and atmospheres, the link between magmatism and tectonics, and the nature of the shallow mantle. In addition to making wide use of geochemical and geophysical data, we have developed a wide variety of forward and inverse modelling techniques (mathematical, numerical and laboratory-analogue).

- Global Environmental Change
Key transitions in Earth history including modern global change. A wide range of proxies and finger-printing techniques are employed to focus on issues of global change such as methane as a greenhouse gas, coastal and estuarine dynamics, modern and ancient sedimentary processes, Phanerozoic environmental change and associated biotic responses, the biogeochemistry of Archaean ecosystems and evolution of life through geologic time. In addition, we pioneer new research on the impact of ice sheet contamination and associated chemistry on climate change.

- Natural Hazards
Integrating several strands of current research within the department, this newly developing theme investigates a range of natural hazards, including intraplate earthquakes, subduction zones, volcanoes, landslides and associated tsunami, as well as environmental hazards. It utilises field studies, remote sensing data, numerical modelling, geophysical data from sites around the globe.

On completion of the course graduates will have:

- an understanding of the processes that control the structural and stratigraphic architecture of sedimentary basins

- an understanding of petroleum systems and the controls on the distribution of hydrocarbons and other fluids in sedimentary basins

- an understanding of the properties of hydrocarbon reservoirs, and the implications of this for hydrocarbon production and field development

- the ability to use seismic, well log, core and remotely sensed data to evaluate sedimentary basins, hydrocarbon prospects and hydrocarbon fields.

Assessment

The taught course units are assessed by a combination of written exams and course work. Each of the six units comprises 10% of the total assessment for the MSc course. The remaining 40% of the assessment comes from the Independent Research Project.

Employability & career opportunities

Our graduates are highly employable; 92% remain in petroleum geosciences and related fields after graduation – approximately 75% entering the industry and 20% continuing in research (mainly as PhD students).

Graduates find employment in a wide range of companies, from multinationals (such as Shell, BP, Statoil, BG, Centrica, GDF-Suez), large independents (e.g. Tullow, Hess), small independent companies (e.g. Volantis), and a wide range of consultancy companies (e.g. Fugro-Roberston, RPS, Equipoise, IHS, Midland Valley)

How to apply

Applications for entry to our campus based full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Your programme of study. This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. Read more

Your programme of study

This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. You can study this programme from anywhere in the world and it offers the same academic rigour you would expect if you were studying on campus at University of Aberdeen but you can fit it around a busy life, work, other responsibilities and much more.

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers

Courses listed for the programme

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1076/petroleum-engineering/

Why study at Aberdeen?

  • The programme is fully flexible to allow you to study wherever you are online
  • You will acquire skills and knowledge from a programme closely linked to industry needs
  • You study with a university situated in the heart of the European and world Energy Industry, many companies are located here
  • You study with two highly regarded departments in Geology and Engineering and at University of Aberdeen which is very well known in the oil and gas industry globally
  • You can pay by module and take the degree over a longer period up to six years

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about fee on the programme page:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1076/petroleum-engineering/

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

You may be also interested in the campus delivery of this programme:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/222/petroleum-engineering/

Related Postgraduate Degrees

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/210/oil-and-gas-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/317/subsea-engineering/



Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles.

Core modules
-Drill Engineering and Well Completion
-Hydrocarbon Production Engineering
-Material Balance and Recovery Mechanisms
-Petroleum Chemistry
-Petroleum Economics and Simulation
-Petroleum Reservoir Engineering
-Practical Health and Safety Skills
-Research and Study Skills

MSc candidates
-Research Project

Modules offered may vary.

Teaching

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery.

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs.

Facilities include:
Enhanced oil recovery and core analysis laboratory
The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification.

Petrophysics laboratory
The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory
The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory
The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists.

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation, and it is therefore expected that recruitment will continue, especially for those with motivation and the appropriate qualifications.

Read less
The Environmental and Petroleum Geochemistry MSc is an excellent introduction to environmental geochemistry and a research-oriented career path. Read more
The Environmental and Petroleum Geochemistry MSc is an excellent introduction to environmental geochemistry and a research-oriented career path. It equips you with an understanding and specialist technical skills for a career in the environmental industry. You specialise in the interactions between petroleum and the environment.

This course enables you to critically assess the quality, value and limitations of new environmental data in relation to existing information. You will be able to demonstrate an advanced knowledge and understanding in the areas of:
-Low temperature geochemistry of waters, soils and sediments
-Micro-organisms in catalysing low temperature geochemical reactions
-Origins, toxicity and ultimate fates of pollutants
-Modern techniques for the analysis of environmental materials
-Impact and geochemistry of oil in the environment

Accreditation

The course is designed to achieve the ECUK Output Standards for Accredited Engineering Programmes and takes account of the QAA's FHEQ Qualification Descriptors, the QAA Subject Benchmark Statement for Engineering, and the University's Graduate Skills Framework.

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.
-Chemical and Biological Research Laboratories
-Geotechnics and Structures Research Laboratories

Read less
The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences. Read more
The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences.

Applicants should ideally have a first degree in Geology or a closely related subject. Early Applications are encouraged as places on the course may be limited.

Key features:

Looking at specimens under the microscopeComprehensive coverage of the key microfossil groups used in hydrocarbon exploration
Focus on the role of microfossils in understanding major changes in global climate
Course taught by both academic staff and industrial partners
Opportunity to experience working with geological consultancies as well as an academic research environment
Individual research project tailored to your own skills and goals
The course has received financial support from BG Group, BP, Petrostrat and Shell.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This program has a professional orientation for those looking to establish their careers in the geo-science sector; covering geology, geochemistry, geophysics and geodynamics. Read more

Overview

This program has a professional orientation for those looking to establish their careers in the geo-science sector; covering geology, geochemistry, geophysics and geodynamics.

See the website http://courses.mq.edu.au/international/postgraduate/master/master-of-geoscience

Key benefits

- Students complete a capstone research project supervised by academic staff in the Department of Earth and Planetary Sciences in an area of expertise appropriate to their research and study area.
- All students are assigned an academic advisor within the Department who will assist in planning a course of study appropriate to his/her area of interest.
- Students can choose to follow either the (1) geophysics or (2) mineral & petroleum resources study stream.

Suitable for

The Master of Geoscience provides an advanced degree that prepares students to work in private industry and government agencies across a range of sectors; minerals and mining, land use management, petroleum, ecology and scientific research, and consulting.

Recognition of prior learning

Course Duration
- 1.5 year program
Bachelor degree in a relevant discipline;
Bachelor degree in any discipline and work experience in a relevant area;
Work experience in a relevant area at a senior level.

- 1 year program
Bachelor degree, Honours, Graduate Diploma or Masters (coursework) completed 10+ years prior and work experience in a relevant area;
Honours, Graduate Diploma, Masters (coursework) or Higher Degree Research in a relevant discipline.

- Relevant disciplines
Geology, geophysics, physical geography, mineralogy, engineering, environmental science, marine sciences, chemistry, physics.

- Relevant areas
Scientific officer, advisor, consultant or researcher in areas such environmental management/remediation, management of mining activities, hydrocarbon exploration/production, road and slope stability, geochemical analyses and software development for geotechnical applications.

English language requirements

IELTS of 6.5 overall with minimum 6.0 in each band, or equivalent

All applicants for undergraduate or postgraduate coursework studies at Macquarie University are required to provide evidence of proficiency in English.
For more information see English Language Requirements. http://mq.edu.au/study/international/how_to_apply/english_language_requirements/

You may satisfy the English language requirements if you have completed:
- senior secondary studies equivalent to the NSW HSC
- one year of Australian or comparable tertiary study in a country of qualification

See the website http://courses.mq.edu.au/international/postgraduate/master/master-of-geoscience

Read less
Sustainability has emerged as a defining issues of the 21st century. Achieving enduring and fairer societies requires viable economies, sound science and good governance. Read more
Sustainability has emerged as a defining issues of the 21st century. Achieving enduring and fairer societies requires viable economies, sound science and good governance. This course provides training in theory and critical analysis along with the practical skills to facilitate the transformation needed to deliver low carbon futures.

Why study Sustainability at Dundee?

The MSc in Sustainability is being introduced in recognition of the challenges of water, food, energy and health security facing the planet. The portfolio of environmental disciplines is exceptionally strong in the University as are its traditions of cross-disciplinary collaboration and cooperation.
Along with the flagship MSc in Sustainability, there are four specialised pathways:

MSc in Sustainability and Water Security
MSc in Sustainability and Climate Change
MSc in Sustainability and Low Carbon Living
MSc in Sustainability and the Green Economy

What's so good about Sustainability at Dundee?

There is a strong postgraduate culture which Sustainability students can enjoy.
The Graduate School of Natural Resources Law, Policy and Management includes both the Centre for Energy, Petroleum and Mineral Law Policy and the Centre for Water Law, Policy and Science (under the auspices of UNESCO) both of which have long standing international reputations. Specialist high-level speakers sourced from international organisations are invited to present throughout the year, these sessions provide a vital opportunity for students to become connected with industry so continued communication is encouraged after the events.

The School of the Environment and CECHR similarly have an extended programme of guest lectures and speakers and through xcechr there are multiple events bringing Masters and PhD students together by a common interest in environmental change research. Examples of the activities that result include Student-Supervisor-Seminar-Series, ‘change-maker workshops’ and a national show-case ‘Facing the Future’ Symposium.

Who should study this course?

This course is suitable for a wide range of graduates from;
Environmental backgrounds (e.g. geography, planning, environmental studies) looking to upskill and achieve a deeper understanding
Natural science graduates (e.g. chemistry, maths) and engineers looking to develop a more rounded understanding of environmental issues, especially in relation to regulation and policy.
Arts and social science students wishing to use their social, economic and political perspectives to take on the challenges associated with complex environmental systems and their management.

How you will be taught

The course is taught as a collection of 20 credit modules amounting to a total of 180 Masters (SHE M, SCQF 11) credits. The delivery style and assessment requirements for each module varies as we believe a diversity of practice provides strength. Nevertheless all modules combine a mixture of formal lecture, small group seminar, practical/field classes and individual tutorials depending on need and the particular learning objectives of each module. The study load corresponds to one third in each of the first two teaching semesters and one third for independent study for the dissertation the summer recess.

What you will study

There are a choice of four specialist pathways in addition to the MSc in Sustainability: See above.

Each of the five MSc pathways contains a common core comprising ‘Principles of Sustainability’ and ‘Transformation for Sustainability’, along with the ‘Research Training’ module. Each named pathway then comprises a specialised core module and then options drawn from a wide range of electives (c. 30 available from contributing academic Schools). All five MSc pathways feature a 60 credit individual research project, the weighting of which reflects the importance of independent investigation and permitting students to develop expertise in their chosen area through effectively four months of dedicated research.

Each of the MSc in Sustainability pathways is geared around the following learning outcomes:

Knowledge and Understanding:
Achieve a critical understanding of key sustainability principles and perspectives informing actions in pursuit of sustainable development, inclusive of environment, economy and equity considerations;
Demonstrate knowledge of approaches to evaluating and measuring sustainability;
Apply different concepts of transformation and change to enable individual and societal shifts towards more sustainable practices;

Skills:
Ability to analyse, evaluate and critically review theory and policy debates relating to sustainability;
Ability to draw on international perspectives and examples of best practice in relation to methods of evaluation and assessment of sustainability;
Ability to design and plan interventions for creating change to promote greater sustainability across different scales;
Design and undertake a substantial independent research project to address significant areas of theory and/or practice.

Capabilities:
Critique and synthesis theory and evidence drawing on a variety of sources;
Ability to communicate evidenced based reports relevant to a range of stakeholders, including policy makers;
Ability to work independently and as part of a team tackling complex environmental problems to tight deadlines;
Ability to design and evaluate transformative change leading to improved sustainability strategies, processes and plans

Transferrable skills, including building arguments, synthesis, reflexivity and making presentations.

How you will be assessed

Assessment follows a variety of styles including individual essays and practical assignments along with formal written examinations; to group exercises and peer group assessment – this is particularly important where oral presentations are involved. The independent research project (dissertation) is an excellent opportunity for a candidate to achieve deep insight into a topic of their own choice. Masters level dissertations can be very diverse, and include formal hypothesis-led research projects; theory or literature-based projects; case-study assessment and advanced professional practice evaluations. Choice of dissertations is negotiated between the student and his or her academic supervisor.

Careers

The environmental sector is one of the key growth areas in the global economy and in UK terms is comparable in size to the pharmaceutical and aerospace sectors combined. An MSc in Sustainability is designed to equip our graduates to take up a wide range of careers in policy, practical management, training and research across a spectrum of organisations from local to international and within the public and private sectors.

International Agencies and NGOs
Civil Service
Governmental environmental and conservation agencies (e.g. SNH, SEPA, EA)
Environmental management and policy sectors (private and public sector)
Environmental consultancy
Management consultancy
Public affairs
Built environment sustainability
Local planning authorities
Research and development
Preparation for PhD research

Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

Process Risk Identification and Management

Upstream Oil and Gas Processing

Loss of Containment

Computational Fluid Dynamics

Semester 2

Applied Risk Analysis and Management

Process, Plant, Equipment and Operations

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Process Safety Individual Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research. Read more

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

HPC is the use of powerful processors, networks and parallel supercomputers to tackle problems that are very computationally or data-intensive. You will learn leading-edge HPC technologies and skills to exploit the full potential of the world’s largest supercomputers and multicore processors. This is a well-established programme that has been successful in training generations of specialists in parallel programming.

Programme structure

The MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

  • HPC Architectures (Semester 1)
  • Message-Passing Programming (Semester 1)
  • Programming Skills (Semester 1)
  • Threaded Programming (Semester 1)
  • Software Development (Semester 2)
  • Project Preparation (Semester 2)
  • HPC Ecosystem (Semester 2)

Optional courses:

  • Fundamentals of Data Management (Semester 1)
  • Parallel Numerical Algorithms (Semester 1)
  • Parallel Programming Languages (Semester 1)
  • Advanced Parallel Programming (Semester 2)
  • Data Analytics with High Performance Computing (Semester 2)
  • Parallel Design Patterns (Semester 2)
  • Performance Programming (Semester 2)
  • Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation.

Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.



Read less
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics. Read more
This course will provide you with the opportunity to carry out an independent research project under the supervision of our leading academics.

You will receive training in research methods and take a taught course unit in a relevant subject area. The research topic for your project is agreed with a supervisor in advance and can be in any area of the expertise in the department research groups. The project outline will be developed in consultation with your supervisor and project work is carried out in parallel with the taught courses, becoming full-time during the third term.

This Master’s by Research will provide you with a suitable background to work as a research assistant or as the grounding for further study towards a PhD.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscearthsciencesbyresearch.aspx

Why choose this course?

- This course is ideal for graduates in geology and related sciences who wish to carry out independent research over a shorter time period than is possible in a doctorate (PhD) programme. It allows you study at Master's level an aspect of the geological sciences which may not be catered for by specialist MSc programmes.

- You will be involved at every step of the research project - from planning and sample collection, laboratory work, result analysis, to writing your dissertation.

- It is ideal preparation if you are interested in studying for a PhD, but would like to have further preparation and training.

- In the 2008 Research Assessment Exercise (RAE), the Department of Earth Science’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

- The Department has up-to-date computer interpretation facilities, a full range of modern geochemical laboratories including XRF, quadrupole and multicollector ICP Mass Spectrometry, atmospheric chemistry and a new excimer laser ablation facility, excellent structural modelling laboratories, palaeontology and sedimentology laboratories.

Course content and structure

The course consists of the following three components:

A Research Study Skills Course Unit
- Personal research skills (e.g. safety, time and project management, teamwork)
- IT skills (e.g. literature retrieval, web authoring, databases, modelling)
- Data analysis skills (e.g. statistical methods, GIS systems, sampling techniques)
- Communication skills (e.g. posters, oral presentation, writing papers, web pages)
- Subject-specific skills and techniques. These amount to 55% of the research skills assessment, and for example may include parts of specialist taught courses (see below), a training course on the theory and practice of chemical and isotopic analysis, or other training arranged by the project supervisor. This will include training for research in the general field of the research project, not solely what is needed to carry out the project.

A Specialist Taught Course Unit
You will choose an advanced taught course unit relevant to the subject area of your research project. The following taught units are currently offered:
- Applied Sedimentology and Stratigraphy
- Pollution Sources and Pathways
- Oceans and Atmospheres
- Risk and Environmental Management
- Geographical Information Systems
- Environmental Inorganic Analysis
- Contaminants in the Environment
- Advanced Igneous Petrogenesis
- Seismic Processing and Interpretation
- Geodynamics and Plate Tectonics
- Interpretation of Structural Settings
- Coal Geology
- Petroleum Geology and Evaluation
- Terrestrial Palaeoecology
- Palaeoclimates

Research Project
The project may be on any topic which is within the broad research themes of the Department. You will be linked to a potential supervisor at the application stage and, in consultation with the supervisor, you will develop a detailed project outline during the first half of the first term. Project work is then carried out in parallel with taught courses during terms one and two, becoming the full-time activity after Easter. A bound dissertation is submitted for examination in early September.

On completion of the course graduates will have:

- an advanced knowledge and understanding of a variety of analytical, technical, numerical, modelling and interpretive techniques applicable to the specific field of earth sciences

- the articulation of knowledge and the understanding of published work, concepts and theories in the chosen field of earth sciences at an advanced level

- the acquisition of knowledge from published work in the chosen area of earth sciences to a level appropriate for a MSc degree.

Assessment

Research Study Skills: this is assessed by coursework and theory examination and will include short written assignments, a seminar, worksheets and practical tests. These assessments contribute 12.5% of the course marks.

Specialist Taught Course Units: these are mostly assessed by a written, theory examination and coursework. The unit assessment contributes 12.5% of the course marks.

Research Project: the project dissertation must be submitted in early September. It will be marked by both an internal and an external examiner, and will be defended at an oral examination with both examiners. The project assessment contributes 75% of the course marks.

Employability & career opportunities

Subject to agreement and suitable funding, MSc by Research students can transfer to the MPhil/PhD programme at Royal Holloway. They may use the research carried out for the MSc towards the PhD, and count the time spent towards MPhil/PhD registration requirements, provided that the MSc research forms a coherent part of the PhD, and that the transfer is approved prior to submission of the MSc research dissertation.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Your programme of study. If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. Read more

Your programme of study

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Semester 1

Reservoir Engineering

Fundamental Safety Engineering and Risk Management Concepts

Fundamentals of Petroleum Geoscience

Semester 2

Oil and Gas Chemistry

Facilities Engineering

Project Management

Flow Assurance

Semester 3

Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/210/oil-and-gas-engineering/

Why study at Aberdeen?

  • The programme allows you to explore a wide range of career options due to its breadth and depth
  • You learn technological skills, health and safety plus risk management, planning and communication
  • The programme is fully accredited by IMechE and Energy Institute both industry recognised
  • You are uniquely situated in Aberdeen city, Scotland, home of the European energy industry

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research. Read more

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

Data science involves the manipulation, processing and analysis of data to extract knowledge, and HPC provides the power that underpins it.

You will learn the multidisciplinary skills and knowledge in both HPC and data science to unlock the knowledge contained in the increasingly large, complex and challenging data sets that are now generated across many areas of science and business.

Programme structure

This MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

  • Fundamentals of Data Management (Semester 1)
  • Message-Passing Programming (Semester 1)
  • Programming Skills (Semester 1)
  • Threaded Programming (Semester 1)
  • Data Analytics with High Performance Computing (Semester 2)
  • Software Development (Semester 2)
  • Project Preparation (Semester 2)

Optional courses:

  • HPC Architectures (Semester 1)
  • Parallel Numerical Algorithms (Semester 1)
  • Parallel Programming Languages (Semester 1)
  • Advanced Parallel Programming (Semester 2)
  • HPC Ecosystem (Semester 2)
  • Parallel Design Patterns (Semester 2)
  • Performance Programming (Semester 2)
  • Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation. Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.



Read less

Show 10 15 30 per page



Cookie Policy    X