• University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
University College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Cranfield University Featured Masters Courses
Newcastle University Featured Masters Courses
"pesticides"×
0 miles

Masters Degrees (Pesticides)

We have 13 Masters Degrees (Pesticides)

  • "pesticides" ×
  • clear all
Showing 1 to 13 of 13
Order by 
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more

The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules

Semester 1:

- Applied Engineering Practice

- Downstream Processing

- Research and Communication

Semester 2:

- Applied Heterogeneous Catalysis

Semester 1 and 2:

- MSc Project

Optional Modules (select four)

Semester 1:

- Chemical Product Design

- Colloid Engineering and Nano-science

- Filtration

- Hazard Identification and Risk Management

Semester 2:

- Mixing of Fluids and Particles

- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities

The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research

The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects

The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/



Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Your programme of study. If you are interested in earth science, and environmental science but you want to specialise in the study of soil specifically the Aberdeen programme gives you in depth knowledge and a range of experts and alumni who consult at government level. Read more

Your programme of study

If you are interested in earth science, and environmental science but you want to specialise in the study of soil specifically the Aberdeen programme gives you in depth knowledge and a range of experts and alumni who consult at government level. Aberdeen is further supported by having the James Hutton Institute within the city limits, a notable institute specialising in soil science over the years known formerly the Macaulay Institute.

Soil Science is becoming increasingly important to our ability to sustain life on earth as we look at how to keep the soil clean from pollutants in water, air and polluting industries, pesticides and all sorts of changes to soil. There are also growing concerns that as the population increases and climate change also increases how do we farm in the future? The degree gives you all the skills and knowledge you need to work as a soil scientist either as a researcher, within government or regulation or as a consultant working with industry and other organisations devoted to soil science.

You learn about soil science, sustainability, land use planning, food security, GIS, and land use with intensive laboratory analysis from one of the top centres in the world for soil science. We also take you into the field to study specific situations and you are guided by our world renowned researchers in the environmental sciences. This is one of only a handful of Soil Science programmes with cutting edge technologies to help you analyse and study soil in depth. Soil science falls within agricultural sciences which were ranked No. 1 in the UK for research excellence (REF 2014) and the highly acclaimed Environmental Science disciplines which Aberdeen has made a name for itself in over the years.

Courses listed for the programme

Semester 1

  • Core Skills in Environmental Science
  • Global Soil Geography
  • Soils for Food Security
  • Applications for GIS

Semester 2

  • Environmental Analysis
  • Land Use and the Changing Environment on Deesside

Optional

  • Environmental Impact Assessment
  • Remediation Technology
  • Catchment Management
  • Ecological and Environmental Modelling

Semester 3

  • Project in Soil Science

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Research at Aberdeen within agricultural and earth sciences is ranked No.1 (REF)
  • You study all methods of analysis and field work to understand the full range of issues within soil and land use which affect the ability to grow crops
  • One of our team developed the award winning 'Cool Farm Tool.' Dr John Hillier developed this to calculate greenhouse gas. The tool is used by known brands such as Marks and Spencer, Costco and Heinz

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 



Read less
Research in biotechnology at Newcastle spans the Faculty of Medical Sciences (FMS) and the Faculty of Science, Agriculture and Engineering (SAgE). Read more
Research in biotechnology at Newcastle spans the Faculty of Medical Sciences (FMS) and the Faculty of Science, Agriculture and Engineering (SAgE). We invite proposals for MPhil and PhD projects in biotechnology across the fields of medical sciences, biological, agricultural and environmental sciences, and marine science and technology.

We offer MPhil supervision in the following research areas:

Medical sciences

In medical sciences our research focuses on translational medicine, from drug discovery and development to effective product commercialisation and process optimisation. Our key areas are:
-The development of drugs for the treatment of cancer and psychiatric disorders
-Novel antibiotic innovation
-Design and development of integrated electrochemical and bio-microelectromechanical (bio-MEMS) sensors for application to point-of-care diagnosis of disease processes and sensor technologies for real-time, high content intracellular analysis using polymer-based nanosensor systems

Biological, agricultural and environmental sciences

In biological, agricultural and environmental sciences our research focuses on:
-The search and discovery of commercially significant natural products
-The production of crops with novel traits
-The fundamental role played by micro-organisms in the turnover of pollutants and the production of high value novel compounds, including pharmaceuticals and pesticides.

Marine science and technology

Our work has led to pioneering advancements in developing novel antibiotics and omega-3 oils from plankton. We also explore the industrial applications of marine organisms such as the development of environmentally friendly antifouling coatings.

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. Read more

About the Program

An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. It aims to investigate and discover effects of chemicals on biological systems in order to develop methods for risk management, as well as to predict ecological consequences.

The international "Master of Science program in Ecotoxicology" integrates concepts of Environmental Chemistry, Toxicology and Ecology and includes Social Sciences and Economics as well. Due to its interdisciplinary and applied approach, the Program enables its graduates to analyze complex problems and to develop practical solutions.

As environmental problems reach far beyond national borders, an international approach is necessary and the situation in developing countries needs special solutions.

The Master in Ecotoxicology is carried out under the Institute for Environmental Sciences.

For the latest news about our Institute of Ecotoxicology you can also check our Ecotox-Blog under:
http://www.master-ecotoxicology.de/ecotox-blog

Program Structure

All students take the 9 required modules, as well as a 10-week Research Project Course and an Applied Module at External Organisations of 8 weeks to obtain a deep knowledge in the field of Ecotoxicology. Afterwards, studentes personalize the Program by choosing 2 Modules of the 5 Specialty Areas. The Master Thesis with colloquium round out the 4-semester Program.

Specialty Areas:

Applied Environmental Chemistry & Environmental Physics,
Chemistry,
Applied Ecology,
Geoecology and
Socioeconomics & Environmental Management

Applied Module at External Organizations (AMEO)

The module AMEO is an 8-week internship, which can be performed at an external university or a governmental or industrial research institute in Germany or abroad. Students become familiar with working practice, requirements of the job market and career opportunities and can establish business contacts. They apply, confirm and expand knowledge and competences achieved during their study.

Following an introductory discussion with the supervisors, the students perform the (research) work on their own and discuss the obtained results regularly with their supervisors. The content depends on the actual research questions in the selected research organizations. Topics or possible positions will be suggested by the staff of the Institute for Environmental Sciences or maybe suggested by the students. The topics should be directly related to applied problems relevant in these external organisations and should ideally offer the students opportunities to apply their knowledge and skills in areas, which are not the particular research areas at the Institute for Environmental Sciences in Landau. They include, but are not restricted to the following areas:

Engineering aspects (e.g. hydrology, mitigation techniques)
Multimedia modelling
Food web modelling
Fish, bird or mammal ecotoxicology and risk assessment
Agricultural sciences
Socioeconomics
Specific aspects in regulatory ecotoxicology
Risk communication, economic or societal aspects

Research Project Course (RPC)

The students work independently on a research topic of the university for a total time of about 10 weeks. The topics depend on the actual research conducted in the various research groups. However, all topics do have an interdisciplinary character covering at least two different disciplines (e.g. chemistry and ecology, or physics and risk assessment). The students submit proposals for topics selected from a list provided by the teaching staff including a time and resource planning as well as an independently conducted literature search. Following an introductory discussion with the supervisor, the students perform the research work on their own and discuss the obtained results regularly with their supervisor. Following the practical work, the students write a report including the theoretical background, the methods used, the results obtained and a discussion of the results based on the relevant scientific literature. The students present and defend the outcome of their work at an oral presentation. Following successful completion the students are able to plan a scientific work package, conduct the work, evaluate the results based on the relevant literature and present the outcomes.

The content depends on the actual research questions in the research groups associated with the Institute for Environmental Sciences. They include, but are not restricted to the following areas:

Chemical experiments in the lab
Environmental colloid chemistry
Environmental organic chemistry
Physical transport or transfer processes of environmental chemicals
Ecotoxicological lab tests
Ecotoxicological field studies
In situ or monitoring work in the field
Molecular genetics
GIS data analysis
Literature reviews
Exposure, effect or landscape modelling
Assessment or management of risks

More information on the program structure and contents can also be found under:
https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents

Employment outlook

The Program enables the graduates to conduct independent scientific work and prepares in particular for independent and leading positions in the numerous emerging fields of Ecotoxicology. The graduates are able to take responsibility in a professional manner in: Scientific facilities and research institutes, Authorities, public offices and ministries with a regulatory role, Non-governmental organizations, Industry and consulting enterprises. The international orientation of the program qualifies graduates for a global job market. In addition, the Master program prepares for a PhD study.

“I value very much the excellent education and the close individual support from the teaching staff during my studies that allowed me to pursue own research ideas and to find my field of interest. A cooperation of the university with the German Federal Environment Agency enabled me to gain experience in the environmental risk assessment of pesticides. I qualified for a traineeship in the European Food Safety Authority (EFSA) and am now working in the field of pesticide risk assessment.” Klaus Swarowsky (Master Ecotoxicology, EFSA)

Internationally Networked

The Institute for Environmental Sciences is globally connected through international research projects and student exchange programs. The international nature of the Program is achieved through numerous international research and teaching staff, regular seminars from guest lecturers from abroad, and possible internships all over the world.
You will find a map which displays the locations our cooperation partners under:

https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents#network

Read less
The Master in Viticulture and Enology aims at addressing how vineyard and winery innovation is quickly becoming part of the Italian viticulture tradition. Read more

The Master in Viticulture and Enology aims at addressing how vineyard and winery innovation is quickly becoming part of the Italian viticulture tradition. Italy is now the largest wine producer in the world and boasts the greatest variety in terms of cultivars. The pecularities of Italian viticulture and chances to maintain a leading role are today bound to the ability to introduce sustainable innovation without losing its well-known appeal.

Learning objectives

The main goals of the program are:

● To acquire solid methodology and knowledge suitable to address innovation issues in vineyard and winery

● To achieve specific skills for new canopy management technique suitable to mitigate undesired climate-related effects, new sustain- able approaches for pest and disease control, precision viticulture and enology

● Develop the ability to diagnose limiting factors occurring in vine- yard and winery and to produce suitable solutions

● Learn to pro-actively take part in discussions dealing with viticulture and enology topics.

Career opportunities & professional recognition

The Master’s qualification in ‘Viticulture & Enology: innovation meets tradition’ will open up professional opportunities in the fields of Viticulture and enology chain; wine marketing and distribution; restaurants; large scale retail trade and freelancing.

A class that makes a difference

The Master in Viticulture & Enology will be comprised of international students and Cattolica’s domestic students.

Faculty & teaching staff

● Dr. Matteo Gatti - Research Assistant

● Prof. Gabriele Canali - Associate Professor

● Dr. Fabrizio Torchio - Research Assistant

● Prof. Stefano Poni - Full Professor

● Dr. Milena Lambri - Research Assistant

● Prof. Vittorio Rossi - Full Professor

● Dr. Emanuele Mazzoni - Research Assistant

Partner companies

Here are just a few names of prestigious wine estates that gave their preliminary acceptance in hosting internships: Mossi, Tenute Ruf- fino, Barone Ricasoli, Santa Margherita, Sella e Mosca, Mezzaco- rona, Contratto, Ca’ Del Bosco, Zonin, Res Uvae, Marchesi Mazzei, Cavalieri di Malta, Pico Maccario, and Marramiero.

Can I learn Italian while studying?

An intensive Italian course will be available to international students for the duration of the Master in Viticulture & Enology: innovation meets tradition.

Are there internships opportunities?

Students will need to carry out a mandatory internship for the duration of at least 450 hours (i.e. 18 ECTS) in a farm/wine estate/ institution.

A final exam is scheduled including a case study discussion and/or experimental activity carried out during the internship.

Can I work while studying?

Non-EU students entering Italy on a VISA are permitted to work part-time (20 hours per week).

Curriculum

● Basics in Viticulture, Enology and Plant Phatology

● Vineyard variability: traditional and precision approaches

● Topics in wine-marketing

● Enhancing the wine quality: innovation in monitoring and controls

● Applied grapevine eco-physiology

● Advances in enology

● Disease and pest management toward a sustainable viticulture

● Seminars on sustainable pesticides use and genetic traceability will also be provided

ECTS of each course include also practical activities, wine tasting and field visits.

Scholarships

Scholarships will be available and assigned on a merit basis and will cover 30% of the tuition fee.




Read less
The Natural Resources Institute (NRI) is a specialised multidisciplinary research organisation within the University of Greenwich. Read more
The Natural Resources Institute (NRI) is a specialised multidisciplinary research organisation within the University of Greenwich. The Institute received the Queen's Anniversary Prize for its research activities on food security in the developing world. Much of NRI's research work is concerned with natural resources, agriculture and social development in developing countries, although it has an expanding portfolio of activities in Europe and other industrialised countries.

NRI provides a thriving environment for MPhil and PhD students working in agricultural and food sciences. Each of NRI's departments has a strong portfolio of research activities, of which students form an important and integral part.

The Agriculture, Health & Environment Department works on the worldwide development of appropriate cost-effective and sustainable approaches to controlling pests, diseases and weeds that affect crop production. Use of biocontrol and control methods involving no (or very low) conventional pesticides are increasing in importance in our work, especially for export crops.

The Department also has researchers who share a common interest in the many species of insects, ticks and rodents that cause injury to their hosts and transmit diseases to both humans and animals. Research is undertaken in the UK, using NRI's state-of-the-art laboratories, insectaries and glasshouses, and also overseas. Particularly strong areas of research include the epidemiology of insect-borne virus diseases, molecular diagnostics, pest and disease modelling, aerobiology and biometeorology, migrant pests, medical and veterinary entomology and integrated pest management.

The Food and Markets Department works on commodity management and food safety of cereals, grains, root crops, perishables and other crops. The Department works with all aspects of the operations of the food industry, including, for example, storage, post-harvest technology, quality analysis and management, compliance with food standards, food processing and value addition, value chains, private and public sector standards and market development. NRI's work provides many opportunities for postgraduates to be involved in multidisciplinary projects.

We offer full-time or part-time attendance, with students based on our campus or in their home countries, or some combination.

Visit the website http://www2.gre.ac.uk/study/courses/pg/res/afs

What you'll study

Recent research project topics include:

- The impact of host plants on the efficacy of nucleopolyhedrovirus as a biopesticide

- Reasons for multiple loans in microfinance and their effect on the repayment performance

- Evaluating the impact of climate change on postharvest quality of perishables

- Laboratory based investigation of the sensory cues used by vector mosquitoes to locate host animals

- Dormancy and sprout control in root and tuber crops

- Investigations into the oviposition behaviour of Anopheles gambiae

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through their thesis and oral examination.

Career options

Postgraduate research students from NRI have a good record of finding employment within their specific technical discipline or in the field of international development.

Find out how to apply here - http://www2.gre.ac.uk/research/study/apply/application_process

Read less
The Master's Degree in Applied Chromatographic Techniques is an interuniversity Master's Degree organized by the Department of Analytical Chemistry and Organic Chemistry of the Rovira i Virgili University, the Department of Chemistry of the University of Girona and the Institute of Pesticides and Waters of the Jaume I University I) in Castelló. Read more
The Master's Degree in Applied Chromatographic Techniques is an interuniversity Master's Degree organized by the Department of Analytical Chemistry and Organic Chemistry of the Rovira i Virgili University, the Department of Chemistry of the University of Girona and the Institute of Pesticides and Waters of the Jaume I University I) in Castelló.

The main aim of the Master's Degree is to train specialists to develop and apply methods of analysis using chromatographic techniques to solve analytical problems in a variety of industrial sectors (agrifood, petrochemical, pharmaceutical, etc.), in pollution control, in biomedicine, etc.

Another of its aims is to find professional opportunities for graduates in chemistry, biochemistry, etc. in the industrial sector and to provide students with knowledge about the latest trends in chromatographic techniques and to initiate them in research in the techniques mentioned above.

Career opportunities

Food, pharmaceutical, veterinary, petrochemical and chemical industries. Laboratories of health, environmental and forensic control. Doctoral thesis.

Read less
Our part-time blended learning MSc Occupational Hygiene course will equip you with a wide range of interdisciplinary knowledge and skills to work in areas related to occupational hygiene, culminating in an academic qualification accredited by the Faculty of Occupational Hygiene (FOH) within the British Occupational Hygiene Society (BOHS). Read more

Our part-time blended learning MSc Occupational Hygiene course will equip you with a wide range of interdisciplinary knowledge and skills to work in areas related to occupational hygiene, culminating in an academic qualification accredited by the Faculty of Occupational Hygiene (FOH) within the British Occupational Hygiene Society (BOHS).

As a graduate of this course, you will have knowledge necessary to recognise, evaluate and control hazards in the workplace, including chemical, physical and biological agents.

In the taught component of the course, the emphasis is on acquiring a thorough understanding of the theoretical principles and research methodologies underpinning the topic covered by each unit.

Emphasis is placed on the development of your critical appraisal skills and your capacity to lead an occupational health team at a senior management level.

The dissertation provides an opportunity to develop experience in applying these principles and research methods to a problem of particular interest to you.

Aims

The primary aim of the course is to deliver academic training in disciplines relevant to occupational hygiene. The course aims to provide you with:

  • an appreciation of the skills necessary to recognise, evaluate and control hazardous substances in the workplace, encompassing hazards such as chemical, physical (eg. noise, radiation), biological and ergonomic agents;
  • an introduction to the wide variety of aspects covered within the occupational hygiene discipline such as legislation, toxicological basis for standard setting, methods commonly used to evaluate hazardous agents, and related and overlapping health professions;
  • an academic qualification that is accredited by the Faculty of Occupational Hygiene (FOH) within the British Occupational Hygiene Society (BOHS);
  • a good foundation on which to build and extend your knowledge of occupational hygiene during the changes and developments which lie in the years ahead.

The MSc aims to:

  • encourage critical evaluation of ideas and concepts in occupational hygiene and exploration of other philosophical and practical approaches to minimising ill health in the workplace;
  • develop powers of critical appraisal, analytical thinking and logical argument.

Teaching and learning

The course comprises a blend of specially commissioned written materials in electronic format (PDF), together with interactive teaching material, all delivered via the University's virtual learning environment, Blackboard.

In Year 1, you are required to attend in Manchester for a 1 day seminar associated with Module 1 in month 3, and the same for Module 2 in month 5 and for one exam day in month 10.

You are allocated to tutorial groups for Modules 4 to 8, each supported by a specialist in occupational hygiene. Tutorials are delivered via telephone or web conference.

In Year 2, you are required to attend in Manchester for a four-day practical course in Month 5 and for one exam day in Month 10.

In Year 3, you are required to attend a three-day MSc dissertation course held at the University in Month 1.

All examinations are held at the University.

Some components of the course are held jointly with students on our MSc Occupational Medicine course.

You can view  sample study materials  and  MSc abstracts and papers .

Coursework and assessment

All taught course units will be assessed via examinations held at the University at intervals throughout the course, and the third year will be assessed via submission of a dissertation.

Assessment is by eight examination papers, one per course module. The first will be taken at Seminar 1 (Year 1, Month 3) and the second at Seminar 2 (Year 1, Month 5). The remaining Year 1 assessments will be taken in Month 10. For Year 2, assessments will be held in Month 5 and 10.

If you wish to proceed to the MSc, you are also required to complete a third year, during which you will attend a mandatory three day residential course (in Month 1) and prepare a dissertation.

Course unit details

YEAR 1

Module 1: Introduction to Hazards, Risks and the Working Environment

  • Occupational Health in Perspective
  • Introduction to Occupational Health Law
  • Historical Development of Occupational Health
  • Hazards and Risks
  • Introduction to Toxicology
  • Introduction to Occupational Hygiene
  • Introduction to Lighting
  • Introduction to Temperature and Work
  • Introduction to Noise and Vibration
  • Introduction to Hazardous Substances

Module 2: Occupational Ill Health

  • Occupational Dermatoses
  • Respiratory Disorders
  • Musculoskeletal Disorders
  • Occupational Cancers
  • Stress Disorders
  • Work-Related Infections
  • Introduction to Epidemiology
  • Health Assessment, Surveillance and Screening
  • Biological Monitoring

Module 3: Health and Workability

  • Workplace Assessment Skills
  • Advanced Occupational Health Law
  • Ergonomics
  • Shift Work and Daily Rhythms
  • Solvents
  • Plastics and Polymers
  • Pesticides
  • Pharmaceuticals and Fine Chemicals 
  • Choosing a Research Topic and Literature Review
  • Developing the Research Question

Module 4: Hazardous Substances

  • Factors in Dust Exposure
  • Exposure in Manufacturing Processes
  • Air Sampling
  • Exposure Evaluation/Exposure Modelling
  • Sample Analysis
  • Occupational Exposure for Airborne Substances

YEAR 2

Module 5: Understanding Physical Agents

  • Noise
  • Vibration
  • Radiation
  • Compressed Air Work and Commercial Diving
  • Temperature and Work
  • Light and Vision

Module 6: Control of Workplace Hazards

  • Process Control Strategy
  • Ventilation
  • Personal Protective Equipment (PPE)
  • Human Behaviours
  • Dermal Exposure

Module 7: Research Methods and Data Analysis

  • Epidemiology and Statistics
  • Evidence Based Practice
  • Critical Appraisal
  • Social Research Methods
  • Information Technology

Module 8: Management of Workplace Hazards

  • Industry and Environment
  • Occupational Hygiene Practice
  • Food Hygiene
  • Prevention of Accidents
  • Principles of Toxicology
  • Global Aspects of Occupational Hygiene


Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X