• Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
University of Leeds Featured Masters Courses
University of St Andrews Featured Masters Courses
University College London Featured Masters Courses
"parallel" AND "computing…×
0 miles

Masters Degrees (Parallel Computing)

  • "parallel" AND "computing" ×
  • clear all
Showing 1 to 15 of 83
Order by 
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Conservation of Aquatic Resources or Environmental Impact Assessment
Ecosystems
Research Project in Environmental Biology
+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Software Engineering
Data Visualization
MSc Project
+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems
Research Project
+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Physics Project
+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering
Data Visualization
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Modelling Earth Systems
Satellite Remote Sensing
Climate Change – Past, Present and Future
Geographical Information Systems
Conservation of Aquatic Resources
Environmental Impact Assessment
Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium
a number of CW and pulsed laser systems
scanning tunnelling electron and nearfield optical microscopes
a Raman microscope
a 72 CPU parallel cluster
access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.

Read less
The primary aim of this course is to educate you to MSc level in the theoretical and practical aspects of mathematical problem solving, mathematical model development, creating software solutions and communication of results. Read more
The primary aim of this course is to educate you to MSc level in the theoretical and practical aspects of mathematical problem solving, mathematical model development, creating software solutions and communication of results.

This course provides training in the use and development of reliable numerical methods and corresponding software. It aims to train graduates with a mathematical background to develop and apply their skills to the solution of real problems. It covers the underlying mathematical ideas and techniques and the use and design of mathematical software. Several application areas are examined in detail. It develops skills in mathematical problem-solving, scientific computing, and technical communication.

Training is also provided in general computing skills, mathematical typsetting, mathematical writing, desktop and web-based mathematical software development, and the use of computer languages and packages including Mathematica, parallel computing, C#, 3D graphics and animation, and visualisation.

The MSC is now available fully online and can be taken over 12 months full time or 24 months part time.

Visit the website: http://www.ucc.ie/en/ckr36/

Course Details

By the end of the course, you will be able to:

- use the description of a real world problem to develop a reasonable mathematical model in consultation with the scientific literature and possibly experts in the area
- carry out appropriate mathematical analysis
- select or develop an appropriate numerical method and write a computer programme which gives access to a sensible solution to the problem
- present and interpret these results for a potential client or a non-technical audience

Modules

Module descriptions - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#mathematical

AM6001 Introduction to Mathematica (5 credits)
AM6002 Numerical Analysis with Mathematica (5 credits)
AM6003 Cellular Automata (5 credits)
AM6004 Applied Nonlinear Analysis (Computational Aspects) (5 credits)
AM6005 Modelling of Systems with Strong Nonlinearities (5 credits)
AM6006 Mathematical Modelling of Biological Systems with Differential Equations (5 credits)
AM6007 Object Oriented Programming with Numerical Examples (10 credits)
AM6008 Developing Windowed Applications and Web-based Development for Scientific Applications (5 credits)
AM6009 3D Computer Graphics and Animation for Scientific Visualisation (5 credits)
AM6010 Topics in Applied Mathematical Modelling (5 credits)
AM6011 Advanced Mathematical Models and Parallel Computing with Mathematica (5 credits)
AM6012 Minor Dissertation (30 credits)

Format

The course places great emphasis on hands-on practical skills. There is a computer laboratory allocated solely for the use of MSc students. PCs are preloaded with all the required software and tools. Online students are expected to have a suitable PC or laptop available; all required software is provided for installation to faciliate course work. Online teaching hours, involving lecturers, tutorials and practical demonstrations, usually take place in the morninbg. The rest of the time, you are expected to do exercises, assignments and generally put in the time required to acquire key skills.

Assessment

Continuous assessment is the primary method of examining. In each module, typically 40% of the marks are available for take-home assignments and the remaining 60% of marks are examined by a practical computer-based examination. Final projects are read and examined by at least two members of staff.

For more information, please see the Book of Modules 2015/2016 - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#mathematical

Careers

Quantitative graduates with software skills are in high demand in industry according to the Governments Expert Group on Future Skills Needs. Demand for these skills is project to rise over the coming years not just in Ireland but in the EU and globally. Graduates have recently secured jobs in the following areas: banking, financial trading, consultancy, online gambling firms, software development, logistics, data analysis and with companies such as AIB, McAfee, Fexco, DeCare Systems, MpStor, the Tyndall Institute, Matchbook.com, First Derivatives and KPMG.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
OVERVIEW. Engineering is a global industry with organisations operating in a multidisciplinary and international market place. Engineers often face situations that demand an understanding of social and cultural issues in parallel with the technical requirements of the project. Read more
OVERVIEW

Engineering is a global industry with organisations operating in a multidisciplinary and international market place. Engineers often face situations that demand an understanding of social and cultural issues in parallel with the technical requirements of the project.

WHY CHOOSE THIS COURSE?

Increasing access of people to basic services such as water, sanitation, shelter, energy, transport remains a significant global challenge. The use of innovative engineering and computing is essential to addressing these challenges, whilst ensuring environmental concerns and financial restrictions are adhered to. A further challenge for engineers can be meeting these needs in disaster prone or conflict affected areas.

The computing and engineering industries having highlighted the need for specialists who are not only technically competent but are also able to apply their skills to meet these complex and demanding issues. Global engineers need to be able to select the most appropriate solution for the local context, not just the ‘best’ technical solution.

They should be able to offer affordable solutions that are developed using available resources, manufacturing techniques and local knowledge.

This Masters programme will teach how a broad range of engineering and computing disciplines can be applied in conjunction with one another to reach appropriate, workable and affordable solutions to a variety of complex, diverse and human-centred challenges.

This MSc in Humanitarian Engineering and Computing is designed to meet the industry requirement of a globally aware engineer and computing specialist. It has been designed in partnership with both industry and charitable organisations to produce engineers who will have career prospects in large multinational global engineering organisations through to NGOs.

WHAT WILL I LEARN?

The suite of modules in this MSc is unique to Coventry University, due to our broad expertise and extensive network of industrial and academic partners.

The initial course design has been influenced by our Royal Academy of Engineering funded Advisory Board the membership of which includes; practicing humanitarian professionals, key international engineering companies, policy makers and CEOs of leading Non-Governmental Organisations (NGOs) in this area, such as Engineers Against Poverty and RedR. The course content has been developed by industry professionals to address the skills they want in their employees. Students can expect to work with experts from industry throughout the course.

The taught content will be practically focused on areas such as; water and sanitation, energy, use of IT systems, logistics, health, materials, manufacturing, project management and more. The modules themselves will emphasise the appropriate use of these skills in situations such as disaster relief (pre, during and post), development work, UK based humanitarian projects and application in large multinational global engineering projects. There is a large practical element throughout the whole course combined with real life examples and case studies supplied by our network of experts. Industrial visits, hands on workshops and guest lecturers will enhance the learning experience.

This MSc in Humanitarian Engineering and Computing is designed to meet the industry requirement of a globally aware engineer and computing specialist. It has been designed in partnership with both industry and charitable organisations to produce engineers who will have career prospects in large multinational global engineering organisations through to NGOs.

The dissertation for this MSc will showcase how students can appropriately use the practical skills gained throughout the course of the year. Opportunities will be offered for projects with our overseas partners, projects based with our UK partners through to projects based in large global organisations.

Read less
Rooted in your practical experience, the MA programme draws on the latest research and emphasises evidence-based information about computing and computational thinking in education, e-learning / Technology Enhanced Learning and digital literacy. Read more
Rooted in your practical experience, the MA programme draws on the latest research and emphasises evidence-based information about computing and computational thinking in education, e-learning / Technology Enhanced Learning and digital literacy. Develop a critical understanding of computing in education and enhance your pedagogical skills.

Key benefits

- Cutting-edge research and a high profile research active staff.

- Highly supportive teaching and the climate built around success, excellence and commitment.

- Flexibility in learning, whether you are a full or part-time UK, EU or international student through a blend of face-to-face blocks in the heart of London and online activities.

- Develops your pedagogical skills and analytical understanding of computing and computational thinking in education, e-learning / Technology Enhanced Learning and digital literacy in education and their roles in your professional practice.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/computing-in-education-ma.aspx

Course detail

- Description -

As part of our department's successful modular programme, running for over a decade, the MA is constantly updated and draws on the latest research in the development of computational thinking, e-learning/technologically enhanced learning and digital literacy. Through the programme you will develop a critical understanding of your professional expertise in developing computational thinking as well as using and managing digital technologies for teaching and/or learning. You will have the opportunity to develop your practical capabilities by designing and evaluating activities using a variety of approaches to learning including a range of digital technologies and / technologically enhanced learning, digital literacy and the development of computational thinking.
The programme is open to UK, EU and international students and is taught using a blend of face-to-face and on-line activities.

- Course purpose -

For all those who teach, lecture or organise educational provision at any level. To enable professionals concerned with education to reflect on their practice and to inform such reflection by extending their knowledge. You will be made aware of significant current developments and of contemporary pedagogical practices both in computing in education and in enabling Technology Enhanced Learning. Those who teach computing as a subject can select modules that update their understanding of recent curricula and develop their pedagogical thinking. A flexible subject knowledge enhancement programme will run in parallel for ICT teachers who need to upgrade their subject knowledge for teaching new computing curricula.

- Course format and assessment -

There are no examinations - all modules are assessed by written work.

Core modules:

• Recent Developments in Digital Technologies in Education
• A subject specific dissertation

The programme may be taken over one year (full time) or two years (part time). A serving teacher would normally complete the MA on a part time basis and complete one module in each of the autumn and spring terms in year 1, plus a further two modules and the dissertation in year 2.

The sessions for each module normally take place on one evening each week from 5.30 - 7.30pm at the Waterloo Campus. The compulsory Recent Developments in Digital Technologies in Education module involves two face-to-face sessions on Saturdays and 10 online sessions.

Career prospects

Career enhancement; research; educational software design.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. Read more
The programme is for students with computer science, mathematics, science or engineering backgrounds and good knowledge of computer programming. To improve ability to solve advanced computational problems by providing a thorough knowledge of data structures, design, quantitative analysis of algorithms and algorithmic applications and impart skills necessary for algorithm implementation within the overall context of software development.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

- Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

- Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

- Compulsory modules:

- Algorithm Design & Analysis
- Data Structures & their Implementation in C++
- Parallel & Distributed Algorithms.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. Read more
This programme is an advanced computer science course that also introduces core management theories and skills to an audience of scientists and engineers who already possess a good foundation in programming. It will improve your ability to solve advanced computational problems by gaining knowledge of data structures, design quantitative analysis of algorithms and their applications and implementation.

Key benefits

• Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, and the Institution of Engineering and Technology (IET).

• Equips graduates with practical techniques and implementation skills for solving advanced computational problems.

• Develops critical awareness and appreciation of the changing role of computing in society, motivating graduates to pursue continuing professinoal development and further research.

• Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in advanced computing and related fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/advanced-computing-with-management-msc.aspx

Course detail

- Description

This programme provides students with systematic knowledge and experience of the theoretical foundations and practice of computing at an advanced level. It is built around taught core modules such as Algorithm Design and Analysis, Data Structures and their Implementation in C++, Parallel and Distributed Algorithms, which are complemented by a wide range of optional modules for multimedia, optimisation, string processing and the web. The programme also prepares students to take on certain, more senior roles in industry that require specialist management knowledge and problem solving skills related to Advanced Computing. The final part of the programme is an individual project which is closely linked with the Department's research activities.

- Course purpose

For graduates in computer science, mathematics, science or engineering with good knowledge of computer programming, this MSc will enhance your ability to solve advanced computational problems and impart skills necessary for algorithm implementation within the context of software development and with core management theories. Research for your individual project will provide valuable preparation for a career in research or industry.

- Course format and assessment

Lectures; tutorials; seminars; laboratory sessions; optional career planning workshops. Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme, students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in general software consultancy companies, in specialised software development companies and in IT departments of large institutions (financial, telecommunications and public sector). Their jobs involve specialist programming and problem solving as well more conventional software development, maintenance and project management roles. Our graduates have also entered into academic and industrial research in software engineering, bioinformatics, algorithms and computer networks.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

Read less
This unique course prepares graduates for a career in IT consultancy, particularly in relation to small and medium enterprise (SME) clients. Read more
This unique course prepares graduates for a career in IT consultancy, particularly in relation to small and medium enterprise (SME) clients. It includes practical work experience in a real consultancy business, the Kent IT Consultancy (KITC).

The course may appeal to graduates seeking a career in consultancy, or to practising consultants wishing to round out their skills and achieve formal academic recognition. All taught Master's programmes at Canterbury are available with an optional industrial placement.

Visit the website https://www.kent.ac.uk/courses/postgraduate/265/it-consultancy

About the School of Computing

Our world-leading researchers, in key areas such as systems security, programming languages, communications, computational intelligence and memory management, and in interdisciplinary work with biosciences and psychology, earned us an outstanding result in the most recent national research assessment.

In addition, two of our staff have been honoured as Distinguished Scientists by the ACM and we have also held Royal Society Industrial Fellowships.

As an internationally recognised Centre of Excellence for programming education, the School of Computing is a leader in computer science teaching. Two of our staff have received the ACM SIGCSE Award for Outstanding Contribution to Computer Science Education. We are also home to two National Teaching Fellows, to authors of widely used textbooks and to award-winning teaching systems such as BlueJ.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

CB932 - Management of Operations (15 credits)
CO843 - Extended IT Consultancy Project (60 credits)
CO845 - New Enterprise Development (30 credits)
CO871 - Advanced Java for Programmers (15 credits)
CO881 - Object-Oriented Programming (15 credits)
CO882 - Advanced Object-Oriented Programming (15 credits)
CO874 - Networks and Network Security (15 credits)
CO876 - Computer Security (15 credits)
CO846 - Cloud Computing (15 credits)
CB937 - Financial and Management Accounting (15 credits)
CO887 - Web-Based Information Systems Development (15 credits)
CO889 - C++ Programming (15 credits)
CO894 - Development Frameworks (15 credits)
CO899 - System Security (15 credits)
CO892 - Advanced Network Security (15 credits)
CO834 - Trust, Security and Privacy Management (15 credits)
CO838 - Internet of Things and Mobile Devices (15 credits)
CO841 - Computing Law, Contracts and Professional Responsibility (15 credits)
CB934 - Strategy (15 credits)
CB904 - Structure and Organisation of the E-Commerce Enterprise (15 credits)
CB9067 - Digital Marketing (15 credits)
CO847 - Green Computing (15 credits)
CO886 - Software Engineering (15 credits)

Assessment

Assessment is through a mixture of written examinations and coursework, the relative weights of which vary according to the nature of the module. The final project is assessed by a dissertation, except for the MSc in IT Consultancy for which the practical consultancy work is assessed through a series of reports covering each of the projects undertaken.

Programme aims

This programme aims to:

- enhance the career prospects of graduates seeking employment in the computing/IT sector

- prepare you for research and/or professional practice at the forefront of the discipline

- develop an integrated and critically aware understanding of one or more areas of computing/IT and their applications (according to your degree title)

- develop a variety of advanced intellectual and transferable skills

- equip you with the lifelong learning skills necessary to keep abreast of future developments in the field.

Study support

We provide an extensive support framework for our research students and encourage involvement in the international research community.

While studying on a taught Master’s, you can gain work experience through our industrial placement scheme or with the Kent IT Consultancy (KITC), which provides a project-based consultancy service to businesses in the region.We have strong links with industry including Cisco, IBM, Microsoft and Oracle and are among the top ten in the UK for graduate employment prospects.

Postgraduate resources
The School of Computing has a large range of equipment providing both UNIX (TM) and PCbased systems and a cluster facility consisting of 30 Linux-based PCs for parallel computation. New resources include a multi-core enterprise server with 128 hardware threads and a virtual machine server that supports computer security experiments.

All students benefit from a well-stocked library, giving access to e-books and online journals as well as books, and a high bandwidth internet gateway. The School and its research groups hold a series of regular seminars presented by staff as well as by visiting speakers and our students are welcome to attend.

Our taught postgraduate students enjoy a high level of access to academic staff and have their own dedicated laboratory and study room. Students whose course includes an industrial placement are supported by a dedicated team which helps them gain a suitable position and provides support throughout the placement.

Our full-time research students are offered funds for academic conference travel, to assist in publishing papers and getting involved in the international community. You have your own desk and PC/laptop in a research office, which is shared by other research students. We also provide substantial support, principally via one-to-one supervision of research students and well-integrated, active research groups, where you have the opportunity to test and discuss your ideas in a friendly environment. You also go on an activity weekend at an outward-bound centre in the Kent countryside, where you will take part in team-building exercises designed to help you learn how to communicate effectively and work together to solve work-based problems.

Dynamic publishing culture
Staff and research students publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Journal of Artificial Evolution and Applications; International Journal of Computer and Telecommunications Networking; Journal of Visual Languages and Computing; Journal in Computer Virology.

Links with industry
Strong links with industry underpin all our work, notably with Cisco, Microsoft, Oracle, IBM, Agilent Technologies, Erlang Solutions, Hewlett Packard Laboratories, Ericsson and Nexor.

The Kent IT Consultancy
The Kent IT Consultancy provides School of Computing students with consultancy experience while studying. KITC provides a project-based consulting service to small businesses in Kent. Its wide variety of services range from e-commerce solutions and network support contracts to substantial software development projects.

Global Skills Award
All students registered for a taught Master's programme are eligible to apply for a place on our Global Skills Award Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/gsa.html). The programme is designed to broaden your understanding of global issues and current affairs as well as to develop personal skills which will enhance your employability.

Careers

Students can gain practical work experience as part of their degree through our industrial placements scheme and KITC (see above). Both of these opportunities consolidate academic skills with real world experience, giving our graduates a significant advantage in the jobs market. Our graduates go on to work for leading companies including Cisco, GlaxoSmithKline, IBM, Intel, Lilly, Microsoft, Morgan Stanley, Thomson Reuters and T-Mobile. Many have gone on to develop their careers as project leaders and managers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Memorial University’s MSc program in Scientific Computing was one of the first in North America, and remains the only such program in Atlantic Canada. Read more
Memorial University’s MSc program in Scientific Computing was one of the first in North America, and remains the only such program in Atlantic Canada. It trains students in advanced computational techniques and in the application of these techniques to at least one scientific area, such as Applied Mathematics, Chemistry, Computer Science, Earth Sciences, Physics, or Physical Oceanography. Students can expect to gain knowledge and experience in: (1) state-of-the-art numerical methods, (2) high performance computer architectures, (3) use of software development tools for parallel and vector computers, (4) graphics, visualization, and multimedia tools, and (5) acquisition, processing, and analysis of large experimental data sets.

The Scientific Computing program is interdisciplinary, enriched by the expertise of faculty members in a range of academic units. Researchers in external organizations contribute by co-supervising students, providing placements for co-op students, providing computing resources, and teaching some courses. The program has close links with ACEnet, the Atlantic Canada Excellence network of high performance computers on which much of our computational work is carried out.

The program is offered in both thesis and non-thesis (project) versions, with a cooperative education (co-op) option also available. Both full-time and part-time studies are possible. A distinguishing characteristic of this program is the emphasis on interdisciplinary studies. Graduating students will have mastered a broader range of science and engineering areas than graduates from the more traditional, discipline-based programs.

Read less
Memorial University’s MSc program in Scientific Computing was one of the first in North America, and remains the only such program in Atlantic Canada. Read more
Memorial University’s MSc program in Scientific Computing was one of the first in North America, and remains the only such program in Atlantic Canada. It trains students in advanced computational techniques and in the application of these techniques to at least one scientific area, such as Applied Mathematics, Chemistry, Computer Science, Earth Sciences, Physics, or Physical Oceanography. Students can expect to gain knowledge and experience in: (1) state-of-the-art numerical methods, (2) high performance computer architectures, (3) use of software development tools for parallel and vector computers, (4) graphics, visualization, and multimedia tools, and (5) acquisition, processing, and analysis of large experimental data sets.

The Scientific Computing program is interdisciplinary, enriched by the expertise of faculty members in a range of academic units. Researchers in external organizations contribute by co-supervising students, providing placements for co-op students, providing computing resources, and teaching some courses. The program has close links with ACEnet, the Atlantic Canada Excellence network of high performance computers on which much of our computational work is carried out.

The program is offered in both thesis and non-thesis (project) versions, with a cooperative education (co-op) option also available. Both full-time and part-time studies are possible. A distinguishing characteristic of this program is the emphasis on interdisciplinary studies. Graduating students will have mastered a broader range of science and engineering areas than graduates from the more traditional, discipline-based programs.

Read less
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. Read more
The rigorous training on our MSc Financial Computing focuses on software engineering for large, dynamic and automated financial systems and finance models. This, alongside work on software design in a number of real-world financial systems, will enable you to become a leader in this field.

This course should interest you if you have a good first degree in computer science or engineering, or a BSc degree that provided a high level of programming expertise such as C++ and/or .NET. You receive training on the structure, instruments and institutional aspects of financial markets, banking, payment and settlement systems.

You will attain a high level of competence in software development, in the area of financial computing, for implementation in an electronic market environment, as we introduce you to information and communication technology and automation that underpins financial systems, including:
-Design issues relating to parallel and distributed networks
-Encryption, security and real-time constraints
-Straight Through Processing (STP)
-Quantitative finance
-Financial software architecture

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-Cloud Technologies and Systems
-High Performance Computing
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Computer Security (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-E-Commerce Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-IP Networking and Applications (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Mobile & Social Application Programming (optional)
-Programming in Python (optional)
-Industry Expert Lectures in Finance (optional)

Read less
In order to give applicants an opportunity to find out more about the MSc. programmes,. we offer 4 MSc Virtual Open Days between January and April in 2017. Read more

Virtual Open Days 2017

In order to give applicants an opportunity to find out more about the MSc
programmes,
we offer 4 MSc Virtual Open Days between January and April in 2017.

These are online sessions where you can speak to teaching staff in an informal and friendly way. It's also a great opportunity to ask any questions about the MSc.

Our next virtual open day is on:
Wednesday 19th April, 13:00 - 14:00 BST (GMT+1).

Our Virtual Open Days are live, online events so you don't have to come to the campus. There will be two presentations followed by a Question & Answer session. No preparation is required before the sessions. The presentations will cover an introduction of the MSc programmes, course contents, career opportunities, scholarships, applying and other aspects of studying with us.

Online registration is required for the events and we will accept bookings up to three days prior to each Virtual Open Day. Please go to this link to register: http://www.epcc.ed.ac.uk/msc/applying/visiting-open-days

Programme description

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

HPC is the use of powerful processors, networks and parallel supercomputers to tackle problems that are very computationally or data-intensive. You will learn leading-edge HPC technologies and skills to exploit the full potential of the world’s largest supercomputers and multicore processors. This is a well-established programme that has been successful in training generations of specialists in parallel programming.

Programme structure

The MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

HPC Architectures (Semester 1)
Message-Passing Programming (Semester 1)
Programming Skills (Semester 1)
Threaded Programming (Semester 1)
Software Development (Semester 2)
Project Preparation (Semester 2)
HPC Ecosystem (Semester 2)

Optional courses:

Fundamentals of Data Management (Semester 1)
Parallel Numerical Algorithms (Semester 1)
Parallel Programming Languages (Semester 1)
Advanced Parallel Programming (Semester 2)
Data Analytics with High Performance Computing (Semester 2)
Parallel Design Patterns (Semester 2)
Performance Programming (Semester 2)
Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation.

Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.

Read less
The course addresses the design, development, procurement, use and management of models and simulations for applications in experimentation, training, testing, analysis and assessment of military forces, systems and equipment. Read more

Course Description

The course addresses the design, development, procurement, use and management of models and simulations for applications in experimentation, training, testing, analysis and assessment of military forces, systems and equipment.

Overview

On successful completion of the course you will be familiar with the technologies, methodologies, principles and terminology of Modelling and Simulation as used across defence, including the challenges and issues as well as the benefits. Through use of facilities such as the Simulation and Synthetic Environment Laboratory (SSEL), with its wide range of specialist applications, students will gain a broad understanding of modelling and simulation in areas such as training, acquisition, decision-support, analysis and experimentation.

•10 places are normally available for the full-time cohort
•The course is suitable for both military and civilian personnel, including those from defence industry and government departments

Start date: Full-time: annually in September. Part-time: by arrangement

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

English Language Requirements

Students whose first language is not English must attain an IELTS score of 6.5.

Course overview

The modular form of the course, consisting of a compulsory core and a selection of standard and advanced modules, enables each student to select the course of study most appropriate to their particular requirements.

Standard modules normally comprise a week of teaching (or equivalent for distance learning) followed by a further week of directed study/coursework (or equivalent for part time and distance learning).

Advanced modules, which enable students to explore some areas in greater depth, are two week (or equivalent for part time and distance learning) individual mini-projects on an agreed topic in that subject, which includes a written report and oral presentation.

- MSc students must complete a taught phase consisting of eight standard modules, which includes two core modules (Foundations of Modelling and Simulation and Networked and Distributed Simulation), plus four advanced modules, followed by an individual thesis in a relevant topic. Thesis topics will be related to problems of specific interest to students and sponsors of local industry wherever possible.

- PgDip students are required to undertake the same taught phase as the MSc, but without the individual thesis.

- PgCert students must complete the core module (Foundations of Modelling and Simulation) together with five other modules; up to three of these may be advanced modules.

Modules

Part-time students will typically not study as a cohort, but will follow an agreed individual programme of study, attending courses as convenient.
Advanced Modules, which typically comprise individual self-study, can be selected to follow on from any standard modules that have been chosen.
Standard Modules, which typically involve traditional classroom instruction and/or VLE-based delivery, can be chosen from the following:

Core:
- Foundations of Modelling and Simulation
- Networked and Distributed Simulation

Elective:
- Advanced Computer Graphics
- Advanced Discrete and Continuous Simulation
- Advanced Logistics Modelling
- Advanced Modelling and Simulation
- Advanced War Gaming and Combat Modelling
- Computational Statistics
- Computer Graphics
- Discrete and Continuous Simulation
- High Performance and Parallel Computing
- Intelligent Systems
- Intelligent Systems - Research Study
- Logistics Modelling
- Networked and Distributed Simulation Exercise
- Neural Networks
- Programming and Software Development in C
- Statistical Analysis and Trials
- War Gaming and Combat Modelling
- Weapon System Performance Assessment

Individual Project

An individual research project on an agreed topic that allows you to demonstrate your technical expertise, independent learning abilities and critical appraisal skills.

Assessment

Continuous assessment, written examinations, oral vivas and (MSc only) thesis.

Proportions of different assessment types will vary according to programme and modules taken. For an MSc these might typically comprise 15-24% continuous assessment (written and oral), 36-45% written examinations and 40% thesis/dissertation.

Career opportunities

Equips you for simulation-specific appointments within the armed forces or government, or in the defence related activities of commercial organisations.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Defence-Simulation-and-Modelling

Read less
Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Read more
Computer Systems Engineering is a well-established branch of Computer Science, closely related to Electrical Engineering, and concerned with software-hardware integration and the development of high-performance and energy-efficient embedded systems, for example as used in mobile computing. Aspects covered include questions such as how software can be designed to make use of new, ever more powerful (and often multicore) hardware, or how hardware can be designed to support certain software paradigms. The School of Computer Science is home to internationally renowned research groups working on these challenging tasks, and students following the Computer Systems Engineering pathway will have the opportunity to profit from their understanding of current technology and visions of how to exploit, for example, the formidable complexity of the billion transistor microchips that semiconductor technology will make commonplace over the next decade.

This pathway combines two themes, namely the Parallel Computing in the multicore Era theme and the Mobile Computing theme. The former provides the student with techniques and tools to successfully develop concurrent multicore systems, while alleviating problems of correctness, reliability, performance and system management. The latter provides the student with an understanding of the current state of the art in computing to support mobility for telecommunications.

Read less
Microprocessor manufacturers have recently presented the software industry with its most serious challenge ever, by switching from serial execution architectures clocked at ever-increasing clock rates to ever-more parallel multi-core architectures clocked at a constant (or even decreasing) clock rate. Read more
Microprocessor manufacturers have recently presented the software industry with its most serious challenge ever, by switching from serial execution architectures clocked at ever-increasing clock rates to ever-more parallel multi-core architectures clocked at a constant (or even decreasing) clock rate. The consequences will be profound because parallel computational activities will need to be handled as the norm, rather than the exception; programmers of the future will need skills that are currently possessed by very few, due to the inherent complexities of parallel systems.

This pathway is centred round a core theme, Parallel Computing in the Multi-core Era , that introduces students to the aforementioned complexities, and provides techniques and tools that can alleviate the ensuing problems of correctness, reliability, performance and system management. Subsidiary themes allow students to investigate broader areas in which they might apply their newly learned skills.

Read less
This interdisciplinary Masters degree combines teaching and research from the School of Mathematics and the School of Computing. You will be introduced to sophisticated techniques at the forefront of mathematics and computer science. Read more
This interdisciplinary Masters degree combines teaching and research from the School of Mathematics and the School of Computing. You will be introduced to sophisticated techniques at the forefront of mathematics and computer science. Based on the Schools’ complementary research strengths the programme follows two main strands:

Algorithms & Complexity Theory
This concerns the efficiency of algorithms for solving computational problems, and identifies hierarchies of computational difficulty.

This subject has applications in many areas, such as distributed computing, algorithmic tools to manage transport infrastructure, health informatics, artificial intelligence, and computational biology.

Numerical Methods & Parallel Computing
Many problems, in maths, physics, astrophysics and biology cannot be solved using analytical techniques and require the application of numerical algorithms for progress. The development and optimisation of these algorithms coupled to the recent increase in computing power via the availability of massively parallel machines has led to great advances in many fields of computational mathematics. This subject has many applications, such as combustion, lubrication, atmospheric dispersion, river and harbour flows, and many more.

This MSc will provide you with technical and transferable skills that are valued by industry.

You will gain key algorithmic tools to work across many industries including transport infrastructure, health informatics, computational biology, artificial intelligence, companies developing the internet e.g. search engines.

You could also progress onto a career in computing or finance where mathematics is valued.

It will also provide you with an excellent background if you wish to embark on a PhD in mathematics or in computer science.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X