• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"oral" AND "science"×
0 miles

Masters Degrees (Oral Science)

We have 964 Masters Degrees (Oral Science)

  • "oral" AND "science" ×
  • clear all
Showing 1 to 15 of 964
Order by 
About the program. The Bond University Master of Sports Science is designed to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes. Read more

About the program

The Bond University Master of Sports Science is designed to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes.

The program is suitable for graduates in exercise and sports science aspiring for a career in high performance sport, or for established professionals such as domestic and international strength and conditioning coaches, or high performance managers seeking professional updates.

This unique program places a strong emphasis on comprehensive practical experience and industry immersion, including a two semester full-time professional internship under the mentorship of a sports scientist.

Completed in only 1 year and 4 months (4 semesters), the first two semesters are comprised of specialist on-campus coursework, followed by the internship which incorporates applied sports science /strength and conditioning practice and a research component. This component is undertaken within a professional or semi-professional sporting organisation with whom Bond University has agreements for student internships. Alternatively, students may elect to undertake their internship with an external organisation or employer relative to their field of work, with prior approval from Bond University.  

The program will culminate with the submission of a peer-reviewed manuscript that may be eligible for publication, providing an additional pathway for you to progress to further postgraduate research.

The program provides you with exposure to authentic high performance sports science learning both on campus and in industry. The coursework component is delivered primarily at the world-class Bond Institute of Health & Sport, where you will gain exceptional, high-quality practical experience in our high performance gym, health science laboratories and sports science research laboratories. You will have access to specialised technology used in research to deliver a wide range of athlete testing and performance analysis. These facilities provide sports science testing and training services to a variety of elite and sub-elite athletes, providing an exceptional learning experience. 

Professional outcomes

The Master of Sports Science will enable you to apply knowledge and practical experience in high performance sports science across all levels of national and international sport.

Possible career opportunities include, but are not limited to:

  • Sports Scientist/ Strength and Conditioning Specialist positions in professional sport, working with teams or individual athletes
  • Sports Scientist/ Strength and Conditioning Specialist positions in national and international sporting organisations
  • Development officer for professional sporting and health orientated organisations
  • Corporate and community health and fitness consultant
  • Health promotion/ lifestyle consultant
  • Athletic/ sports program coordinator

Successful graduates may be eligible to progress to further post graduate research, leading to potential career options in research organisations and academia.

Structure and subjects

The Master of Sports Science consists of a specialised coursework and integrated research and internship model.

You must complete all of the following subjects:

Semester 1

Semester 2

Semester 3

Semester 4

*Subject names and structure may change 

Teaching methodology

The Master of Sports Science program uses a teaching methodology that involves a combination of lectures, tutorials, seminars, examinations, projects, presentations, assignments, computer labs and industry projects. Examination formats may include objective structure practical examinations, theory papers, assignments and oral presentations. The program will culminate with the submission of a peer-reviewed manuscript that may be eligible for publication. 

During coursework, you will be primarily located at the Bond Institute of Health and Sport, within the Cbus Stadium sporting precinct at Robina.

Internship and research

A unique feature of this program is the completion of an integrated professional placement and internship, under the mentorship of a sports scientist. This internship is completed full-time for 2 semesters, at a minimum of 500 hours with an elite sport organisation.

Bond University has affiliations with national and international elite sporting organisations and professional sports teams.

* Students intending to apply should be aware of the following: You may be required to attend internships with organisations in locations other than the Gold Coast region.These placements may involve additional associated costs (i.e. accommodation and travel) for which you will be responsible.

Research

Bond University has a burgeoning profile in health and sports science research. Major investment in infrastructure including the ‘Bond Institute of Health and Sport’ have fostered collaborations between ‘bench top’ scientists and practitioners, providing opportunities for innovative research.

Bond University is the lead institution for the Collaborative Research Network (CRN) for Advancing Exercise and Sports Science CRNAESS). The CRN-AESS brings together partners from key research and sports science institutions including the Australian Institute of Sport building research capacity and excellence in exercise and sports science, human genetics and bioinformatics, to better understand health, human performance and injury management.



Read less
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. Read more
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. It also provides a sound educational background so that you can go on to lead academic oral biology programmes within dental schools.

Why study Oral Biology at Dundee?

This course is specifically designed for individuals who wish to pursue career pathways in academic oral biology, with a focus, though not exclusively, on developing individuals who can deliver and, more importantly, lead oral biology courses within dental schools.

Oral Biology is a significant subject area that is integral to undergraduate and postgraduate dental training worldwide. The scope of Oral Biology includes a range of basic and applied sciences that underpin the practise of dentistry. These subjects include: oral and dental anatomy; craniofacial and dental development; oral physiology; oral neuroscience; oral microbiology. These subjects will be integrated with the relevant disease processes, for example, craniofacial anomalies, dental caries and tooth surface loss.

What's so good about studying Oral Biology at Dundee?

This programme focuses on the research and education experience of the staff in the Dental School in Dundee. Such expertise lies in the fields of craniofacial development and anomalies; pain and jaw muscle control; salivary physiology; cancer biology; microbiology; cariology and tooth surface loss.

In addition it makes use of the extensive resources available for postgraduate programmes: extensive histological collections; virtual microscopy; oral physiology facilities; cell biology and dental materials laboratories.

Who should study this course?

The MSc in Oral Biology is for graduates who wish to pursue a career in academic oral biology. The course will be of particular interest for those wishing to establish themselves as oral biology teachers, innovators and course leaders within a dental school.

Teaching and Assessment

The Dental School is well placed to deliver such a course with an established staff of teaching and research active within oral biology, and its related fields, an in-house e-learning technologist and substantial links to the Centre for Medical Education in the School of Medicine. There will be an opportunity for students to exit with a PGCert in Oral Biology after successful completion of modules 1 -4 or a Diploma in Oral Biology after successful completion of modules 1 - 7.

How you will be taught

The programme will be delivered via a blend of methodologies including: face-to-face lectures / seminars / tutorials; on-line learning; directed and self- directed practical work; self-directed study; journal clubs.
What you will study

The MSc will be taught full-time over one year (September to August). Semester one (Modules 1 – 4) and Semester 2A, 2B (Modules 5 – 8) will provide participants with wide ranging, in-depth knowledge of oral biology, together with focused training in research (lab-base, dissertation or e- Learning) and its associated methodology. The MSc course is built largely on new modules (5) supported by 2 modules run conjointly with the Centre for Medical Education within the Medical School. All modules are compulsory:

Semester 1:

Module 1: Academic skills 1: principles of learning and teaching (15 credits)
Module 2: Cranio-facial development and anomalies (15 credits)
Module 3: Dental and periodontal tissues, development and structure (20 credits)
Module 4: Oral mucosa and disorders (10 credits)

Semesters 2A and 2B

Module 5a: Academic skills 2a: principles of assessment (15 credits)
Module 5b: Academic Skills 2b:educational skills
Module 6: Neuroscience (20 credits)
Module 7: Oral environment and endemic oral disease (20 credits)
Module 8: Project (60 credits)

The project is designed to encourage students to further develop their skills. This could take the form of a supervised laboratory research project, a literature based dissertation or an educational project. The educational project would be based around the development of an innovative learning resource utilising the experience of the dental school learning technologist.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Careers

The MSc Oral Biology is aimed at dental or science graduates who are either early in their careers or wish to establish themselves as oral biologists within dental schools. Oral Biology is a recognised discipline in many dental schools worldwide. Graduates will have gained sufficient knowledge and skills to enable them to be teachers, innovators and educational leaders in the field. In addition, successful graduates will be well placed to undertake further postgraduate study at PhD level. In some cases, this may possible within the existing research environments within the Dental School, the wider College of Medicine Dentistry and Nursing and the Centre for Anatomy and Human Identification of the University of Dundee.

Read less
Programme description. Read more

Programme description

The DClinDent in Oral Surgery is a three-year, full-time programme which will allow the candidate to achieve specialist-level training in oral surgery, together with a taught professional Doctorate, preparing them for the Speciality examination of Membership in Oral Surgery (MOralSurg) of the Royal Colleges of Surgeons (Tricollegiate Edinburgh, Glasgow, England) UK.

The DClinDent aims to provide doctoral level educational opportunities to enable students to develop, consolidate and enhance their range of academic and clinical competencies to enable independent and reflective practice at the standard of a specialist in oral surgery.

Programme structure

This programme is for dental surgery graduates who wish to extend their knowledge, clinical practice experience and expertise in oral surgery.

The programme will give you theoretical and practical understanding of oral surgery and how it relates to other dental specialities.

The syllabus components are based on the core competencies for oral surgery training as set out by Specialty Advisory Committee (SAC) for Oral Surgery, The Faculty of Dental Surgery The Royal College of Surgeons of England (2014) :

  • extraction of teeth & retained roots/pathology
  • management of associated complications including oro-antral fistula
  • management of odontogenic and all other oral infections
  • management of impacted teeth
  • management of complications
  • peri-radicular surgery
  • dentoalveolar surgery in relation to orthodontic treatment
  • intraoral and labial biopsy techniques
  • treatment of intra-oral benign and cystic lesions of hard and soft tissues
  • management of benign salivary gland disease by intra-oral techniques and familiarity with the diagnosis and treatment of other salivary gland diseases
  • insertion of osseointegrated dental implants including bone augmentation and soft tissue management
  • appropriate pain and anxiety control including the administration of standard conscious sedation techniques
  • management of adults and children as in-patients, including the medically at risk patient
  • management of dento-alveolar trauma and familiarity with the management and treatment of fractures of the jaws and facial skeleton
  • management of oro-facial pain including temporomandibular joint disorders
  • clinical diagnosis of oral cancer and potentially malignant diseases, familiarity with their management and appropriate referral
  • the diagnosis of dentofacial deformity and familiarity with its management and treatment
  • diagnosis of oral mucosal diseases and familiarity with their management and appropriate referral
  • control of cross-infection
  • medico-legal aspects of oral surgery

For Year 1 and Year 2 students, there will be a written exam at the end of each term.

In addition to the above, at the end of Year 2, students will also have oral exams in June and in August/September.

Successful completion of the first two years of the programme will allow students to proceed to Year 3 of the programme. In Year 3, students will present the following:

a) a clinical governance project b) a systematic review of a topic related to Oral Surgery c) two fully documented patient case presentations d) two unseen (diagnostic) cases will also form part of this examination

The third year of the DClinDent programme will be structured over three semesters and during this time the student will be timetabled to four protected academic sessions each week with the remaining time dedicated to primarily independent clinical practice and inter-disciplinary patient management.

Year 1 courses:

  • Basic science in relation to oral surgery
  • Clinical knowledge 1
  • Oral Surgery - Clinical Patient Care 1
  • Pathology of the Oral and Dental Tissues
  • Research Methodology, Statistics, Clinical Governance and Audit
  • Resuscitation and Management of Emergencies
  • The NHS

Year 2 courses:

  • Clinical knowledge 2
  • Oral Surgery - Clinical Patient Care 2
  • Dissertation
  • Systemic disease in relation to Oral Surgery
  • Management of Pain and Anxiety

Year 3 courses:

  • Systematic Review
  • Clinical Governance Project
  • Specialist-Level Clinical Case-Reports
  • Clinical Patient Care 3

Learning outcomes

  1. Ability to produce good clinical care whilst maintaining good clinical practice
  2. Good understanding of the basic biological science relevant to oral surgery
  3. Ability to carry out the extraction of teeth and retained roots and management of complications
  4. Knowledge to deal with odontogenic and all other infections of the orofacial region and benign salivary gland disease
  5. Fluent in the management of impacted and unerupted teeth and dentoalveolar surgery in relation to orthodontic treatment , peri-radicular surgery, treatment of benign cystic lesion of the oral hard and soft tissues
  6. Familiarity with appropriate anxiety management techniques and management of orofacial pain
  7. Familiarity with the management of benign and malignant lesions arising in, or presenting in the oral cavity

Career opportunities

This programme has been designed for dental surgery graduates who wish to specialise in oral surgery.



Read less
Goal of the pro­gramme. Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Read more

Goal of the pro­gramme

Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Data scientists help organisations make sense of their data. As data is collected and analysed in all areas of society, demand for professional data scientists is high and will grow higher. The emerging Internet of Things, for instance, will produce a whole new range of problems and opportunities in data analysis.

In the Data Science master’s programme, you will gain a solid understanding of the methods used in data science. You will learn not only to apply data science: you will acquire insight into how and why methods work so you will be able to construct solutions to new challenges in data science. In the Data Science master’s programme, you will also be able to work on problems specific to a scientific discipline and to combine domain knowledge with the latest data analysis methods and tools. The teachers of the programme are themselves active data science researchers, and the programme is heavily based on first-hand research experience.

Upon graduating from the Data Science MSc programme, you will have solid knowledge of the central concepts, theories, and research methods of data science as well as applied skills. In particular, you will be able to

  • Understand the general computational and probabilistic principles underlying modern machine learning and data mining algorithms
  • Apply various computational and statistical methods to analyse scientific and business data
  • Assess the suitability of each method for the purpose of data collection and use
  • Implement state-of-the-art machine learning solutions efficiently using high-performance computing platforms
  • Undertake creative work, making systematic use of investigation or experimentation, to discover new knowledge
  • Report results in a clear and understandable manner
  • Analyse scientific and industrial data to devise new applications and support decision making.

The MSc programme is offered jointly by the Department of Computer Science, the Department of Mathematics and Statistics, and the Department of Physics, with support from the Helsinki Institute for Information Technology (HIIT) and the Helsinki Institute of Physics (HIP), all located on the Kumpula Science campus. In your applied data science studies you can also include multidisciplinary studies from other master's programmes, such as digital humanities, and natural and medical sciences.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Data Science MSc programme combines elements from computer science and mathematical sciences to provide you with skills in topics such as machine learning, distributed systems and statistical methods. You might also find that knowledge in a particular scientific field is useful for your future career. You can obtain this through elective studies in the MSc programme, or it might already be part of your bachelor-level degree.

Studies in the Data Science MSc programme include both theoretical and practical components, including a variety of study methods (lectures, exercises, projects, seminars; done both individually and in groups). Especially in applied data science, we also use problem-based learning methods, so that you can address real-world issues. You will also practise academic skills such as scientific writing and oral presentation throughout your studies. You are encouraged to include an internship in your degree in order to obtain practical experience in the field.

Elective studies give you a wider perspective of Data Science. Your elective studies can be an application area of Data Science (such as physics or the humanities), a discipline that supports application of Data Science (such as language technology), or a methodological subject needed for the development of new Data Science methods and models (such as computer science, statistics, or mathematics).



Read less
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Read more
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Develop your skills and knowledge on our accredited course, as you collect and analyse evidence, equipping you to become a confident and effective practitioner.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

In-keeping with its industry-focus our Chartered Society of Forensic Sciences accredited course is taught by experienced forensics practitioners. We’ll immerse you in a practical environment that closely emulates a real forensics laboratory. The analytical skills and expertise you gain apply equally well in the broader scientific and technological fields as they do in forensics.

Our course combines practical skills with high-level theoretical knowledge of the wide range of forensic techniques you need to apply at all stages of an investigation. Going further still, you’ll be trained to design and execute your own research project in a relevant area, which particularly interests you. This will include guidance on research methods, good practice, presentation and the application of your research.

Full-time - January start, 15 months. September start, 12 months.
Part-time - January start, 33 months. September start, 28 months.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

This course will provide you with:
• the opportunity to acquire Masters level capabilities, knowledge and skills in diverse areas of forensic science from the crime scene to the court
• training in the design and execution of science based research in an appropriate area of forensic science
• the opportunity to undertake a formal research programme in an appropriate area of forensic science

The intention is to immerse you in an environment that is as realistically close to that of a practising forensic science laboratory as is possible in an academic institution. The experience and background of Anglia Ruskin's staff, their intimate knowledge and working relationships with the industry and the availability or new or relatively new purpose-built laboratory facilities places this course in a strong position to deliver such an experience.

This course is suitable for candidates who wish to specialise in Forensic Science as a progression from their first degree in forensic science and for candidates coming into Forensic Science with a strong background in traditional analytical science. This course is accredited by The Forensic Science Society

On successful completion of this course you will be able to:
• demonstrate deep and systematic knowledge of several major areas of forensic science, including either chemical or biological criminalistics.
• apply theoretical and experimentally based empirical knowledge to the solution of problems in forensic science
demonstrate that you are cognisant with the best ethical practices, validation and accreditation procedures relevant to forensic science.
• demonstrate a comprehensive understanding of the theory and practice of advanced analytical techniques, as used and applied in forensic science.
• devise, design, implement and, if necessary, modify a programme of basic research directly related to the solution of practical problems in the broad field of forensic science.
• assimilate the known knowledge and information concerning a particular problem/issue and erect testable and viable alternative hypotheses, from theoretical and empirical/experimental view points.
• demonstrate a level of conceptual understanding that will enable information from a wide range of sources and methodologies to be comprehensively and critically appraised.
• operate competently, safely and legally in a variety of complex, possibly unpredictable contexts and be able to apply appropriate standards of established good practice in such circumstances.
• demonstrate that you are able to exercise initiative in your work tasks, but yet be able to exercise your responsibility so as not to move beyond the scope of your expertise.
• search for and obtain information from a wide range of traditional, non-traditional and digital/electronic sources and be able to synthesis it into a coherent argument.
• present the results of your work in a number of forms (reports, papers, posters and all forms of oral presentation) at a level intelligible to the target audience (highly trained/specialised professional to informed lay-person).
• organise your own time and patterns of work to maximum effect and be able to work competently either autonomously or as part of groups and teams as required.

Careers

Our course is enhanced by our excellent working relationships with most of the major employers in the forensic science industry, including the police and fire services.

This focus on theory and good laboratory practice, analytical measurement and research and management skills, together with our industry contacts will make you an attractive candidate for employment. It’ll open up career opportunities in specialist forensic science laboratories in the chemical, biological, environmental, pharmaceutical and law enforcement industries.

You’re also in the perfect position to continue your academic career and move up to our Forensic Science PhD.

Core modules

Evidence Collection and Management
Mastering Forensic Evidence
Mastering Forensic Analysis
Specialist Topics
Research Methods
Research Project

Assessment

Your progress will be assessed using a variety of methods including laboratory reports, court reports (including witness statements), presentations, exams, essays and reports.

Facilities

Wide range of advanced microscopy instruments. SEM with EDS. Full range of organic analysis (GC, GC-MS, HPLC and ion chromatography). FT-IR and Raman spectrometers. Gene sequencing and other DNA analytical equipment. Comprehensive collection of specialist forensic equipment including GRIM, VSC and MSP. Dedicated crime scene facility with video equipment.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Specialist facilities

Our facilities include a wide range of advanced microscopy instruments – SEM with EDS, a full range of organic analysis (GC, HPLC and ion chromatography). FT-IR and Raman Spectrometers, gene sequencing and other DNA analytical equipment. A comprehensive collection of specialist forensic equipment includes GRIM, VSC and MSP and we also have a dedicated crime scene facility with video equipment.

Read less
The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning. Read more

The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning.

The program is designed to build upon undergraduate studies in sports science to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes.

Upon successful completion of the Graduate Certificate in Sports Science, students are eligible to enrol in the Graduate Diploma in Sports Science and subsequent Master of Sports Science. Subjects completed in the Graduate Certificate are credited to the Diploma.

About the program

The Bond University Graduate Certificate in Sports Science is designed to develop specialist knowledge and skills in required sport science sub-disciplines including communication, leadership, and negotiation, clinical sports science, performance analysis and health research design and planning.

The program is designed to build upon undergraduate studies in sports science to develop specialist knowledge and skills relating to strength and conditioning and high performance science of elite athletes.   

The program is suitable for graduates in exercise and sports science aspiring for a career in high performance sport, or for established professionals seeking to move into specialist sports science service roles.

The program is suitable for graduates with ambitions to enter postgraduate sports science as a pathway into postgraduate specialisation in strength & conditioning and high performance science or for internationally educated strength and conditioning coaches or high performance managers requiring professional updates before applying for Australian qualification recognition. 

Placing a strong emphasis on comprehensive practical experience, the program provides exposure to authentic high performance sports science. The Graduate Certificate is delivered at the world-class Bond Institute of Health and Sport where you will gain exceptional, high-quality practical experience in our high performance gym and sports science research laboratories. You will have access to specialised technology used in research to deliver a wide range of athlete testing and performance analysis. These facilities provide sports science testing and training services to a variety of elite and sub-elite athletes, providing an exceptional learning experience.

Structure and subjects

You must complete all of the following subjects:

*Subject names and structure may change

Teaching Methodology

The Graduate Certificate in Sports Science uses a teaching methodology that involves a combination of lectures, tutorials, seminars, examinations, projects, presentations, assignments, and laboratory work. Examination formats may include objective structure practical examinations, theory papers, assignments and oral presentations.



Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Our MSc Science Communication course is an excellent opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, our MSc programme gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course combines a solid theoretical background with practical skill development, and has excellent links with the sectors and industries it informs. Visiting specialists also help you understand what they are looking for in future employees.

Introductory modules provide a broad theoretical foundation in issues such as the rationale for public engagement with science, understanding the audience, the role of the media in society, communication theory and models of informal learning. You'll then have the opportunity to specialise by choosing from modules that cover practical skills related to taking science directly to the public, as well as new approaches to science communication such as digital media. This allows you to hone your practical skills and develop a portfolio that shows your expertise as a science communicator. In the final year, you may choose to further develop your portfolio, for example by mounting a practical science communication project, or take on a more theoretical or research-based project, perhaps with an external science communication organisation.

Modules

You will take the following three modules:
• Science and Society
• Science, the Public and Media

You then choose two from these three modules:
• Science on Air and on Screen
• Science in Public Spaces
• Writing Science

Format

Unlike most Master's courses in this area, the MSc Science Communication addresses the needs of working students. There are short, intensive teaching blocks of three to five days, and you can expect to attend three teaching sessions for each 30 credit module.

If you study this programme part-time, you'll take two 30 credit modules each for two academic years. It's possible to complete the part-time course in two years by finishing your project during the summer of the second year, or you may prefer to take a third year. Full-time students take four taught modules and complete the project in 14 months.

Group sessions are supplemented by directed and independent study, email discussions, tutorials and mentoring.

Assessment

The modules are assessed in a variety of ways, to reflect the theoretical concepts, knowledge and practical skills you'll develop. For example, through portfolios, reports and oral presentations all of which you can use to attract prospective employers. The ability to evaluate your own work and others' is critical to success in the workplace, and several assessments are designed to help you acquire these skills.

Careers / Further study

Science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, we'll encourage you to develop the professional skills to help you secure employment or research positions.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. The Postgraduate Certificate in Practical Science Communication, linked to the world-class MSc Science Communication course, and also designed by the Science Communication Unit, is aimed at students seeking an additional qualification. It is an opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, the course gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course focuses on practical skills development, and has excellent links with the sectors and industries it informs, with visiting specialists helping you to understand what they seek in future employees.

Depending on the options you take, you will develop skills in science writing, cutting-edge science communication techniques, and the abilities you'll need to develop and run science communication projects. This includes devising and managing projects, evaluations and funding.

Modules

You will choose two from these three modules (30 credits each):

• Science on Air and on Screen - Build your radio, TV and digital skills by critically exploring the role of broadcast media in the communication of science. You'll also make an 'as live' radio magazine programme about science, and a short film.

• Science in Public Spaces - Develop your own science communication initiative in this hands-on module from developing a creative concept, to seeking funding, and managing and evaluating a project. You'll explore a range of innovative approaches from sci-art, to museums, festivals to theatre.

• Writing Science - Develop journalistic and other writing styles, including writing for news media, public relations and educational purposes, with a view to developing a portfolio, as well as working on a magazine project.

Format

The course comprises short, intensive teaching blocks of three days (Thursday to Saturday) and you'll most likely need to attend three teaching sessions for each 30-credit module. Group sessions are supplemented by directed and independent study, email discussions, and tutorials.

Assessment

We assess modules in a variety of ways, to reflect the practical skills you'll develop. For example, through portfolios, reports and oral presentations - all of which you can use to attract prospective employers.

Careers / Further study

Practical science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, you are encouraged to develop the professional skills that will help you secure employment or research positions in science communication, or to combine it with your existing career.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology. This course provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Read more

What is environmental earth science?

Environmental earth science (or geoscience) covers a range of topics including hydrology, sedimentology and geomorphology.

Who is this course for?

This course provides specialist skills and knowledge for science graduates wanting to pursue careers in environmental earth science. Environmental scientists undertake work such as developing ways to minimise the impacts of humans on the natural environment.

Course learning outcomes

The graduates of James Cook University are prepared and equipped to create a brighter future for life in the tropics world-wide.
JCU graduates are committed to lifelong learning, intellectual development, and to the display of exemplary personal, professional and ethical standards. They have a sense of their place in the tropics and are charged with professional, community, and environmental responsibility. JCU graduates appreciate the need to embrace and be acquainted with the Aboriginal and Torres Strait Islander Peoples of Australia. They are committed to reconciliation, diversity and sustainability. They exhibit a willingness to lead and to contribute to the intellectual, environmental, cultural, economic and social challenges of regional, national, and international communities of the tropics.
On successful completion of the Graduate Diploma of Science, graduates will be able to:
*Integrate and apply advanced theoretical and technical knowledge in one or more science disciplines
*Retrieve, analyse, synthesise and evaluate knowledge from a range of sources
*Plan and conduct reliable, evidence-based laboratory and/or field experiments/practices by selecting and applying methods, techniques and tools, as appropriate to one or more science disciplines
*Organise, analyse and interpret complex scientific data using mathematical, statistical and technological skills
*Communicate complex scientific ideas, arguments and conclusions clearly and coherently to a variety of audiences through advanced written and oral English language skills and a variety of media
*Identify, analyse and generate solutions to unpredictable or complex problems, especially related to tropical, rural, remote or Indigenous contexts, by applying scientific knowledge and skills with initiative and high level judgement
*Explain and apply regulatory requirements, ethical principles and, where appropriate, cultural frameworks, to work effectively, responsibly and safely in diverse contexts
*Reflect on current skills, knowledge and attitudes to manage their professional learning needs and performance, autonomously and in collaboration with others.

Award title

GRADUATE DIPLOMA OF SCIENCE (GDipSc)

Course articulation

Students who complete the Graduate Diploma of Science are eligible for entry to the Master of Science, and may be granted advanced standing for all subjects completed under the Graduate Diploma.

Entry requirements (Additional)

English band level 1 - the minimum English Language test scores you need are:
*Academic IELTS – 6.0 (no component lower than 5.5), OR
*TOEFL – 550 (plus minimum Test of Written English score of 4.0), OR
*TOEFL (internet based) – 79 (minimum writing score of 19), OR
*Pearson (PTE Academic) - 57

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English language proficiency requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 1 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University brings together a team of academic and associate staff across multiple disciplines.
*Nationally-recognised leader in geoscience
*state-of-the-art research and teaching facilities
*internationally-acclaimed academic teaching staff
*strong collaboration with industry and research organisations, both locally and internationally.

Career Opportunities

A postgraduate qualification from JCU can enhance your career prospects, enable you to reskill and change careers completely, or develop a specialist area of expertise and personal interest.
Earth science and environmental science graduates enjoy well-paid careers in Australia and overseas. A range of opportunities await graduates in the academia as well as in private and public sectors.
As an Environ mental Scientist, for instance, you will measure and record features of the environment and study, assess and develop methods of controlling or minimizing the harmful effects of hum an activity on the environment.
Graduates can also get jobs as research assistants or support staff for teaching. With a PhD, you can gain research positions (Postdoctoral, Fellowships) that are often funded for a few years or apply for permanent positions as a lecturer and researcher.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. Read more
The MSc Archaeological Science will provide you with a solid grounding in the theory and application of scientific principles and techniques within archaeology. The programme also develops critical, analytical and transferable skills that prepare you for professional, academic and research careers in the exciting and rapidly advancing area of archaeological science or in non-cognate fields.

The programme places the study of the human past at the centre of archaeological science enquiry. This is achieved through a combination of science and self-selected thematic or period-based modules allowing you to situate your scientific training within the archaeological context(s) of your choice. The programme provides a detailed understanding of the foundations of analytical techniques, delivers practical experience in their application and data processing, and the ability to design and communicate research that employs scientific analyses to address archaeological questions. Upon graduation you will have experience of collecting, analysing and reporting on data to publication standard and ideally equipped to launch your career as a practising archaeological scientist.

Distinctive features

The MSc Archaeological Science at Cardiff University gives you access to:

• A flexible and responsive programme that combines training in scientific enquiry, expertise and vocational skills with thematic and period-focused archaeology.

• Materials, equipment, library resources and funding to undertake meaningful research in partnership with a wide range of key heritage organisations across an international stage.

• A programme with core strengths in key fields of archaeological science, tailored to launch your career in the discipline or to progress to doctoral research.

• A department where the science, theory and practice of archaeology and conservation converge to create a unique environment for exploring the human past.

• Staff with extensive professional experience in researching, promoting, publishing, and integrating archaeological science across academic and commercial archaeology and the wider heritage sector.

• An energetic team responsible for insights into iconic sites (e.g. Stonehenge, Çatalhöyük), tackling key issues in human history (e.g. hunting, farming, food, and feasts) through the development and application of innovative science (e.g. isotopes, residue analysis, DNA, proteomics)

• A unique training in science communication at every level - from preparing conference presentations and journal articles, to project reports, press releases and public engagement, our training ensures you can transmit the excitement of scientific enquiry to diverse audiences.

• Support for your future career ambitions. From further study to science advisors to specialists – our graduates work across the entire spectrum of archaeological science as well as moving into other successful careers.

Structure

There are two stages to this course: stage 1 and stage 2.

Stage 1 is made up of:

• 40 credits of Core Skills and Discipline-Specific Research Training modules for Archaeology and Conservation Master's students
• A minimum of 40 credits of Archaeological Science modules
• An additional 40 credits of Archaeological Science or Archaeology modules offered to MA and MSc students across the Archaeology and Conservation department

Stage 2 comprises:

• 60 credit Archaeological Science Dissertation (16-20,000 words, topic or theme chosen in consultation with academic staff)

Core modules:

Postgraduate Skills in Archaeology and Conservation
Skills and Methods for Postgraduate Study
Archaeological Science Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant local resources such as the National Museum Wales and local heritage organisations.

Lectures take a range of forms but generally provide a broad structure for each subject, an introduction to key concepts and relevant up-to-date information. The Archaeological Science Master's provides students with bespoke training in scientific techniques during laboratory sessions. This includes developing practical skills in the identification, recording and analysis of archaeological materials during hands on laboratory sessions. These range from macroscopic e.g. bone identification, to microscopic e.g. material identification or status with light based or scanning electron microscopy, to sample selection, preparation and analysis e.g. isotopic or aDNA and include health and safety and laboratory management skills. Students will be able to develop specialist practical skills in at least one area of study. In workshops and seminars, you will have the opportunity to discuss themes or topics, to receive and consolidate feedback on your individual learning and to develop skills in oral presentation.

This programme is based within the School of History, Archaeology and Religion and taught by academic staff from across Cardiff University and by external speakers. All taught modules within the Programme are compulsory and you are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study.

Assessment

The 120 credits of taught Modules within Stage 1 of the Programme are assessed through in-course assessments, including:

Extended essays
Oral presentations
Poster presentations
Statistical assignments
Critical appraisals
Practical skills tests
Data reports
Research designs

You must successfully complete the taught component of the programme before progressing to Stage 2 where assessment is:

Dissertation (16-20,000 words)

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments. You will be able to pursue a wide range of professional careers, within commercial and academic archaeology and the wider heritage sector. Career paths will generally be specialist and will depend on the choice of modules. Graduates will be well placed to pursue careers as a specialist in isotope analysis, zooarchaeological analysis or human osteoarchaeology. They will also be in a position to apply for general laboratory based work and archaeological fieldwork. Working within science communication and management are other options. Potential employers include archaeological units, museums, universities, heritage institutions, Historic England and Cadw. Freelance or self-employment career routes are also common for animal and human bone analysts with postgraduate qualifications.

The archaeology department has strong links and collaborations across the heritage sector and beyond. British organisations that staff currently work with include Cadw, Historic England, English Heritage, Historic Scotland, National Museum Wales, the British Museum, the Welsh archaeological trusts and a range of other archaeology units (e.g. Wessex Archaeology, Oxford Archaeology, Cambridge Archaeology Unit, Archaeology Wales). In addition, staff are involved with archaeological research across the world. You will be encouraged to become involved in these collaborations via research projects and placements to maximise networking opportunities and increasing your employability.

Read less
Our MSc History of Science, Technology and Medicine taught master's course focuses on a broad range of mostly 19th and 20th century case studies, from the local to the global. Read more

Our MSc History of Science, Technology and Medicine taught master's course focuses on a broad range of mostly 19th and 20th century case studies, from the local to the global.

We will explore key debates such as:

  • Why does Britain have a National Health Service?
  • Can better science education cure economic problems?
  • How did epidemic disease affect the colonial ambitions of the European powers?
  • Why do we end up depending on unreliable technologies?

Your studies will pay particular attention to the roles of sites, institutions, and schools of thought and practice, and to the changing ways in which scientists and medics have communicated with non-specialist audiences.

You will learn through lectures, seminars and tutorials and gain experience of historical essay-writing, before researching and writing an extensive dissertation on a specialised topic, supervised by experienced researchers.

This MSc focuses on humanities skills, but may be taken successfully by students from any disciplinary background. It works both as an advanced study course for students with undergraduate experience in the history of science, technology and medicine, and as a conversion route for students from other backgrounds, often in the sciences, but also including general history, social policy, and other fields.

The History of Science, Technology and Medicine pathway is appropriate if you have wide-ranging interests across the field, or are interested in the histories of the physical sciences or the life sciences in particular.

If you wish to focus on biomedicine or healthcare, you may prefer the Medical Humanities pathway. If you are particularly interested in contemporary science communication or policy, you should consider the MSc Science Communication course.

Aims

This course aims to:

  • explore the histories of theories, practices, authority claims, institutions and people, spaces and places, and communication in science, technology and medicine, across their social, cultural and political contexts;
  • provide opportunities to study particular topics of historical and contemporary significance in depth, and to support the development of analytical skills in understanding the changing form and function of science, technology and medicine in society;
  • encourage and support the development of transferable writing and presentational skills of the highest standard, and thereby prepare students for further academic study or employment;
  • provide a comprehensive introduction to research methods in the history of science, technology and medicine, including work with libraries, archives, databases, and oral history;
  • enable students to produce a major piece of original research and writing in the form of a dissertation.

Special features

Extensive support

Receive dedicated research support from the Centre for the History of Science, Technology and Medicine , the longest-established centre for the integrated study of the field.

Extra opportunities

Take up optional classes and volunteering opportunities shared with the parallel MSc Science Communication course at Manchester, including science policy, science media, museums and public events activities.

Explore Manchester's history

Manchester is the classic 'shock city' of the Industrial Revolution. You can relive the development of industrial society through field trips and visits.

Convenient study options

Benefit from flexible options for full or part-time study.

Teaching and learning

Teaching includes a mixture of lectures and small-group seminar discussions built around readings and other materials. We emphasise the use both of primary sources, and of current research in the field.

Most students will also visit local museums and other sites of interest to work on objects or archives.

All students meet regularly with a mentor from the Centre's PhD community, a designated personal tutor from among the staff, and, from Semester 2, a dissertation supervisor. 

Coursework and assessment

Assessment is mostly based on traditional essay-format coursework submission.

All MSc students undertake a research dissertation (or optionally, for Medical Humanities students, a portfolio of creative work) accounting for 60 of the 180 credits.

Course unit details

You are required to complete 180 credits in the following course units to be awarded this MSc:

Semester 1 course units (credits)

  • Major themes in HSTM (30 credits)
  • Theory and practice in HSTM and Medical Humanities (15)
  • Research and communication skills (15)

Semester 2: two optional course units (30 credits each) from the below list, or one from the below plus 30 credits of course units from an affiliated programme:

  • Shaping the sciences
  • Making modern technology
  • Medicine, science and modernity

plus:

  • Dissertation in the history of science, technology and/or medicine (60)

Course structure (part-time)

Part-time students study alongside full-timers, taking half the same content each semester over two years.

You are required to complete 180 credits in the following course units to be awarded this MSc:

Semester 1: Major themes in HSTM (30 credits).

Semester 2: one optional course unit (30 credits each) from

  • Shaping the sciences
  • Making modern technology
  • Medicine, science and modernity

Semester 3:

  • Theory and practice in HSTM and Medical Humanities (15)
  • Research and communication skills (15)

Semester 4: one further optional course unit (30) from CHSTM as seen above, or 30 credits of course units from an approved affiliated programme.

Plus:

  • Dissertation in HSTM (60 credits) across second year and during the summer

Facilities

All MSc students have use of a shared office in the Centre for the History of Science, Technology and Medicine, including networked computer terminals and storage space, and use of the dedicated subject library housed in the PhD office nearby.

The Centre is located within a few minutes' walk of the University of Manchester Library , the largest non-deposit library in the UK.

Resources for student research projects within the University include the object collections of theManchester Museum , also nearby on campus, and the John Rylands Library special collections facility in the city centre.

CHSTM also has a close working relationship with other institutions offering research facilities to students, notably the Museum of Science and Industry .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 



Read less
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students. Read more
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students.

- Master of Science–Thesis Option (http://cs.ua.edu/graduate/ms-program/#thesis)
- Master of Science–Non-Thesis Option (http://cs.ua.edu/graduate/ms-program/#nonthesis)
- Timetable for the Submission of Graduate School Forms for an MS Degree (http://cs.ua.edu/graduate/ms-program/#timetable)

Visit the website http://cs.ua.edu/graduate/ms-program/

MASTER OF SCIENCE–THESIS OPTION (PLAN I):

30 CREDIT HOURS
Each candidate must earn a minimum of 24 semester hours of credit for coursework, plus a 6-hour thesis under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

Credit Hours
The student must successfully complete 30 total credit hours, as follows:

- 24 hours of CS graduate-level course work

- 6 hours of CS 599 Master’s Thesis Research: Thesis Research.

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory). These courses must be taken within the department and selected from the following:
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours, as follows:

- 6 hours of CS 599 Master’s Thesis Research

- 24 hours of CS graduate-level course work with a grade of A or B, including the following courses completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

MASTER OF SCIENCE–NON-THESIS OPTION (PLAN II):

30 CREDIT HOURS
Each candidate must earn a minimum of 30 semester hours of credit for coursework, which may include a 3-hour non-thesis project under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

The student must successfully complete 30 total credit hours, as follows:

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory).
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours of CS graduate-level course work with a grade of A or B, as follows:

- The following courses will be completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

TIMETABLE FOR THE SUBMISSION OF GRADUATE SCHOOL FORMS FOR AN MS DEGREE
This document identifies a timetable for the submission of all Graduate School paperwork associated with the completion of an M.S. degree

- For students in Plan I students only (thesis option) after a successful thesis proposal defense, you should submit the Appointment/Change of a Masters Thesis Committee form

- The semester before, or no later than the first week in the semester in which you plan to graduate, you should “Apply for Graduation” online in myBama.

- In the semester in which you apply for graduation, the Graduate Program Director will contact you about the Comprehensive Exam.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
Our three-year MSc (Clin) Oral and Maxillofacial Surgery course enables dentists to train in the specialty concerned with the diagnosis and management of diseases, injuries and defects affecting the mouth, jaws, face and neck. Read more

Our three-year MSc (Clin) Oral and Maxillofacial Surgery course enables dentists to train in the specialty concerned with the diagnosis and management of diseases, injuries and defects affecting the mouth, jaws, face and neck.

All units are based on the speciality of oral surgery, but within the wider context of maxillofacial surgery. You will undertake minor oral surgery under supervision, carried out under local anaesthesia, conscious sedation and general anaesthesia. You will also attend theatre to assist and observe major surgery and attend consultation clinics, trauma clinics, ward rounds and carry out ward duties.

The clinical component of the course consists of units covering surgical basic sciences, reflective oral surgery practices, dental tissues, bone disease and injury, soft tissues, and salivary tissue, pain and the temporomandibular joint.

You will attend weekly interactive seminars led by senior staff and invited guest speakers. Some of these have actor patients present to allow you to rehearse your clinical skills.

If you study the full three-year MSc, you will also attend external teaching events such as residential blocks for basic science applied to surgery at the Royal College of Surgeons of England.

You will become eligible to sit the Royal College of Surgeons examinations for Membership in Oral Surgery on completion of this MSc course.

Aims

The course aims to:

  • provide dental practitioners with the knowledge and skills to undertake oral surgery in the context of wider knowledge of oral and maxillofacial surgery;
  • provide you with the appropriate knowledge, understanding, intellectual skills, practical skills and attitude to practice oral surgery in selected cases;
  • enable you to carry out critical evaluation, problem solving and use sound judgement for clinical problems;
  • give you the knowledge to criticalyl understand the issues involved in the scientific basis of oral and maxillofacial surgery;
  • ensure you are competent in the design and interpretation of original clinical research at the forefront of current dental research (including data collection and statistical analysis using appropriate computer software);
  • provide you with the knowledge and experience to plan, implement and complete a research project showing initiative and personal responsibility.

Coursework and assessment

Assessment is by essay and SBAs throughout the course and related to the taught units. You will also maintain a clinical surgical logbook and undertake a clinical competency test. There is also an oral examination.

  • Research Methods: Formal assessment takes the form of two tutor marked assignments.
  • Biostatistics: Formal assessment takes the form of two tutor marked assignments.
  • Clinical component: This is assessed by written examination and clinical examination in the form of an oral presentation.
  • Dissertation (10,000-15,000 words).

Course unit details

Research Methods Component (15 credits): The aim is to equip you with skills related to design, execution and interpretation of clinical and clinically-related research.

Biostatistics component (15 credits): This unit aims to equip you with skills in data collection, simple analysis and interpretation of clinical and clinically related research.

Specialist Clinical Component: The aim of this component is to give you an understanding of the scientific basis of oral and maxillofacial surgery, with particular emphasis on current theories relevant to the diagnosis, treatment planning and clinical management of adult patients.

The Specialist Clinical Component encompasses the following:

  • Core lectures to include:
  • Medical emergency management
  • Cross infection control
  • Radiological protection
  • Clinical governance
  • Interactive seminars related to oral surgery
  • Pre-clinical skills course
  • Attend consultation clinics
  • Case reviews

Dissertation

Course content for year 1

Additional teaching and learning specific to the three year course:

  • Additional 3 clinical sessions per week (3 hours each)
  • Head and Neck Anatomy (3 days)
  • Royal College Surgeons of England (3 day residential)
  • ProfSusan Standring
  • Dr Barry Berkovitz
  • Mr Michael Monteiro
  • Further Head and Neck Anatomy, Applied Physiology and Clinical Pathology and Microbiology
  • Royal College Surgeons of England
  • Prof Susan Standring
  • Dr Barry Berkovitz
  • Mr Michael Monteiro
  • Dr Richard Byers
  • Prof Philip Hasleton
  • Dr Ray McMahon
  • Dr Emyr Benbow

Course content for year 2

  • Additional 3 clinical sessions per week (3 hours each)
  • Oral and Maxillofacial Surgery course
  • Royal College of Surgeons (Residential and Distance Learning)
  • Emergency Skills, Ward and Peri-operative Management, Clinical Photography
  • Tutor, Mr Steve Langton
  • British Association of Oral Surgeons
  • Annual UK Scientific Conference (2 days residential)
  • Association of Dental Implantology (ADI)
  • UK Annual Meeting (2 days residential)

Course content for year 3

  • Additional 3 clinical sessions per week (3 hours each)
  • British Association of Oral Surgeons
  • Annual UK Scientific Conference (2 days residential)
  • Association of Dental Implantology (ADI)
  • UK Annual Meeting (2 days residential)
  • International Association of Dental Research
  • International Conference (4 days residential)
  • Examination Preparation Membership in Oral Surgery
  • Royal College of Surgeons of Edinburgh
  • Invited faculty to Manchester

Facilities

You will have access to dedicated postgraduate suites. You will also be able to access a range offacilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service .

CPD opportunities

Some selected seminars will provide you with CPD hours.

Career opportunities

MSc courses are designed for dental practitioners who wish to further their knowledge of surgery and are a useful foundation for specialist training in this field.

The three year course provides specialist oral surgery clinical training.

Associated organisations



Read less
This programme will give you an insight into the complex history of technology, medicine, scientific knowledge and methodology, as well as how they have shaped the world we live in. Read more

This programme will give you an insight into the complex history of technology, medicine, scientific knowledge and methodology, as well as how they have shaped the world we live in.

You’ll explore the themes, concepts and debates in the study of the history of science through core modules. These will also allow you to develop your historical research skills, using our excellent library resources to work with primary and secondary sources. But you’ll also choose from a range of optional modules that allow you to specialise in topics areas that suit your interests, from birth, death and illness in the Middle Ages to modern science communication.

Guided by leading researchers and supported by our Centre of History and Philosophy of Science, you’ll learn in a stimulating environment with access to a wide range of activities. You could even gain research experience by getting involved in the development of our Museum of the History of Science, Technology and Medicine.

We have world-class research resources to support your studies. The Brotherton Library houses extensive manuscript, archive and printed material in its Special Collections, including Newton’s Principia, a first edition of his Opticks and thousands of books and journals on topics from the 16th century onwards on topics such as astronomy, botany, medicine, physiology, chemistry, inventions and alchemy. You’ll also have access to the collections of artefacts across campus that we have brought together through the Museum of the History of Science, Technology and Medicine.

The Centre also hosts a number of research seminars given by visiting speakers, staff members and doctoral students and which all postgraduate students are encouraged to attend. There are also regular reading groups on a wide range of topics and the seminar series of other centres within the School are also available.

Course content

In your first semester you’ll take a core module introducing you to different approaches and debates in history of science, technology and medicine, as well as how they have been used over time to help us understand scientific developments. You’ll build on this in the following semester with a second core module that will give you a foundation in historical skills and research methods, equipping you to work critically and sensitively with primary and secondary sources.

You’ll have the chance to demonstrate the skills and knowledge you’ve gained in your dissertation, which you’ll submit by the end of the year. This is an independently researched piece of work on a topic of your choice within the history of science, technology and medicine – and you can choose to take an extended dissertation if you want to go into even greater depth.

Throughout the year you’ll be able to choose from a range of optional modules, allowing you to develop your knowledge by specialising in a topic of your choice such as science and religion historically considered, or science in the museum. You’ll take one optional module if you take the extended dissertation, or two if you do the standard dissertation.

If you choose to study part-time, you’ll study over a longer period and take fewer modules in each year.

Course structure

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Compulsory modules

You’ll take three compulsory modules, though you can choose whether to take a standard (60 credits) or extended (90 credits) dissertation. You’ll then choose one or two optional modules.

  • Historical Skills and Practices 30 credits
  • Current Approaches in the History of Science, Technology & Medicine 30 credits

Optional modules

  • The European Enlightenment 30 credits
  • Lifecycles: Birth, Death and Illness in the Middle Ages 30 credits
  • Science and Religion Historically Considered 30 credits
  • History & Theory of Modern Science Communication 30 credits
  • Special Option (History of Science) 30 credits
  • Science in the Museum: Interpretations & Practices 30 credits
  • The Origin of Modern Medicine (Birth of the Clinic) 30 credits

For more information on typical modules, read History of Science, Technology and Medicine MA Full Time in the course catalogue

For more information on typical modules, read History of Science, Technology and Medicine MA Part Time in the course catalogue

Learning and teaching

Most of our taught modules combine seminars and tutorials, where you will discuss issues and concepts stemming from your reading with a small group of students and your tutor. You’ll also benefit from one-to-one supervision while you complete your dissertation. Independent study is also an important element of the programme, allowing you to develop your skills and pursue your own interests more closely.

Assessment

We assess your progress using a combination of exams and coursework, giving you the freedom to research and write on topic areas that suit your interests within each module you study.

Career opportunities

You’ll gain a range of in-depth subject knowledge throughout this programme, as well as a set of high-level transferable skills in research, analysis, interpretation and oral and written communication that are very attractive to employers.

As a result, you’ll be equipped for a wide range of careers. Some of these will make direct use of your subject knowledge, such as museum work or public engagement with science, while your skills will enable you to succeed in fields such as business and finance, publishing, IT and teaching.

Graduates of our School also regularly go onto careers in journalism, the media, social work, human resources, PR, recruitment and the charity sector. Many also continue with their studies at PhD level and pursue careers in academia.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Tropical animal science focuses on animal health and reproduction in tropical climates. Study areas may include. *Animal nutrition. Read more

What is tropical animal science?

Tropical animal science focuses on animal health and reproduction in tropical climates. Study areas may include:
*Animal nutrition
*Applied pathology
*Aquatic pathobiology
*Epidemiology and biometrics
*Immunology
*Microbiology
*Parasitology.

Who is this course for?

This course is for graduates from agricultural science, animal science, rural science, and science or related degrees who want to specialise in tropical animal health and reproduction.

Course learning outcomes

Tropical animal science has become an area of global importance as world trade continues to expand and the challenge of future research is to develop better methods for improving production in all livestock species within tropical regions.
Tropical animal science covers the field of animal nutrition, welfare, and production with the aim of improving productivity of livestock, and better utilisation of animal resources in tropical, subtropical and similar agro-ecological environments.
Graduates of the Master of Tropical Animal Science will be able to:
*Demonstrate advanced and integrated knowledge, including an understanding of recent developments, in the area of tropical animal science and related professional competencies, behaviours and ethical frameworks
*Demonstrate an integrated understanding of tropical animal science and its application to improve human quality of life by means of increased and cost effective food production in tropical regions
*Evaluate and apply established and evolving evidence and concepts to reflect critically on theory and professional practice
*Design, plan and ethically execute a research project related to tropical animal science
*Analyse and synthesise complex information, problems, concepts and theories in new situations or contexts with creativity and independence
*Prepare a dissertation on a topic related to tropical animal science and compare and contrast the results obtained with those reported in the literature
*Demonstrate a high level of personal autonomy and accountability for their own future professional development through selection and integration of available subjects in tropical animal science
*Interpret and justify theoretical propositions, methodologies and conclusions to specialist and non-specialist audiences through high level written and oral communication and numeracy skills.

Award title

Master of Tropical Animal Science (MTropAnimSc)

Post admission requirements

Q Fever immunisation:
Students must provide evidence of being immune to Q Fever within the first teaching period of their studies. Students who are not immune to Q fever will not be permitted on-site at some facilities and consequently this may result in their inability to complete the requirements of the course as accredited by the relevant professional accrediting body. If a student has not complied with the above requirement by the last day of the first teaching period of their studies, their enrolment will be terminated immediately.

Entry requirements (Additional)

English band level 2 - the minimum English Language test scores you need are:
*Academic IELTS – 6.5 (no component lower than 6.0), OR
*TOEFL – 570 (plus minimum Test of Written English score of 4.5), OR
*TOEFL (internet based) – 90 (minimum writing score of 21), OR
*Pearson (PTE Academic) - 64

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English language proficiency requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 3a – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University has:
*Purpose-built emergency veterinary clinic including operating theatres and radiology facilities
*anatomy and biomedical science teaching and research laboratories, including housing for small, large and aquatic animals
*veterinary teaching facilities in Atherton, Malanda, Townsville and Charters Towers.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less

Show 10 15 30 per page



Cookie Policy    X