• Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Imperial College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Swansea University Featured Masters Courses
"particles"×
0 miles

Masters Degrees (Particles)

We have 37 Masters Degrees (Particles)

  • "particles" ×
  • clear all
Showing 1 to 15 of 37
Order by 
The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe. Read more

Overview

The course provides an introduction to the physical principles and mathematical techniques of current research in general relativity, quantum gravity, particle physics, quantum field theory, quantum information theory, cosmology and the early universe.

The programme of study includes a taught component of closely-related modules in this popular area of mathematical physics. The course also includes a substantial project that will allow students to develop their interest and expertise in a specific topic at the frontier of current research, and develop their skills in writing a full scientific report.

The course will provide training in advanced methods in mathematics and physics which have applications in a wide variety of scientific careers and provide students with enhanced employability compared with undergraduate Bachelors degrees. In particular, it will provide training appropriate for students preparing to study for a PhD in the research areas listed above. For those currently in employment, the course will provide a route back to academic study.

Key facts:

- The course is taught jointly by the School of Mathematical Sciences and the School of Physics and Astronomy.

- Dissertation topics are chosen from among active research themes of the Particle Theory group, the Quantum Gravity group and the Quantum Information group.

- In addition to the lectures there are several related series of research-level seminars to which masters students are welcomed.

- The University of Nottingham is ranked in the top 1% of all universities worldwide.

Module details

Advanced Gravity

Black Holes

Differential Geometry

Gravity

Gravity, Particles and Fields Dissertation

Introduction to Quantum Information Science

Modern Cosmology

Quantum Field Theory

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. Read more
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure
The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules
- Introductory Field Theory
- Group Theory
- Standard Model
- General Relativity
- Quantum Electrodynamics
- Quantum Field Theory
- Conformal Field Theory
- Supersymmetry
- Anomalies
- Strong Interaction Physics
- Cosmology
- Superstrings and D-branes
- Non-Perturbative Physics
- Euclidean Field Theory
- Flavour Physics and Effective Field Theory
- Neutrinos and Astroparticle Physics
- 2d Quantum Field Theory
- Optional Modules
- Differential Geometry for Physicists
- Boundaries and Defects in Integrable Field Theory
- Computing for Physicists.

For further information on this course, please visit the Centre for Particle Theory website (http://www.cpt.dur.ac.uk/GraduateStudies)

Read less
This is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. Read more
This is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure

The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of four weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either eight lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules

-Introductory Field Theory
-Group Theory
-Standard Model
-General Relativity
-Quantum Electrodynamics
-Quantum Field Theory
-Conformal Field Theory
-Supersymmetry
-Anomalies
-Strong Interaction Physics
-Cosmology
-Superstrings and D-branes
-Non-Perturbative Physics
-Euclidean Field Theory
-Flavour Physics and Effective Field Theory
-Neutrinos and Astroparticle Physics
-2d Quantum Field Theory

Optional Modules available in previous years included:

-Differential Geometry for Physicists
-Boundaries and Defects in Integrable Field Theory
-Computing for Physicists

Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to bring students to the frontier of research in elementary particle theory. The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The lectures begin with a general survey of particle physics and introductory courses on quantum field theory and group theory. These lead on to more specialised topics, amongst others in string theory, cosmology, supersymmetry and more detailed aspects of the standard model.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term they are supported by weekly tutorials. In addition lecturers also set a number of homework assignments which give the student a chance to test his or her understanding of the material.

There are additional optional lectures in the third term. These introduce advanced topics and are intended as preparation for research in these areas.

The dissertation must be submitted by mid-September, the end of the twelve month course period.

Read less
Are you interested in theoretical and/or experimental research of elementary particles, stars and the universe? Do you want to attend lectures by Nobel… Read more

Something for you?

Are you interested in theoretical and/or experimental research of elementary particles, stars and the universe? Do you want to attend lectures by Nobel Prize laureates and other internationally renowned researchers during your education? Do you want to participate actively in the latest, innovative experiments at CERN or on Antarctica? Or do you aspire to have a career in academia, industry, banking, in the medical sector or education? In that case this Master programme is what you are looking for!

About the programme

This MSc programme combines the expertise in research of both the Vrije Universiteit Brussel (VUB) and Ghent University (UGent). This allows you to tailor your study programme according to your interests. The programme consists of several components: basic competences, electives, Master’s thesis and, specifically for the minor Research, mobility / internship. Mobility means taking courses at another university, usually in Belgium, while the internship can be either in Belgium or abroad.

Content

Elementary particles
The structure of this Master’s programme ensures a broad formation as a physicist and offers you the opportunity to partake in top-level research in our very own research groups. This programme focuses on the physics of elementary particles, where both experimental and theoretical research topics are discussed, as well as astro-particle physics.

Experimental physicist
As an aspiring experimental physicist you can focus on the experimental study of high-energy interactions and cosmic radiation, and you can work with the most innovative detectors in the biggest particle accelerators.

Theoretical physicist
As a future theorist you will be confronted with gauge theories, strings and branes, gravitation and cosmology. This theoretical part has links with theoretical research in astrophysics, since that discipline studies the evolution of massive double stars, the evolution of star birth galaxies and the chemical evolution of galaxies.

Astronomer
As an aspiring astronomer you can choose to do observational research on topics such as astroseismology and the development of photometric techniques.

Quantum physics
Finally, you can also decide to specialise in the most fundamental aspects of quantum physics and its recent applications in the field of quantum information.

Curriculum

The curriculum consists of four components:

1. Mandatory courses
2. Electives
3. Internship
4. Master thesis
This structure ensures that you will have a solid formation as a physicist, while offering you the possibility to participate in high-level research in our research groups.

Room for interaction and discussion

Physics students at the Vrije Universiteit Brussel attend lectures, exercises, lab sessions and excursions in small groups. There is room for interaction and discussion, and a low threshold for students to actively participate. This programme pays special attention to critical analysis.

The different research groups at the Vrije Universiteit Brussel are in close contact with leading universities and research institutes around the world, which allows you to do part of your studies and/or the research for your Master’s thesis abroad. Our research groups work for example at the particle accelerator at CERN.

Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale
Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?
If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.
Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.
- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.
- The programme offers the opportunity to perform theoretical or experimental research.
- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:
- Thinking in an abstract way
- Solving complex problems
- Using statistics
- Computer programming
- Giving presentations

Some of our alumni now work as:
- National project manager at EU Universe Awareness
- Actuarial trainee at Talent & Pro
- Associate Private Equity at HAL Investments
- Consultant at Accenture
- ECO Operations Manager at Ofgem
- Scientist at SRON Netherlands Institute for Space Research
- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:
- Shell
- KNMI
- Liander
- NXP
- ASML
- Philips
- McKinsey
- DSM
- Solvay
- Unilever
- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:
- Medipix
- Amsterdam Scientific Instruments
- Omics2Image
- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics
You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics
The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics
Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory
The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach
If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Read less
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?. Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. Read more

What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?

Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. The partner institutions are:

  • KU Leuven, Belgium (Coordinator)
  • Chalmers, Tekniska Högskola, Sweden
  • Université Grenoble Alpes, France
  • Technische Universität Dresden, Germany

The word Nanoscience refers to the study, manipulation and engineering of matter, particles and structures on the nanometer scale (one millionth of a millimeter, the scale of atoms and molecules). Important properties of materials, such as the electrical, optical, thermal and mechanical properties, are determined by the way molecules and atoms assemble on the nanoscale into larger structures. Moreover, on a nanometer scale, structures’ properties are often different then on a macro scale because quantum mechanical effects become important.

Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronic components, new types of ‘smart’ medicines and sensors, and even interfaces between electronics and biological systems.

Structure

In the first stage of the programme all students study at the coordinating institution, where they take a set of fundamental courses (max 12 credits) to give them a common starting basis, general interest courses (6-9 credits), a compulsory common block of core courses (36 credits), and already a profiling block of elective courses (min 6 credits) which prepares them for their specialisation area. In the second stage the students take a compulsory set of specialising courses (15 credits), depending on their chosen specialisation area, combined with a set of elective broadening courses (15 credits), and do their Master’s thesis research project (30 credits). Chalmers offers the second year specialisation options of Nanophysics and Nanoelectronics. TU Dresden offers the options Biophysics and Nanoelectronics, and JFU Grenoble offers the options Nanophysics, Nanochemistry and Nanobiotechnology.

 The programme contains the following educational modules:

  1. The fundamental courses (max. 12 credits) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s. If a student does not need any or all of the fundamental courses, he/she may use the remaining credits to take more elective courses from the broadening course modules.
  2.  The general interest courses (6-9 credits) are imparting non-technical skills to the students, in domains such as management, economics, languages, quality management, ethics, psychology, etc. A Dutch language and culture course is compulsory for all the students.
  3.  The core courses (36 credits) contain first of all five compulsory courses focusing on the thorough basic education within the main disciplines of the Master: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. All students also have to take one out of two available practical courses where they learn to carry out some practical experimental work, which takes places in small teams. Also part of the Core courses is the Lecture Series on Nanoscience and Nanotechnology, which is a serie of seminars (14-18 per year) on various topics related to nanoscience and nanotechnology, given by national and international guest speakers.
  4. The specific courses (min. 21 credits) are courses of the specialising option aimed to deepen the student’s competences. The students can choose 6-18 credits elective profiling programme units in the first year at the KU Leuven from three course modules. Then in the second year university the students take 15 credits compulsory courses at their second year location on their selected specialisation. They can also choose to do an industrial internship on a nanoscience or nanotechnology related topic at a nanotechnology company or research institute.
  5. The broadening courses (15 credits) are courses from the other options of the Master’s programme, which allow the students to broaden their scope beyond the chosen specialisation. Students can choose from a large set of program units offered at the second year university.
  6. The Master’s thesis (30 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The research project always takes place at the second year partner university and is finalised with a written thesis report and a public presentation. Each Master’s thesis has a promotor from the local university and a promotor from KU Leuven.

 The EMM-Nano programme is truly integrated, with a strong research backbone and an important international scope. The objective of the programme is to provide a top quality multidisciplinary education in nanoscience and nanotechnology. 

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in the EMM-Nano programme.

Thus, EMM-Nano graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Particle physics deals with the building blocks of matter and the forces between them. The programme offers courses on all aspects of the Standard Model of Particle Physics, including Nuclear Physics. Read more

Experimental Physics

Particle physics deals with the building blocks of matter and the forces between them. The programme offers courses on all aspects of the Standard Model of Particle Physics, including Nuclear Physics.

Particle physics is one of the strong areas within Experimental Physics in Utrecht. The slightly broader field of Subatomic Physics (including also Nuclear Physics) has a long tradition of excellence at Utrecht University, recently Utrecht has concentrated more on high profile research on elementary particles.

The research is performed in international collaborations at research centers in the USA and in Europe. Nationally, the group cooperates in the Nikhef consortium. For the teaching programme in the MSc there is a strong cooperation with the Amsterdam universities.

Utrecht is the only Dutch university to contribute to ALICE, one of the large experiments at the new accelerator LHC at CERN in Geneva. The research has an intimate connection to different areas of theoretical physics (Quantum Field Theory, Relativistic Hydrodynamics and even String Theory) and is of relevance also for Astrophysics. It uses state-of-the-art technologies in particle detection, electronics and computing.

Read less
High-level training in statistics and the modelling of random processes for applications in science, business or health care. Read more
High-level training in statistics and the modelling of random processes for applications in science, business or health care.

For many complex systems in nature and society, stochastics can be used to efficiently describe the randomness present in all these systems, thereby giving the data greater explanatory and predictive power. Examples include statistical mechanics, financial markets, mobile phone networks, and operations research problems. The Master’s specialisation in Applied Stochastics will train you to become a mathematician that can help both scientists and businessmen make better decisions, conclusions and predictions. You’ll be able to bring clarity to the accumulating information overload they receive.

The members of the Applied Stochastics group have ample experience with the pure mathematical side of stochastics. This area provides powerful techniques in functional analysis, partial differential equations, geometry of metric spaces and number theory, for example. The group also often gives advice to both their academic colleagues, and organisations outside of academia. They will therefore not only be able to teach you the theoretical basis you need to solve real world stochastics problems, but also to help you develop the communications skills and professional expertise to cooperate with people from outside of mathematics.

See the website http://www.ru.nl/masters/mathematics/stochastics

Why study Applied Stochastics at Radboud University?

- This specialisation focuses both on theoretical and applied topics. It’s your choice whether you want to specialise in pure theoretical research or perform an internship in a company setting.
- Mathematicians at Radboud University are expanding their knowledge of random graphs and networks, which can be applied in the ever-growing fields of distribution systems, mobile phone networks and social networks.
- In a unique and interesting collaboration with Radboudumc, stochastics students can help researchers at the hospital with very challenging statistical questions.
- Because the Netherlands is known for its expertise in the field of stochastics, it offers a great atmosphere to study this field. And with the existence of the Mastermath programme, you can follow the best mathematics courses in the country, regardless of the university that offers them.
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that you’ll get plenty of one-on-one time with your thesis supervisor at Radboud University .
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating.

Career prospects

Master's programme in Mathematics

Mathematicians are needed in all industries, including the banking, technology and service industries, to name a few. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad and is the reason why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Applied Stochastics Department, focuses on combinatorics, (quantum) probability and mathematical statistics. Below, a small sample of the research our members pursue.

Eric Cator’s research has two main themes, probability and statistics.
1. In probability, he works on interacting particles systems, random polymers and last passage percolation. He has also recently begun working on epidemic models on finite graphs.
2. In statistics, he works on problems arising in mathematical statistics, for example in deconvolution problems, the CAR assumption and more recently on the local minimax property of least squares estimators.

Cator also works on more applied problems, usually in collaboration with people from outside statistics, for example on case reserving for insurance companies or airplane maintenance. He has a history of changing subjects: “I like to work on any problem that takes my fancy, so this description might be outdated very quickly!”

Hans Maassen researches quantum probability or non-commutative probability, which concerns a generalisation of probability theory that is broad enough to contain quantum mechanics. He takes part in the Geometry and Quantum Theory (GQT) research cluster of connected universities in the Netherlands. In collaboration with Burkhard Kümmerer he is also developing the theory of quantum Markov chains, their asymptotic completeness and ergodic theory, with applications to quantum optics. Their focal point is shifting towards quantum information and control theory, an area which is rapidly becoming relevant to experimental physicists.

Ross Kang conducts research in probabilistic and extremal combinatorics, with emphasis on graphs (which abstractly represent networks). He works in random graph theory (the study of stochastic models of networks) and often uses the probabilistic method. This involves applying probabilistic tools to shed light on extremes of large-scale behaviour in graphs and other combinatorial structures. He has focused a lot on graph colouring, an old and popular subject made famous by the Four Colour Theorem (erstwhile Conjecture).

See the website http://www.ru.nl/masters/mathematics/stochastics

Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.

Accreditation

We are seeking accreditation from the Energy Institute.

Course content

Most of the course revolves around core modules, giving you a range of knowledge relating to different aspects of downstream petroleum production processes. These will include chemical reaction processes, drilling and production technologies and oilfield chemistry and corrosion.

You’ll look at the principles of process performance analysis, refining theory, enhanced oil recovery, chemicals used in corrosion control and strategies for new or mature assets. On top of this, you’ll take an optional module that allows you to develop your knowledge in an area that suits your own interests.

In the summer months you’ll undertake a research project, which will demonstrate the skills you’ve gained and may even be linked to your future career plans.

Want to find out more about your modules?

Take a look at the Petroleum Production Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Chemical Reaction Processes 15 credits
  • Fuel Processing 15 credits
  • Advanced Drilling and Production Technology 15 credits
  • Drilling and Production Technology 30 credits
  • Unconventional Oil and Gas Reservoirs 15 credits

Optional modules

  • Separation Processes 30 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Rock Mechanics 15 credits
  • Petroleum Reservoir Engineering 15 credits

For more information on typical modules, read Petroleum Production Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Examples of project topics would include:

  • Enhancement of mechanical strength and corrosion inhibition in oil pipelines
  • Reducing oil pipeline scaling using nano-particle seeding agents
  • Monitoring pipeline flows using electrical resistance tomography (ERT)
  • The application of nano-technology in enhancing oil recovery
  • Application of polymer-based nano-particles in absorbing and controlling oil spillages
  • Tribo-electrostatic beneficiation of oil shale using a powder dispersal system

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The programme’s main focus is on downstream petroleum industry activities such as drilling, production, refining and distribution.

With an MSc degree in Petroleum Production Engineering you could expect to pursue a successful career in the oil and gas industries in a wide range of areas as diverse as field engineering, production drilling engineering, pipeline and transportation logistics, refinery operations and management, refinery control and optimisation, and sales and marketing.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The Department of Physics and Astronomy offers the master of science (MS) degrees in physics, with the option of specialization in astronomy. Read more
The Department of Physics and Astronomy offers the master of science (MS) degrees in physics, with the option of specialization in astronomy. Although we offer a course-only MS, our graduate program is mostly oriented toward current physics research.

RESEARCH OPPORTUNITIES

Research toward a degree may be conducted in either experimental or theoretical areas. Experimental programs include magnetic materials, high-energy physics, materials science, observational extragalactic astronomy, and particle astrophysics. Theoretical programs include condensed matter, elementary particles, atomic and molecular physics, extragalactic astronomy, astrophysics and particle astrophysics.

Read less

Show 10 15 30 per page



Cookie Policy    X