• Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
Middlesex University Featured Masters Courses
Vlerick Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Glasgow Featured Masters Courses
"pathogen"×
0 miles

Masters Degrees (Pathogen)

We have 30 Masters Degrees (Pathogen)

  • "pathogen" ×
  • clear all
Showing 1 to 15 of 30
Order by 
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine. Read more
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare).

Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

The course will be run entirely by research active and will offer students the opportunity to gain experience in internationally competitive laboratories.

PROGRAMME CONTENT
The MSc programme in Parasitology and Pathogen Biology is designed for students seeking training in parasite-borne infectious diseases that severely undermine: human health in the developing world and tropics; agri-food production systems globally (including plant health and animal health and welfare). Students taking the course will develop expertise directly applicable to human, plant and animal health and welfare, food security and the future sustainability of food production, particularly within livestock and plant/crop production systems.

Students undertaking this MSc course will study the folling modules:

- Foundation for Research in the Biosciences 20CATS
- Fundamental Parasitology & Advanced Skills 20CATS
- Advanced Parasitology I 20CATS
- Advanced Parasitology II 20CATS
- Bio-Entrepreneurship & Advanced Skills 20CATS
- Literature Review 20CATS
- Research Project 60CATS

CAREER PROSPECTS
It is anticipated that the skills set and knowledge acquired will equip participants with a comprehensive academic and methodological repertoire to undertake careers in agriculture, plant science, animal and human health, pharmaceutica, academia and food security, underpinning the transdisciplinary nature of the programme.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

WHY QUEEN'S?
The MSc programme embraces the One Health approach to these infectious diseases, with strong recognition of the interplay between health and disease at the dynamic interface between humans, animals and the environment.

In addition to embedded generic skills training, students will have the opportunity to acquire subject-specific skills training, e.g. molecular biology techniques, diagnostics, epidemiology (human, animal and plant diseases), drug/vaccine development, pathogen management/control, host-parasite interaction, immunobiology, drug resistance and the potential impact of climate change on parasites and their vectors.

In addition to the taught elements of the course, MSc students will undertake a research project working in research active laboratories (academic or industrial), or in the field, e.g. the impact of helminth infections on animal welfare, the economic impact of parasites on agriculture, the role of vectors in emerging diseases, the ecology of zoonotic diseases, the molecular basis of anthelmintic resistance, emerging technologies for drug discovery, the pathology of infection, parasite immunomodulation of the host.

The transferrable skill set and knowledge base acquired from the programme will equip students with a highly desirable qualification that is suited to those wishing to pursue careers in human health/infectious disease, animal health, veterinary medicine, animal/plant biology, pharmaceutical sciences and food security.

Read less
Your programme of study. If Biology is your passion Microbiology at Aberdeen allows you to understand advances in microbiology, adaptation, host-pathogen interactions and infection and disease processes. Read more

Your programme of study

If Biology is your passion Microbiology at Aberdeen allows you to understand advances in microbiology, adaptation, host-pathogen interactions and infection and disease processes. You learn with established and renowned international researchers and there are opportunities to learn and apply knowledge in practical situations. You also learn about applied statistics methods, bioinformatics and immunology plus regulation and genome enabled medicines.

This programme is designed to provide advanced training in molecular microbiology. You will investigate molecular microbiology, host-pathogen interactions and immune system interactions by pathogens, environmental microbiology, and the core physiology and biochemistry of bacterial and fungal pathogens. Bioinformatics and biotechnology areas are currently in high growth within innovation markets due to major advances in the discipline areas, IOT and Photonics advances and customised methods of treating disease at source within advanced stratified medicine for example. Careers upon graduation can include hospital diagnostics, pathology laboratories and microbiology research. There is a lot of scope to develop innovation in this subject area if you continue to apply innovative research towards new solutions within biological patents.  Scottish innovation centres http://www.innovationcentres.scot/innovation-centres/ you may be interested in finding out about if you want to continue within research and innovation at SMS-IC, IBioIC, DHI and CENSIS or if you live within England the CPI. All of these innovation centres allow for exciting new research and upstream testing towards new spin out companies or product lines. You may also be interested in continuing your studies to PhD in order to teach.

Courses listed for the programme

Semester 1

Basic Skills - Induction

Introduction to Microbiology

Applied Statistics

Bioinformatics

Generic Skills

Semester 2

Regulation in Microbial Biochemistry

Genome -Enabled Medicine

Research Tutorials

Host-Pathogen Reactions

Semester 3

Masters Research Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/184/microbiology/

Why study at Aberdeen?

  • Aberdeen is a top 10 university to study MSc Microbiology at one of the largest clinical complexes in Europe
  • You are taught by world renowned researchers from Aberdeen Fungal Group to MRC Centre for Medical Mycology status
  • The University if ranked 9th in the world and 5th in Europe for international research collaboration in Biomedical and Health Sciences (Leiden 2015)

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 months or 24 months
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
The MRes in Biomedical Research. Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. Read more
The MRes in Biomedical Research: Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. The Bacterial Pathogenesis and Infection stream is a specialised stream on a larger course (the MRes in Biomedical Research). This programme will provide research training in fundamental aspects of bacterial pathogenesis, host immunity and antibiotic resistance, with particular attention to the scientific, technical and professional acumen required to establish research independence. The emphasis will be on molecular approaches to understanding bacterial infection biology, as a function of bacterial pathogenic strategy and physiology, as well as resistance to host defences and antibiotic therapy, and is comprised of two 20-week research projects embedded within research-intensive groups and a series of lectures, seminars, tutorials and technical workshops.

Based in the MRC Centre for Molecular Bacteriology and Infection, the course provides an opportunity to learn directly from internationally-respected scientists through sustained interaction for the duration of the course. This programme will deliver training in: Molecular microbiology, including integration of molecular and cellular information to understand the genetic basis of virulence; modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity; functionality and physiological relevance of microbial virulence factors; mechanisms of antibiotic resistance and persistence; derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Course Objectives
The emphasis is on molecular approaches to understanding infection as a function of bacterial pathogenic strategy and physiology. This research-oriented approach to training in biomedical science will comprise both theoretical and practical elements. The course will expose students to the latest developments in the field through two mini-research projects and a series of technical workshops. Students will gain experience in applying technologically advanced approaches to biomedical research questions.

Specifically the course will deliver research training in:

• Molecular bacteriology, integrating molecular and cellular information to understand the genetic basis of microbial virulence.
• Modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity.
• By experimentation, understanding the biochemical functions and physiological relevance of microbial virulence factors and antibiotic resistance.
• Derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Individuals who successfully complete the course will have developed the ability to:

• Demonstrate practical dexterity in the commonly employed and more advanced practical techniques of molecular and cellular microbiology
• Exercise theoretical and practical knowledge and competence required for employment in a variety of biomedical environments
• Identify appropriate methodology during experimental planning
• Interpret and present scientific data
• Interrogate relevant scientific literature and develop research plans
• Recognise the importance of justifying expenditure (cost and time) during experimental planning
• Recognise potential methodological failings and strategise accordingly
• Perform novel laboratory-based research, and exercise critical scientific thought in the interpretation of findings
• Write and defend research reports, which appraise the results of laboratory based scientific study
• Communicate effectively through writing, oral presentations and IT to facilitate further study or employment in molecular, cellular and physiological science
• Exercise a range of transferable skills

This will be achieved by providing:

• A course of lectures, seminars, tutorials and technical workshops. The programme is underpinned by the breadth and depth of scientific expertise in the participating department.
• Hands-on experience of a wide repertoire of scientific methods
• Two research projects
• Training in core transferable skills

The MRC Centre for Molecular Bacteriology and Infection (Departments of Medicine and Life Science) is located at the South Kensington Campus of Imperial College London. http://www.imperial.ac.uk/mrc-centre-for-molecular-bacteriology-and-infection

Candidates are expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK.

Please visit the course website for more information about how to apply, and for more information about the various streams of specialism which run within the course.

Early application is strongly advised. Please note that while applications can be considered after receipt of one recent reference, two will be required as standard for confirmation of acceptance by College.

If you have any questions, please contact:

Kylie Glasgow
Manager, Centre for Molecular Bacteriology and Infection
Imperial College London
London, SW7 2AZ
E-mail

-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2017 will be eligible to apply for the Faculty of Medicine Dean's Master’s Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit http://www.imperial.ac.uk/medicine/study/postgraduate/deans-masters-scholarships/. Applications for 2017 are not yet open (do check the website again early in the new year).

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
Research profile. Research on Infection and Immunity aims to enhance understanding of the mechanisms of host defence against infection, and translate this understanding into prevention and treatment. Read more

Research profile

Research on Infection and Immunity aims to enhance understanding of the mechanisms of host defence against infection, and translate this understanding into prevention and treatment.

The research programmes include a wide range of activities including studies of host/pathogen interactions (including work on viruses, bacteria, parasites and spongiform encephalopathy agents), the immune systems of animals and how they respond to pathogen challenge, genetic resistance to disease and epidemiology of disease. These activities are underpinned by major programmes in animals genomics and bioinformatics.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 the Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.



Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. In general, the group use molecular biology, plant pathology, proteomics, genetics, microscopy and bioinformatics to investigate the functional role of genes in various conditions. These include biotic stress, flowering, cell cycling, circadian rhythm, receptor-ligand interactions, identification of pathogen secreted molecules and their function, targeted genome editing using CRISPR technology, comparisons of bacterial genomes using next generation sequencing and bioinformatics.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines. The team members have collaborations within and outside the UK, thus possibilities for travelling and longer term visits exist at national and international partner universities.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Institute of Science and the Environment has an excellent range of resources available to support your learning and your research project.

Recent research
Regulation of effectors by circadian rhythm; Identification of PAMPs and apoplastic effectors from downy mildew pathogen; Role of heterozygosity in effector-triggered immunity, investigating immune system of plants using genome editing technology and biopesticides.

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):
All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/tmih_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mstmih.html

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:
All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*
Clinical Virology*
Epidemiology & Control of Malaria*
Advanced Immunology 1
Childhood Eye Disease and Ocular Infection
Designing Disease Control Programmes in Developing Countries
Drugs, Alcohol and Tobacco
Economic Evaluation
Generalised Liner Models
Health Care Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Molecular Biology & Recombinant DNA Techniques
Research Design & Analysis
Sociological Approaches to Health
Study Design: Writing a Proposal

- Slot 2:
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Advanced Diagnostic Parasitology
Advanced Immunology 2
Clinical Bacteriology 1
Family Planning Programmes
Health Systems; History & Health
Molecular Virology; Non Communicable Eye Disease
Population, Poverty and Environment
Qualitative Methodologies
Statistical Methods in Epidemiology

- Slot 3:
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*
Control of Sexually Transmitted Infections*
Advanced Training in Molecular Biology
Applied Communicable Disease Control
Clinical Immunology
Current Issues in Safe Motherhood & Perinatal Health
Epidemiology of Non-Communicable Diseases
Implementing Eye Care: Skills and Resources
Medical Anthropology and Public Health
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology
Spatial Epidemiology in Public Health
Tropical Environmental Health
Vector Sampling, Identification & Incrimination

- Slot 4:
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*
Epidemiology & Control of Communicable Diseases*
Ethics, Public Health & Human Rights*
Global Disability and Health*
Immunology of Parasitic Infection: Principles*
Analytical Models for Decision Making
Clinical Bacteriology 2
Design & Evaluation of Mental Health Programmes
Environmental Epidemiology
Evaluation of Public Health Interventions
Genetic Epidemiology
Globalisation & Health
Molecular Biology Research Progress & Applications
Nutrition Related Chronic Diseases
Population Dynamics & Projections
Reviewing the Literature
Sexual Health
Survival Analysis and Bayesian Statistics
Vector Biology & Vector Parasite Interactions

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Mycology*
Advanced Statistical Methods in Epidemiology
Analysing Survey & Population Data
Applying Public Health Principles in Developing Countries
Environmental Health Policy
Integrated Vector Management
Integrating Module: Health Promotion
Molecular Cell Biology & Infection
Nutrition Programme Planning
Pathogen Genomics
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/ttmi.html

Project Report:
During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth

Read less
Your programme of study. Immunology is linked to our ability to remain healthy and free of disease - fighting off infections and disease and understanding our genetic factors and risk factors in inheriting disease. Read more

Your programme of study

Immunology is linked to our ability to remain healthy and free of disease - fighting off infections and disease and understanding our genetic factors and risk factors in inheriting disease. You look at behavioural factors and their links to disease to understand protection methods and you go into the detail of bioinformatics and genomics to understand DNA and analyse within practical research when you test for specific issues such as stress, hunger and so on and responses in the body.

The programme is designed for you to develop your academic knowledge of immunology and its relevance to disease with analysis and research skills designed to enhance your career prospects, or continue to PhD. You can use your training within educational establishments to apply training, work in patents, science outreach and public engagement.

Focusing on the relevance of the immune response in the maintenance of health and development of disease, graduates will be able to attain the intellectual and practical skills needed to address both theoretical and technical aspects of modern biomedical research.

In common with the other molecular biosciences Masters courses, the MSc in Immunology & Immunotherapy builds on recent advances in genomics to understand the generation of immunological diversity at a cellular level, how this imparts variability in immune responses at the individual and population level and the relevance of the immune system in disease areas such as autoimmunity, cancer, allergy and microbial infections.

You may also be interested in the Scottish Innovation Centres research and enterprise work with companies in Scotland to find out more about the possibilities in this area of health science and spin-out research going on from Aberdeen and other universities: http://www.innovationcentres.scot/

Courses listed for the programme

Semester 1

Basic Skills Induction

Generic Skills

Current Topics in Immunology

Introductory Immunology

Applied Statistics

Semester 2

Host-Pathogen Interactions

Genome - Enabled Medicines

Research Tutorials

Immunogenetics

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/127/immunology/

Why study at Aberdeen?

  • You will be taught by world leading researchers in immunology and bioscience with practical training in Flow Cytometry analysis
  • You study at one of the largest health campuses in Europe with a teaching hospital, Medical School, and Institute of Medical Sciences plus Rowett Institute on one campus
  • The university ranked 9th in the world and 5th in Europe for international research collaboration (Leiden 2015)

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months Full Time or 24 Months Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty. Read more

Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty.

The diseases that can be transmitted between animals and people also threaten the health of livestock keepers, their families and their communities. In many developing regions farmers and animal health workers are often ill equipped to deal with this risk.

This programme draws together expertise from across the University to deliver first-class teaching and research to tackle these issues.

Building on a solid foundation of biological, immunological, pathological and epidemiological principles, this online MSc will equip you with the skills needed to identify, control and manage animal diseases and the expertise to tackle the international animal health challenges of the 21st Century.

This programme is affiliated with the University's Global Health Academy.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

Students may study to certificate, diploma or masters level.

Year 1: certificate

  • Applied Epidemiology and Surveillance
  • Host Responses to Infection
  • Pathogen Strategies for Transmission and Survival

Year 2: diploma

You will undertake the following compulsory course:

  • Zoonotic disease

Choose one one of the following two courses:

  • Surveillance and control of transboundary diseases affecting international trade
  • An introduction to transboundary diseases and their impact on trade and wildlife populations

Then choose from the following electives (up to 60 credits):

  • Control of economically important parasites
  • Environmental and nutritional diseases of livestock of international importance
  • New developments in epidemiology and the control of vector borne disease
  • Veterinary vaccinology
  • Wildlife animal health and environment
  • Technology advances in veterinary diagnostics
  • Animal disease survey design and analysis
  • Project planning and decision support for animal disease control
  • Animal healthcare systems in the post-privatisation era
  • Introduction to health and production of aquatic species
  • Introduction to GIS and spatial data analysis
  • Advanced GIS and spatial epidemiology and modelling
  • An Introduction of Project Cycle Management
  • Globalisation and health
  • The Modern Zoo
  • The Use of Artificial Reproductive Technologies in Threatened Species
  • Pastoralism and herd health
  • Zoonotic diseases in a global setting
  • Socioeconomic Principles for One Health

Year 3: masters

For a masters, you will choose either to conduct a written reflective element of 10–15,000 words or to take Project Cycle Management and Funding Application Preparation.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Please contact the programme team for more information about available courses and course start dates.

Career opportunities

This programme has been designed to enhance your career in animal management throughout the world with first-rate expertise and a highly regarded qualification.



Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
World-class microbiological research takes place in Newcastle in medical sciences, biological sciences, and civil engineering and geosciences. Read more
World-class microbiological research takes place in Newcastle in medical sciences, biological sciences, and civil engineering and geosciences. We welcome MPhil research proposals in all three of these fields. We are well funded and this creates a vibrant and dynamic environment for postgraduate study.

We offer MPhi supervision in:

Medical sciences

The Centre of Bacterial Cell Biology researches fundamental aspects of the cell biology and biochemistry of bacteria, providing scientific insights crucial for the discovery and development of new antibiotics, as well as providing solutions to a huge range of industrial and environmental problems. Other research interests include:
-Chromosome replication and segregation
-Transcription and translation
-Protein structure, function and engineering
-Cell envelope, growth and division
-Synthetic biology, development and gene regulation
-Bacterium-host interactions

Biological sciences

The Applied and Environmental Microbiology Group researches:
-Microbial biology in a range of habitats
-Discovery of natural products, eg antibiotics
-Reduction of food spoilage
-Production of biofuels, bioremediation of polluted environments
-Pathogens and host–pathogen interactions in a range of diseases including those in plants and coral reefs

Civil engineering and geosciences

The multidisciplinary research of Civil Engineering and Geosciences contributes fundamental advances in:
-Microbial ecology
-Environmental microbiology
-Environmental engineering and Earth systems
-Biogeochemistry
-Microbiological aspects of engineered and natural environments
-Anaerobic crude oil degradation in petroleum reservoirs
-Engineered biological treatment systems
-The microbial ecology of climatically significant processes such as methane cycling

Read less
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. Read more
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. You can choose to specialise in virology, microbiology (bacteriology) or parasitology.

Why this programme

◾This degree in Infection Biology allows you to study in an Institute housing two UK National centres of excellence, in Virology and Parasitology, and active in the Scottish Infection Research Network (SIRN), a key clinical focus on healthcare-related
◾You will work in the laboratories of internationally recognized infection biology researchers, conducting high quality basic, translational and clinical science.
◾We have exciting scholarship opportunities.
◾This MSc in Infection Biology provides access to a combination of highly specialised equipment, unique in Scotland, including cutting edge in vitro and in vivo research facilities for biological imaging, high content screening microscopy , and a state of the art polyomics facility bringing together metabolomics, proteomics, genomics, transcriptomics, and integrations of data sets with bioinformatics.
◾You can attend guest lectures and workshops from scientists and clinicians working in the pharmaceutical, diagnostic and biotechnology fields.
◾You can carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.
◾This Infection Biology degree integrates infection biology with cutting edge molecular and cellular techniques.
◾The MSc in Infection Bilogy offers breadth, covering bacteria, viruses and parasites.
◾Students can opt to specialise in one of the three areas of infection biology, and will graduate with a named specialism e.g. MSc Infection Biology (Microbiology).
◾Optional courses allow students to develop their interests: ◾Technology transfer and commercialisation of bioscience research.
◾Drug discovery
◾Diagnostic technologies and devices
◾Current trends and challenges in biomedical research and health

◾We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.
◾Students have the opportunity to carry out a research project in an internationally recognized centre of excellence, working with world-leading researchers in infection biology.

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PGDip programme will consist of five taught courses, spread over 7-8 months, with three compulsary courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

Core Courses and Project
◾Host-pathogen interactions and immune responses to infection
◾Omic technologies for the biomedical sciences: from genomics to metabolomics
◾Designing a research project: biomedical research methodology
◾Infection Biology Research project (laboratory based or non-laboratory based, in Virology, Parasitology, or Microbiology)

Optional Courses
◾Drug discovery
◾Diagnostic technologies and devices
◾Current trends and challenges in biomedical research and health
◾Technology transfer and commercialisation of bioscience research

Teaching and Learning Methods

A variety of methods are used, including lectures, tutorials, workshops, laboratories and problem-based learning. These are supplemented by a wide range of course-specific electronic resources for additional learning and self assessment. As a result, you will develop a wide range of skills relevant to careers in infection biology research, diagnostics or drug development. These skills include team-working, data interpretation and experimental design. You will use the primary scientific literature as an information resource.


Electronic Resources

Our online resources were voted the best in the United Kingdom in the International Student Barometer in 2012, and include:
◾a continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment materials
◾over 35,000 online textbooks and e-journals available through the University library website, 24/7
◾academic databases of biological sciences and medicine
◾Henry Stewart Talks - animated audio visual presentations by world leading experts covering many topics in infection biology.

Career prospects

The University of Glasgow MSc in Infection Biology provides you with many career opportunities.

Research: About half of our MSc students enter a research career, mainly by undertaking further postgraduate research studies towards a PhD), or by working in research laboratories in clinical or academic settings, including national government laboratories.

Industry: Other students go on to work in the pharmaceutical, diagnostic or biotechnological industries.

Read less
This M.Sc. in Immunology includes study of immunological processes and mechanism, how they contribute to disease and how they might be manipulated therapeutically. Read more
This M.Sc. in Immunology includes study of immunological processes and mechanism, how they contribute to disease and how they might be manipulated therapeutically. By focusing on the molecules, cells, organs and genes of the immune system, their interaction and how they are activated and regulated, students will develop a deep understanding of the pathological processes underpinning immune mediated disease and how they might be controlled. From a practical perspective the course involves in-depth instruction in modern methodologies used in immunology/biomedical research, including the fundamentals of molecular and cellular biology. Students will also be trained in experimental design, data handling and basic research skills. The masters course aims to provide students with a well-balanced and integrated theoretical and practical knowledge of Immunology, and to highlight the progress and intellectual challenges in this discipline. The following modules are mandatory, and make up the taught component of the course: Basic Immunology; Immunological Technologies; Communicating Science/Critical Analysis: How to read and evaluate scientific literature; Computational and Comparative Immunology; Genes and Immunity; Pathogen Detection and Evasion; Clinical Immunology: Immuno-technologies and diagnostics tests; Parasite Immunology; Tumour Immunology; Global Infectious Diseases; Immuno-therapeutics and product development. In addition, students will be required to submit a dissertation based on a research project conducted in one of the Immunology groups located within or affiliated to The School of Biochemistry and Immunology.

Read less

Show 10 15 30 per page



Cookie Policy    X