• University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
King’s College London Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"pcr"×
0 miles

Masters Degrees (Pcr)

We have 44 Masters Degrees (Pcr)

  • "pcr" ×
  • clear all
Showing 1 to 15 of 44
Order by 
This course, which uniquely combines forensic genetic and conservation genetic elements within one of the largest forensic science academic departments in the world, runs in conjunction with other well established and popular MSc courses. Read more
This course, which uniquely combines forensic genetic and conservation genetic elements within one of the largest forensic science academic departments in the world, runs in conjunction with other well established and popular MSc courses. Students will learn the fundamentals of molecular genetics, population genetics and phylogenetics that underpin the disciplines of forensic and conservation genetics and develop both theoretical knowledge and practical application.

Small cohort sizes will allow the use of a diverse range of assessments and the provision of considerable student support. Teaching will be carried out using a combination of lectures, tutorials, practicals, computer workshops and self-directed study. In addition to six taught modules, students will undertake a three-module research project which will develop laboratory and research skills. Depending on availability, students may also have an opportunity to visit and gain field experience at the Maasai Centre for Field Studies in Kenya.

LEARNING ENVIRONMENT AND ASSESSMENT

The forensic genetics group has dedicated pre and post-PCR laboratories housing an ABI3500, two ABI310 machines, an ABI7500 real-time PCR machine, a number of ABI2700 PCR machines, gel imaging systems, and several PCR cabinets. MSc students will carry out laboratory-based dissertation research projects within these well equipped modern laboratories. Research topics within the group are diverse, ranging from forensic genetics and human genetics, to wildlife forensics and forensic entomology. This will ensure that a wide choice of dissertation topics is available to our students. We also have a number of full-time and part-time MRes/MPhil/PhD students and an interest in research is actively encouraged and maintained throughout the year via seminars/ discussions.

The course will be delivered through lectures, tutorials, computer workshops, and practical classes, working independently or as part of a group. At least an equal amount of time should be spent in private study reading around the subject. Guided teaching and formal assessments on this course will enhance the development of a number of transferable skills such as the production of written case reports, formal presentations, active participation in discussions, ability to work to deadlines, computing skills, scientific analysis, adherence and development of laboratory protocols, and research methods.

Assessment is predominantly through coursework except for one module which is assessed by both examination and coursework. Coursework will include written essays, laboratory reports, case reports, presentations and in Part 3, a dissertation.

OPPORTUNITIES

Students graduating from this course will be well placed to undertake further research at the doctoral level or take up jobs in forensic/genetics/veterinary/diagnostic/wildlife protection laboratories.

Two of our graduates have taken on jobs as DNA analysts while a others have gone on to undertake further degrees or research towards a MPhil/PhD.

Depending on availability, students may have an opportunity to visit and gain field experience at the Maasai Centre for Field Studies in Kenya.

Read less
The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge. Read more

The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge.

We’ll give you advanced training in the mechanisms underpinning a spectrum of infectious and non-infectious diseases, including viral, bacterial and parasitic infections, cancer, neurodegeneration, cardiovascular disease and chromosomal abnormalities. You’ll also explore current and emerging diagnostic and treatment strategies.

You’ll learn about the latest molecular, genetic and cellular approaches being used to understand, diagnose and treat human disease, including traditional methods such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), and novel methods involving genome and proteome analysis.

You’ll also have the opportunity to investigate the role of the immune system in the response to infection and disease, covering topics such as innate and adaptive immunity, allergy and immune evasion.

If you choose to study at Leeds, you’ll join a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014), and you’ll graduate with the solid base of scientific knowledge and specialist skills highly valued by employers.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular sciences. You’ll investigate five topic areas: molecular biology, structural biology, cell imaging and flow cytometry, high throughput techniques and transgenic organisms.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

To help you to develop and specialise, you’ll get substantial subject-specific training through an independent research project in an area of infection, immunity or human disease.

You’ll also take specialist taught modules covering topics such as infectious and non-infectious disease, advanced immunology, medical diagnostics and treatment of infectious diseases and cancer.

If you have previous experience of immunology, you could opt to investigate the structure, regulation and development of the pharmaceutical manufacturing sector, or explore aspects of human toxicology. These could include the actions of toxicants on the cardiovascular, immune and nervous systems, kidneys, liver and lungs, genetic toxicology and chemical carcinogenesis, and the effects of chemicals on fetal development.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Compulsory modules

  • Advanced Immunology 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Practical Bioinformatics 10 credits
  • Medical Diagnostics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Treatment of Infectious Disease and Cancer 10 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Infection, Immunity and Human Disease MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Infection, Immunity and Human Disease MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our programmes.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications.


Read less
This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. Read more

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.

You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you

  • up-to-date knowledge of cellular and molecular pathology of various human diseases
  • the basis of therapeutic rationales for treating diseases and their development
  • an advanced understanding of recombinant DNA technology and how it is used to produce drugs
  • experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry
  • the transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits. 

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Cell biology (15 credits)
  • Fundamentals of pharmacology (15 credits)
  • Molecular biology (15 credits)
  • Biotechnology (15 credits)
  • Professional development (15 credits)
  • New approaches to pharmacology (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Employability

The course improves your career prospects in areas of • biomedical sciences • medical research in universities and hospitals • the pharmaceutical industry • biotechnology companies • government research agencies.

You also develop the skills to carry out research to PhD level in pharmacology and biotechnology.

Recent MSc Pharmacology and Biotechnology graduates jobs include • project specialist at PAREXEL • quality assurance documentation assistant at Vifor Pharma • PhD at the University of Manchester • clinical research associate at AstraZeneca • workplace services analyst at Deloitte India (Offices of the US) • regulatory compliance specialist for Selerant • senior product executive at PlasmaGen BioSciences.



Read less
Produce high quality original research in the areas of sport, exercise, nutritional and health sciences. This programme provides an excellent platform for progression to PhD-level study as well as other related career paths. Read more

Summary

Produce high quality original research in the areas of sport, exercise, nutritional and health sciences. This programme provides an excellent platform for progression to PhD-level study as well as other related career paths.

This programme is for students who want to focus on a research topic with a view to create new knowledge within the growing area of sport and exercise science. You will be guided by experts in the field who will support you to produce high quality original research.

You will have the opportunity to work with state-of-the-art equipment in the laboratories. Our expertise will allow students to employ the latest techniques in the pursuit of producing significant and original research that is publishable. Some of the techniques include modified ELISA’s, Real-Time PCR, Western Blot, isotope methodology for metabolism, 2-3D motion analysis using MaxTRAQ and Vicon, force analysis using Kistler force plates and isokinetic dynamometers, muscle ultrasound, and neuromuscular electrical stimulation.

You will automatically gain access to our research community in the Sport and Exercise Science Research Centre (SESRC) and Health Sciences Research Centre (HSRC). The research centres are active in researching diabetes, obesity, diseased and healthy metabolism, neuromuscular function, biomechanics in elite and pathological populations, environmental physiology, nutrition in athletic and chronic diseased populations, protein synthesis and muscle growth, sport & exercise psychology and performance and well-being.

Content

The key modules on this course revolve around you producing a high-level independent research project, which will prepare you for higher levels of research and study.

The course begins with a research methods module which will equip you with a comprehensive understanding of different approaches to research, allowing you to choose the correct method for your project, depending on your specific area of interest. You will study key philosophical questions as to the nature of science and knowledge, and develop a critical awareness of the principles and practice of qualitative and quantitative approaches and techniques. You will also be introduced to the management of ethical issues associated with collecting and analysing data on human participants.

You will also be guided on the development of your research proposal, and be invited to attend the Sport Science Seminars Series to frame your understanding of current sport-related research.

Other modules on the programme allow you to study more in-depth knowledge and gain relevant practical skill in biomechanics, psychology, and/or physiology that are invaluable for your dissertation project.

Read less
This course engages with issues at the very forefront of modern food production. You‘ll explore the origins of biotechnology, the legislation and social issues related to biotechnology in food, the immune system and role of antibodies. Read more

This course engages with issues at the very forefront of modern food production. You‘ll explore the origins of biotechnology, the legislation and social issues related to biotechnology in food, the immune system and role of antibodies.

You’ll have chance to challenge the myths associated with food allergies and the risks, causes and solutions. You’ll learn the science behind every ingredient that goes into a product.

The core sciences of chemistry and biochemistry underpin the course, alongside the processing of food. You’ll also study some elements of microbiology and nutrition. You’ll learn to apply fundamental scientific concepts to understand and manipulate the complex characteristics of foods and to integrate this scientific knowledge with an understanding of food technology.

The course is strongly linked to our research groups, meaning you’ll be taught by staff who are actively engaged in world-class research and cutting-edge professional practice.

Course content

Through this programme you'll develop the ability to critically assess the complex factors that influence the range, quality and acceptability of foods produced in an industrialised society.

You'll apply scientific knowledge from your bachelor degree and extend it to areas outside your first degree discipline. You'll gain a broad knowledge of food science with the necessary related understanding of chemistry, biochemistry, physics, mathematics and biology. You'll also learn to integrate your scientific knowledge with an understanding of food technology and will develop your own interests and skills through specialised options and projects, influenced by current research thinking in the field.

The programme provides an understanding of the methodology of research investigations by experimental project, and helps you develop the personal skills you'll need to communicate effectively in future professional activities.

Course structure

Compulsory modules

  • Microbiological and Chemical Food Safety 20 credits
  • Food Processing 20 credits
  • Research Project 60 credits
  • Food Biotechnology 10 credits
  • Impacts of Food Processing on Nutritional Quality 10 credits
  • GMOs, Antibodies and PCR 10 credits
  • Food and the Allergic Reaction 10 credits
  • Structure and Function of Food Components 20 credits
  • Professional Development for Employment and Research 20 credits

For more information on typical modules, read Food Science (Food Biotechnology) MSc in the course catalogue

Learning and teaching

Teaching is by lectures, practical classes, tutorials, seminars and supervised research projects. We make extensive use of IT, and a wide range of materials is available to enable you to study at your own pace and in your own time to enhance and extend the material you’ll learn formally.

Assessment

Assessment is by a range of methods, including formal examination, in-class tests, laboratory practical reports, example sheets, problem solving, project work and verbal presentations.

The pass mark for each module is 50%. All marks from all modules (passed and failed) are included in the final classification mark, which must be at least a 50% average to pass.

Career opportunities

Postgraduates from the School go into careers in research, in the food industry, into regulatory and public bodies across the world, backed by the confidence and skills gained from studying at one of the leading schools of food science and nutrition internationally.

Our graduates are in big demand and food companies come to Leeds to recruit the best talent. Some of our past graduates hold key positions in the food industry and government agencies.

There are many opportunities open to you within the food industry, from jobs in nutrition and new product development to roles in the supply chain, purchasing, logistics and distribution. You may decide to become a development scientist, working on new foodstuffs and producing food which is safe and nutritious with a consistent flavour, colour and texture. There are roles within this area in industry, but also within government and local authority food inspection departments. Other job roles include industrial buyer, retail buyer, production manager or quality assurance manager.

Read more about typical career paths:

Further study

A Masters in food science will also serve you well in progression to research-led projects. Many of our students go on to undertake PhD research here at the University of Leeds in one of the School’s research groups. Read about postgraduate research in the School of Food Science and Nutrition.

Careers support

The School of Food Science and Nutrition has its own dedicated Employability Enhancement Officer who can offer quality advice and support with regards to careers, CV and cover letter writing, job applications etc. The Employability Enhancement Officer promotes a range of opportunities available to students to ensure they maximise their capabilities through a process of personal development and career planning.

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. Read more
Environmental engineering uses science and engineering principles to assess and mitigate pollution for the benefit of human health and the environment. This research programme requires an understanding of biology, chemistry, physics, engineering, socio-economics and legislation to develop solutions for the sustainable provision of clean air, land and water for humankind.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on environmental civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

This research programme is ideal if you are enthusiastic about environmental engineering research. Our main research themes in environmental engineering are:
-Engineered biological systems
-Mining and metals in the environment
-Biochemical processes in contaminated water, soils and sediments
-Safe water and sanitation in developing countries

We offer MPhil and PhD supervision in the following research areas:
-Anaerobic digestion
-Manipulation of the fate of micro-pollutants
-Pollutant sequestration
-Bioremediation
-Risk assessment
-Sanitation and low-cost water supplies for developing countries
-Waste stabilisation ponds
-Constructed wetlands
-Minewater treatment
-Carbon neutral initiatives
-Geothermal energy

Our microbiological research has a strong emphasis on understanding and engineering biological processes using ecological theory, underpinned by exploration of molecular techniques, eg fluorescent in situ hybridisation, quantitative PCR, and denaturing gradient gel electrophoresis.

Delivery

We have extensive contacts in the UK and overseas to enable research to be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience. Professor Thomas Curtis and Professor David Graham, both Professors of Environmental Engineering, are a couple of our notable academic staff.

Read less
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. Read more
Neuroscience is a discipline concerned with the scientific study of the nervous system in health and disease. Research in the neurosciences is of considerable clinical impact considering the debilitating and costly effects of neurological and psychiatric disease. In this regard, a major goal of modern neuroscience research is to elucidate the underlying causes (genetic or environmental) of major brain diseases, and to produce more effective treatments for major psychiatric disorders such as schizophrenia and depression, and neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, motor neurone disease and epilepsy. Improved treatment strategies for brain disorders relies entirely on increased understanding gained from research which integrates molecular, cellular and clinical aspects of disease. In this regard it is clear that interdisciplinary approaches are necessary to understand the complex processes which underlie brain function in health and disease. This interdisciplinary philosophy is adopted in the delivery of our M.Sc. programme in Neuroscience, which is underpinned by the diverse research expertise available within Trinity College Institute of Neuroscience (TCIN).

Course Content:

This one-year M.Sc. course aims to provide a multidisciplinary training in the neurosciences, in topics ranging from molecular to behavioural. The course is ideal for students wishing to extend their specialised knowledge, and for those wishing to convert from their original degree discipline. The programme will equip participants with the skills necessary to progress into a career in biomedical, pharmaceutical or neuropsychological research. Instruction for the course consists of approximately 200 contact hours over two academic Terms to include lectures, laboratory practical sessions, journal club workshops and student-based seminars. Modules are assessed by a mixture of in course assessment and written examinations.

Specialist modules covered include:

Form and Function of the Nervous System, Biochemical Basis of Neuropharmacology, Neuropharmacology, Drug Development, Advanced Neuroimmunology, Experimental Neuroscience, Scientific Literature Skills, Neural Engineering, Neuroimaging Technology, Current Topics in Neuroscience, Cellular Neuroscience, and Research Skills.

The third Term consists of a research project on novel aspects of Neuroscience. Trinity College Institute of Neuroscience is a dynamic research environment with research spanning molecular/cellular neuroscience to clinical/translational neuroscience. Projects across these research areas may be undertaken in consultation with an expert supervisor. For students interested in a project in cellular/molecular neuroscience a range of cellular techniques such as tissue culture, immunocytochemistry, western immunobloting and immunoprecipitation, confocal microscopy, Immunoassays, flow cytometry, Real-time PCR, and high performance liquid chromatography are available. In addition, some projects will involve assessing behavioural, electrophysiological and neurochemical endpoints using in vivo models of neurological and psychiatric disease. For those with an interest in experimentation on human subjects, projects will be offered utilizing techniques such as functional magnetic resonance imaging and neurocognitive testing. A selection of national and international projects is also available, which involve collaboration with other academic institutes and pharmaceutical companies, in Ireland, UK and across Europe.

Read less
The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Read more

Course Objective

The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. During the course students will carry out a number of practicals. They will be introduced to selected advanced experimental techniques used in biomedical science and industry. The techniques include:
DNA-microarray and RT-PCR, Immunostaining and Confocal Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Nano Hardness Tester, Mass Spectrometry, various chromatography methods and Infra-red spectroscopy.

Benefits of the Course

The programme offers the Biological Sciences graduate a means of achieving the mathematical, computational, and instrumentation skills necessary to work in biomedical science. Likewise the Physical Science/Engineering graduate will gain experience in aspects of cell biology, tissue engineering, and animal studies. The course work will draw mainly from courses already on offer to undergraduates in the Science faculty, but will also include new modules developed specifically for this course. Expertise from other research institutes and from industry will be used,where appropriate.

The course covers following areas:
Material Science and Biomaterials
Applied Biomedical Sciences
Cell & Molecular Biology: Advanced Technologies
Fundamental Concepts in Pharmacology
Human Body Structure
Protein Technology
Tissue Engineering
Bioinformatics
Radiation & Medical Physics
Molecular Medicine
Regulatory Compliance in Healthcare Manufacturing
Advanced Tissue Engineering
Introduction to Business
Scientific Writing

Career Opportunities

Graduates of the MSc in Biomedical Science with undergraduate degrees in engineering and science have gone on to work within the medical device and pharmaceutical industry, hospitals and academia.

Read less
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Read more
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Biotech applications are enhancing food production, treating medical conditions, and having a significant impact on the global future.

Given the common expectation for job candidates to have some form of postgraduate qualification, this Masters course offers a route to careers in biotechnology as well as the broader life sciences industry. If your first degree included the study of genetics and molecular biology, and a research module, you’re well-placed to join us.

This course can also be started in January (full time 21 months) - for more information please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/biotechnology-dtfbty6/

Learn From The Best

The quality of teaching in life sciences at Northumbria has been recognised by strong performance in student-led awards, Further evidence of academic excellence is the number of invitations to members of our team to join the editorial boards of scientific journals.

Our teaching team maintains close links with biotech companies and research labs, including via on-going roles as consultants, which helps ensure an up-to-date understanding of the latest technical and commercial developments. Several academics are involved in biotech ventures that make use of the University’s facilities: Nzomics Biocatalysis develops enzyme alternatives to chemical processes, and Nu-omics offers DNA sequencing services.

Teaching And Assessment

We aim for interactive teaching sessions and you will engage in discussions, problem-solving exercises and other activities. Teaching can start in the lab or classroom and then you make the material your own by exploring and applying it. Technology Enhanced Learning makes this easier; each module has an electronic blackboard site with relevant information including electronic reading lists and access to websites, videos and other study materials that are available anytime, anywhere.

You will undertake assignments within small groups and we provide training in communication skills relevant for scientific communication. The course aims to foster your ability to work at a professional standard both individually and as part of a team.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0704 - Industrial Biotechnology (Core, 20 Credits)
AP0705 - Current Topics in Biotechnology (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

The technical facilities at Northumbria University are excellent. We are fully equipped for molecular biology manipulations and imaging – techniques include RT-PCR to show whether or not a specific gene is being expressed in a given sample. We also have pilot scale bioreactors so that we can scale up experiments and processes.

For cell biology and immunology, we have two multi-user laboratories. Technologies include assays for measuring immune responses at the single-cell level, and for monitoring the functioning of cells in real time. Further capabilities include biomarker analysis, flow cytometry, chemical imaging and fluorescence microscopy. For genomics, proteomics and metabolomics, our capabilities include genomic sequencing, mass spectrometry, 2D protein electrophoresis and nanoflow liquid chromatography.

All our equipment is supported up by highly skilled technical staff who will help you make the best use of all the facilities that are available.

Research-Rich Learning

In fast-moving fields like biotechnology, it’s particularly important for teaching to take account of the latest research. Many of our staff are conducting research in areas such as molecular biology, bio-informatics, gene expression and micro-biology of extreme environments. They bring all this experience and expertise into their teaching.

As a student, you will be heavily engaged in analysing recent insights from the scientific literature. You will undertake a major individual project in molecular and cellular science that will encompass all aspects of a scientific study. These include evaluation of relevant literature, design and set-up of experiments, collection and processing of data, analysis of results, preparation of a report and presentation of findings in a seminar.

Give Your Career An Edge

Many recruiters in the biotech industry expect candidates to have studied at postgraduate level so our Masters qualification will help you get through the door of the interview room. Once there, your major project and other assignments will help ensure there is plenty to catch their attention. Employers are looking for the ability to solve problems, think critically, work with others and function independently – which are exactly the attributes that our course develops to a higher level.

During your time at Northumbria, we encourage you to participate in the activities organised by the Career Development Service. We also encourage you to apply for associate membership of the Royal Society of Biology, with full membership becoming possible once you have at least three years’ postgraduate experience in study or work.

Your Future

The biotech industry has made huge progress in the last few decades and the years ahead promise to be even more transformational. With an MSc Biotechnology, you will be ready to contribute to the changes ahead through a rigorous scientific approach and your grasp of the fundamental knowledge, insights and skills that underlie modern biotechnology.

Scientific research is at the heart of the course and you will strengthen pivotal skills that will enhance your employability in any research-rich environment. By developing the practices, standards and principles relevant to becoming a bioscience professional, you will also prepare yourself for success in other sectors of the life sciences industry and beyond.

Read less
Molecular Biology with Biotechnology (MSc). This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. Read more
Molecular Biology with Biotechnology (MSc)

This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. The course has a strong practical emphasis and will provide the advanced theoretical and practical background necessary for employment in the Biotechnology industry, as well as equipping students with the knowledge required to pursue advanced studies in this area.
Course structure

The course consists of a taught component and a Research project. During the taught phase of the degree, you will take modules in Marine Biotechnology, Molecular and Medical Laboratory Techniques, Techniques of Molecular Biology and Biotechnology; Systems Biology; Plant Biotechnology, Environmental Biotechnology and Medical Biotechnology.

Topics covered in these modules will include Agrobacterium Ti plasmid based plant transformation vectors and the development of transgenic crops; the use and interpretation of microarrays and proteome systems; the development of transgenic fish and the diagnosis of fish diseases using molecular markers; bioremediation, biomining and the use of bacteria to degrade novel organic pollutants; stem cell technologies and the diagnosis of genetic disease using single nucleotide polymorphisms. image of students in the labDuring this part of the course, you will also take part in intensive laboratory exercises designed to introduce you to essential techniques in molecular biology and biotechnology including nucleic acid and protein extraction, PCR and QTL analysis, northern, southern and western blotting etc. In addition, most of the taught theory modules will have an associated practical component. The Research project will take place during the summer and will be conducted under the direct supervision of one of the staff involved in teaching the course. Students will be able to choose their Research project from a wide range of topics which will be related to the taught material.

Career options

The 21st century post genomics era offers a wide range of job opportunities in the agricultural, medical, pharmaceutical, aquaculture, forensics and environmental science areas. The rapidly developing economies of China and India in particular have recognised the enormous opportunities offered by Biotechnology. Job openings in sales and marketing with companies who have a science base are also common. Some graduates will also choose to extend their knowledge base by undertaking PhD programmes in relevant areas.

Read less
This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research. Read more

About the course

This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Cell Biology; Practical Developmental Genetics; Cancer Biology; Modelling Human Diseases; Epithelia in Health and Disease.

Read less

Show 10 15 30 per page



Cookie Policy    X