• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Nottingham Featured Masters Courses
"palaeoclimatology"×
0 miles

Masters Degrees (Palaeoclimatology)

We have 6 Masters Degrees (Palaeoclimatology)

  • "palaeoclimatology" ×
  • clear all
Showing 1 to 6 of 6
Order by 
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. The course provides theoretical and practical training in measuring, quantifying and understanding the physical processes within the geological marine environment. It provides a sound scientific basis on which to decide how best to design and execute marine surveys, be they geophysical, sedimentological or geological, for the required purpose.

The MSc in Applied Marine Geoscience evolved from its predecessor, the Marine Geotechnics course which boasted a 30 year pedigree.

A series of modules have been designed to explain the processes that form and characterise a wide variety of sedimentary environments, from the littoral zone to the deep ocean. Those controls range from the dynamical, chemical, climatic to geological; all are inter-related. The student also gains knowledge and understanding of survey techniques in order to map these environments and thereby gain a better understanding of the processes that shape them. The final facet of the course involves an explanation of how these sedimentary materials react to imposed loads - how they behave geotechnically.

From past experience it is found that students on completion of the course will find employment in the offshore hydrocarbons industry, geophysical contract companies (both offshore and terrestrial), geotechnical engineering companies, river and harbour boards or government establishments. The course may also lead students to further academic research studies.

Aims of the course
The aim of the course is to provide the world with people who

understand the inter-relationships between the forces which shape the marine geological environment,
have mastered the practical and analytical techniques necessary to study those controls and survey the geological settings
can critically analyse their findings and present them at a standard and in a form required by end-users, be they commercial or academic.
Whilst the form and style of presentation of work may differ, the skills required by doctoral students and those by potential employers (the marine geoservices industry) overlap to a large extent. Specifically identifying aspects of the course in this light, we aim to enable the students to:

be skilled in planning and acquiring good quality data in the laboratory and in the field in a safe manner
be able to work as a team in the acquisition of larger data-sets
appreciate the importance of recognising the limitations of model-based interpretation of data
review and critically analyse previous work both before and after undertaking data acquisition or modelling
understand the fundamental workings of the offshore geoservices industry
In a more general sense, the course is designed to act as a conversion course for a physical scientist who wants to hone their research skills whilst at the same time getting a grasp of how those skills are applied to solve both academic and commercially based problems. An important part of the course philosophy is the idea that the challenges that face marine geoscientists can often only be solved by taking a multi-disciplinary approach and we instil this idea of wider thought into our graduates.

The course aims to place the student in a strong position to go on to doctoral studies on issues such as palaeoclimatology, geophysics or sedimentology; or enter directly into the offshore industry e.g. to geohazard analysis, or offshore renewable energy exploitation.

Read less
Research profile. This masters by research programme is an opportunity to carry out a substantial piece of research in any of the following major branches of geosciences. Read more

Research profile

This masters by research programme is an opportunity to carry out a substantial piece of research in any of the following major branches of geosciences:

  • Atmospheric Science
  • Climate Change
  • Ecological Sciences
  • Environmental Geochemistry
  • Environmental Geoscience
  • Environmental Sustainability
  • Exploration Geophysics
  • Geoinformatics
  • Geology
  • Geophysics
  • Glaciology
  • Human Geography
  • Meteorology
  • Oceanography
  • Palaeoclimatology
  • Petroleum Geology
  • Physical Geography
  • Remote Sensing

The programme allows you to work on research throughout the year, and your work will be judged solely on your final dissertation. You can follow taught courses by arrangement with your supervisor, but none are required.

The programme aims to provide a structured approach to basic research training, allowing you to explore an area of research that may be subsequently developed into a PhD. You may also have the opportunity to develop links with research projects at national and international levels.

The School has the largest geoscience research group in the UK, with about 370 academics and researchers. The ambition and quality of our research was reflected in the latest Research Assessment Exercise, where 66% of our research was rated within the top two categories: world-leading and internationally excellent.

All research students are affiliated to one a research institute, which provides a forum for the development of ideas, collaboration, and dissemination of results, and an environment for training, development and mentoring of research students and early-career researchers. Our research institutes each have a very active seminar series drawing distinguished external guests as well as internal speakers, and you will be encouraged to attend and participate.

Programme structure

You can follow taught courses by arrangement with your supervisor, but none are required.



Read less
This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Read more

This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Students choose from a wide range of optional modules from within the department and more widely across UCL, building an MSc tailored to their interests.

About this degree

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), six optional modules (75 credits) and a research dissertation (60 credits).

Core modules

  • Research Methods
  • Project Proposal
  • Earth and Planetary Systems Science

Optional modules

  • Earth and Planetary Materials
  • Melting and Volcanism
  • Physical Volcanology and Volcanic Hazard
  • Earthquake Seismology & Earthquake Hazard
  • Tectonic Geomorphology
  • Palaeoceanography
  • Palaeoclimatology
  • Biodiversity and Macroevolutionary Patterns
  • Deep Earth and Planetary Modelling
  • Geodynamics and Global Tectonics
  • Crustal Dynamics, Mountain Building and Basin Analysis
  • Advanced Biodiversity and Macroevolutionary Studies

Students can also choose relevant elective modules from UCL Geography.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Fieldwork

Crustal Dynamics, Mountain Building and Basin Analysis is a fieldwork only module without a classroom element.

Further information on modules and degree structure is available on the department website: Geoscience MSc

Careers

Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Recent career destinations for this degree

  • PhD in Climatology, Cardiff University (Prifysgol Caerdydd)
  • PhD in Geoscience, UCL
  • Engineer, Geo-Info
  • Lecturer in Geology, University of Benin
  • Oil and Gas Analyst, EIC (Energy Industries Council)

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Birkbeck’s Department of Earth and Planetary Sciences shares resources, facilities and expertise with UCL’s Department of Earth Sciences, thus offering you access to a unique, world-class research environment. Read more
Birkbeck’s Department of Earth and Planetary Sciences shares resources, facilities and expertise with UCL’s Department of Earth Sciences, thus offering you access to a unique, world-class research environment. This programme provides an excellent opportunity for you to develop and enhance your general, transferable and specialist research skills. You will gain insight into different research methods and acquire valuable experience of conducting large-scale research projects.

Our key research interests include: igneous petrology and geochemistry; sedimentology; environmental geochemistry and mineralogy; stratigraphy and palaeontology; structural geology; geophysics; palaeoclimatology; planetary geology; and earthquake studies.

Our research

Birkbeck is one of the world’s leading research-intensive institutions. Our cutting-edge scholarship informs public policy, achieves scientific advances, supports the economy, promotes culture and the arts, and makes a positive difference to society.

Birkbeck’s research excellence was confirmed in the 2014 Research Excellence Framework, which placed Birkbeck 30th in the UK for research, with 73% of our research rated world-leading or internationally excellent.

In our joint submission with UCL, Earth Systems and Environmental Sciences at Birkbeck were rated 6th the UK in the 2014 Research Excellence Framework (REF), while we achieved 100% for an environment conducive to research of the highest quality.

Read less
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Read more
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Through our modular course structure and use of web-based material for distance learning, we aim to provide up-to-date reviews of research topics across relevant aspects of the earth sciences.

Our teaching is informed by considerable research into environmental issues, which is ongoing in the Department of Earth and Planetary Sciences. Current research focuses on areas such as metal pollution, coastal erosion, mineralogy, earthquake prediction, palaeoclimatology and palaeontology.

Why study this course at Birkbeck?

Can be used as a qualifying year for MRes or PhD study.
Offered as part-time study at Birkbeck or you can study by distance learning, wherever you are in the world (check our distance-learning frequently asked questions for more information).
The Department of Earth and Planetary Sciences has strong links with University College London (UCL) Department of Earth Sciences. Together, the 2 departments form the UCL-Birkbeck Research School of Earth Sciences. The School offers excellent facilities for research in environmental geology and planetary geology, as well as traditional geological and geophysical research.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X