• Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of Bath Featured Masters Courses
"oral" AND "cancer"×
0 miles

Masters Degrees (Oral Cancer)

We have 56 Masters Degrees (Oral Cancer)

  • "oral" AND "cancer" ×
  • clear all
Showing 1 to 15 of 56
Order by 
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
Programme description. Read more

Programme description

The DClinDent in Oral Surgery is a three-year, full-time programme which will allow the candidate to achieve specialist-level training in oral surgery, together with a taught professional Doctorate, preparing them for the Speciality examination of Membership in Oral Surgery (MOralSurg) of the Royal Colleges of Surgeons (Tricollegiate Edinburgh, Glasgow, England) UK.

The DClinDent aims to provide doctoral level educational opportunities to enable students to develop, consolidate and enhance their range of academic and clinical competencies to enable independent and reflective practice at the standard of a specialist in oral surgery.

Programme structure

This programme is for dental surgery graduates who wish to extend their knowledge, clinical practice experience and expertise in oral surgery.

The programme will give you theoretical and practical understanding of oral surgery and how it relates to other dental specialities.

The syllabus components are based on the core competencies for oral surgery training as set out by Specialty Advisory Committee (SAC) for Oral Surgery, The Faculty of Dental Surgery The Royal College of Surgeons of England (2014) :

  • extraction of teeth & retained roots/pathology
  • management of associated complications including oro-antral fistula
  • management of odontogenic and all other oral infections
  • management of impacted teeth
  • management of complications
  • peri-radicular surgery
  • dentoalveolar surgery in relation to orthodontic treatment
  • intraoral and labial biopsy techniques
  • treatment of intra-oral benign and cystic lesions of hard and soft tissues
  • management of benign salivary gland disease by intra-oral techniques and familiarity with the diagnosis and treatment of other salivary gland diseases
  • insertion of osseointegrated dental implants including bone augmentation and soft tissue management
  • appropriate pain and anxiety control including the administration of standard conscious sedation techniques
  • management of adults and children as in-patients, including the medically at risk patient
  • management of dento-alveolar trauma and familiarity with the management and treatment of fractures of the jaws and facial skeleton
  • management of oro-facial pain including temporomandibular joint disorders
  • clinical diagnosis of oral cancer and potentially malignant diseases, familiarity with their management and appropriate referral
  • the diagnosis of dentofacial deformity and familiarity with its management and treatment
  • diagnosis of oral mucosal diseases and familiarity with their management and appropriate referral
  • control of cross-infection
  • medico-legal aspects of oral surgery

For Year 1 and Year 2 students, there will be a written exam at the end of each term.

In addition to the above, at the end of Year 2, students will also have oral exams in June and in August/September.

Successful completion of the first two years of the programme will allow students to proceed to Year 3 of the programme. In Year 3, students will present the following:

a) a clinical governance project b) a systematic review of a topic related to Oral Surgery c) two fully documented patient case presentations d) two unseen (diagnostic) cases will also form part of this examination

The third year of the DClinDent programme will be structured over three semesters and during this time the student will be timetabled to four protected academic sessions each week with the remaining time dedicated to primarily independent clinical practice and inter-disciplinary patient management.

Year 1 courses:

  • Basic science in relation to oral surgery
  • Clinical knowledge 1
  • Oral Surgery - Clinical Patient Care 1
  • Pathology of the Oral and Dental Tissues
  • Research Methodology, Statistics, Clinical Governance and Audit
  • Resuscitation and Management of Emergencies
  • The NHS

Year 2 courses:

  • Clinical knowledge 2
  • Oral Surgery - Clinical Patient Care 2
  • Dissertation
  • Systemic disease in relation to Oral Surgery
  • Management of Pain and Anxiety

Year 3 courses:

  • Systematic Review
  • Clinical Governance Project
  • Specialist-Level Clinical Case-Reports
  • Clinical Patient Care 3

Learning outcomes

  1. Ability to produce good clinical care whilst maintaining good clinical practice
  2. Good understanding of the basic biological science relevant to oral surgery
  3. Ability to carry out the extraction of teeth and retained roots and management of complications
  4. Knowledge to deal with odontogenic and all other infections of the orofacial region and benign salivary gland disease
  5. Fluent in the management of impacted and unerupted teeth and dentoalveolar surgery in relation to orthodontic treatment , peri-radicular surgery, treatment of benign cystic lesion of the oral hard and soft tissues
  6. Familiarity with appropriate anxiety management techniques and management of orofacial pain
  7. Familiarity with the management of benign and malignant lesions arising in, or presenting in the oral cavity

Career opportunities

This programme has been designed for dental surgery graduates who wish to specialise in oral surgery.



Read less
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. Read more
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. It also provides a sound educational background so that you can go on to lead academic oral biology programmes within dental schools.

Why study Oral Biology at Dundee?

This course is specifically designed for individuals who wish to pursue career pathways in academic oral biology, with a focus, though not exclusively, on developing individuals who can deliver and, more importantly, lead oral biology courses within dental schools.

Oral Biology is a significant subject area that is integral to undergraduate and postgraduate dental training worldwide. The scope of Oral Biology includes a range of basic and applied sciences that underpin the practise of dentistry. These subjects include: oral and dental anatomy; craniofacial and dental development; oral physiology; oral neuroscience; oral microbiology. These subjects will be integrated with the relevant disease processes, for example, craniofacial anomalies, dental caries and tooth surface loss.

What's so good about studying Oral Biology at Dundee?

This programme focuses on the research and education experience of the staff in the Dental School in Dundee. Such expertise lies in the fields of craniofacial development and anomalies; pain and jaw muscle control; salivary physiology; cancer biology; microbiology; cariology and tooth surface loss.

In addition it makes use of the extensive resources available for postgraduate programmes: extensive histological collections; virtual microscopy; oral physiology facilities; cell biology and dental materials laboratories.

Who should study this course?

The MSc in Oral Biology is for graduates who wish to pursue a career in academic oral biology. The course will be of particular interest for those wishing to establish themselves as oral biology teachers, innovators and course leaders within a dental school.

Teaching and Assessment

The Dental School is well placed to deliver such a course with an established staff of teaching and research active within oral biology, and its related fields, an in-house e-learning technologist and substantial links to the Centre for Medical Education in the School of Medicine. There will be an opportunity for students to exit with a PGCert in Oral Biology after successful completion of modules 1 -4 or a Diploma in Oral Biology after successful completion of modules 1 - 7.

How you will be taught

The programme will be delivered via a blend of methodologies including: face-to-face lectures / seminars / tutorials; on-line learning; directed and self- directed practical work; self-directed study; journal clubs.
What you will study

The MSc will be taught full-time over one year (September to August). Semester one (Modules 1 – 4) and Semester 2A, 2B (Modules 5 – 8) will provide participants with wide ranging, in-depth knowledge of oral biology, together with focused training in research (lab-base, dissertation or e- Learning) and its associated methodology. The MSc course is built largely on new modules (5) supported by 2 modules run conjointly with the Centre for Medical Education within the Medical School. All modules are compulsory:

Semester 1:

Module 1: Academic skills 1: principles of learning and teaching (15 credits)
Module 2: Cranio-facial development and anomalies (15 credits)
Module 3: Dental and periodontal tissues, development and structure (20 credits)
Module 4: Oral mucosa and disorders (10 credits)

Semesters 2A and 2B

Module 5a: Academic skills 2a: principles of assessment (15 credits)
Module 5b: Academic Skills 2b:educational skills
Module 6: Neuroscience (20 credits)
Module 7: Oral environment and endemic oral disease (20 credits)
Module 8: Project (60 credits)

The project is designed to encourage students to further develop their skills. This could take the form of a supervised laboratory research project, a literature based dissertation or an educational project. The educational project would be based around the development of an innovative learning resource utilising the experience of the dental school learning technologist.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Careers

The MSc Oral Biology is aimed at dental or science graduates who are either early in their careers or wish to establish themselves as oral biologists within dental schools. Oral Biology is a recognised discipline in many dental schools worldwide. Graduates will have gained sufficient knowledge and skills to enable them to be teachers, innovators and educational leaders in the field. In addition, successful graduates will be well placed to undertake further postgraduate study at PhD level. In some cases, this may possible within the existing research environments within the Dental School, the wider College of Medicine Dentistry and Nursing and the Centre for Anatomy and Human Identification of the University of Dundee.

Read less
Our one-year MSc Oral and Maxillofacial Surgery course is designed for dentists who wish to advance their knowledge of this clinical specialty at postgraduate level. Read more

Our one-year MSc Oral and Maxillofacial Surgery course is designed for dentists who wish to advance their knowledge of this clinical specialty at postgraduate level.

This specialty is concerned with the diagnosis and management of diseases, injuries and defects affecting the mouth, jaws, face and neck.

The specialist clinical component of the course will give you an understanding of the scientific basis of oral and maxillofacial surgery, with particular emphasis on current theories relevant to the diagnosis, treatment planning and clinical management of patients. The course will also emphasise the evidence base supporting clinical surgical practice.

You will observe a wide range of surgery, including facial trauma, implant and reconstructive, cancer and reconstructive, salivary gland and orthognathic surgery, as well as participating in dentoalveolar surgery.

The course also covers the design, data collection, and simple analysis and interpretation of clinical research projects, and culminates in the MSc dissertation. You will learn how to identify, formulate and implement a specific research project in line with the research themes of pain and anxiety control, surgical implantology, or oral cancer and health services research.

Aims

The course aims to provide dental practitioners with the knowledge and skills to undertake minor oral surgery in the context of a wider knowledge of oral and maxillofacial surgery.

Teaching and learning

Our teaching and learning methods are designed to encourage you to take responsibility for your own learning and to integrate work with formal educational activities.

We will provide the core text book for the course. This book, Master Dentistry Oral and Maxillofacial Surgery, Radiology, Pathology and Oral Medicine (ISBN 0443061920), has been authored by University staff Coulthard, Horner, Sloan and Theaker.

Coursework and assessment

Assessment is by essay and SBAs throughout the course and related to the taught units. You will also maintain a clinical surgical logbook and undertake a clinical competency test. There is also an oral examination.

  • Research Methods: Formal assessment takes the form of two tutor marked assignments.
  • Biostatistics: Formal assessment takes the form of two tutor marked assignments.
  • Clinical component: This is assessed by written examination and clinical examination in the form of an oral presentation.
  • Dissertation (10,000-15,000 words).

Course unit details

The Specialist Clinical component consists of the following modules:

  • Surgical Basic Sciences (Basic surgical science, preoperative and postoperative care) and Patient Care (Assessing patients, medical aspects of patient care and control of pain and anxiety)
  • Reflective Oral Surgery Practices
  • Dental Tissues (Infections and inflammation of the teeth and jaws, removal of teeth and surgical implantology)
  • Bone: Disease and Injury (Diseases of bone and the maxillary sinus, oral and maxillofacial injuries)
  • Soft Tissues (Cysts, mucosal disease, premalignancy and malignancy)
  • Salivary Tissue, Pain and TMJ (Salivary gland disease, facial pain and disorders of the temporomandibular joint)

The MSc includes a research project and dissertation.

Dissertation

Examples of dissertations submitted include:

  • A systematic review of randomised controlled clinical trials comparing the adverse effects of articaine and lidocaine as local anaesthetic agents
  • A systematic review of the side effects of inhalation conscious sedation
  • Implant survival with different numbers of dental implants in the mandibular implant over denture: A retrospective cohort study
  • National use of conscious sedation in dentistry
  • Evaluation of pain in paediatric patients undergoing oral surgery

Facilities

You will have access to dedicated postgraduate suites. You will also be able to access a range offacilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service .

CPD opportunities

We will invite you to participate in a number of conferences and courses. Some selected seminars will also provide you with CPD hours.

Career opportunities

This course will prepare you for a future career in clinical practice, teaching or research.

Some graduates return to established surgical practice, while others go on to the next step in their training and pursue specialist clinical training and appropriate clinical examinations in oral and maxillofacial surgery.

Graduates may find their advanced knowledge a good foundation for surgical dentistry, oral surgery or oral and maxillofacial surgery practice. Some graduates proceed to undertake higher research degrees such as a PhD.



Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more

The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

About this degree

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules

  • Basic Biology and Cancer Genetics
  • Cancer Therapeutics

Specialist modules

  • Behavioural Science and Cancer
  • Biomarkers in Cancer
  • Cancer Clinical Trials
  • Haematological Malignancies and Gene Therapy

Dissertation/report

All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning

Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Further information on modules and degree structure is available on the department website: Cancer MSc

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Employability

Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Cancer Institute

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Why this course?. This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials. Read more

Why this course?

This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials.

The programme was developed in response to the increasing demand for a course which focuses on current and emerging cancer therapies. It is the only programme in the UK which combines a focus on cancer biology with the practical, ethical and economic implications of personalised cancer therapy, along with its biology and the discovery and development of drugs.

It has been constructed to produce world-class graduates with the skills to contribute to the global drive in advancing cancer treatment through research, teaching, industry and public sector employment.

What you'll study

You'll focus on anti-cancer treatment therapies, with a particular emphasis on personalised medicine, covering the therapeutic target and the biological mechanisms of current and emerging anti-cancer therapies. You'll also explore radiotherapy as a diagnostic and as a single or combinational treatment with drugs in anti-cancer therapy.

You'll be introduced to the discovery and development of new drugs and the challenges associated with this process. You'll be able to evaluate the drug discovery pipeline including medicinal chemistry, screening, secondary assays and other drug discovery and development technologies. Through a virtual drug discovery programme, you'll have the opportunity to develop anti-cancer agents and progress these through the drug discovery cascade, from target engagement to clinical trials.

The programme will equip you with a range of skills including scientific writing, critical analysis, problem-solving, teamworking, as well as advanced data set analysis and interpretation. You'll experience a wide range of scientific topics from molecular biology, to cell biology and genetics, medicinal chemistry to formulation and radiobiology to nuclear medicine. You'll have the opportunity to conduct independent research and working as part of a multidisciplinary team you'll gain an appreciation of the contributions other disciplines make to cancer drug discovery.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences is recognised as one of the foremost departments of its kind in the UK. It's a leading research centre in the search for new and improved medicines. You'll benefit from the advanced facilities of a new £36 million building. The Institute is ranked no 2 in the UK in the Complete University Guide 2018 and the University of Strathclyde has recently been one of the few UK institutes to be awarded the status of 'Emerging Centre of excellence for radiobiology research' in the UK.

Learning & teaching

The course is delivered through lectures, workshops, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you may undertake a laboratory project on the subject of cancer therapies for the MSc.

Assessment

Written examinations, course work with formative and summative approaches are taken in different aspects of the course. Written reports, oral presentations, scenario-based learning and moderated peer assessment are all included in the course.

Careers

Graduates will have a number of potential employment opportunities: large and small pharma companies, SMEs, within health services and providers, their home institutions and as academics in UK, EU or international Universities.

The course will enable careers in research, academia industry and the health sector and offers you a unique exposure to the entire drug discovery and development cascade while keeping patients' needs at the forefront of the learning process.



Read less
Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research. Read more

Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research.

Cancer is a major cause of mortality and morbidity worldwide. Approximately 300,000 people develop the disease each year in the UK.

Understanding the basis of tumourigenesis and developing new therapies are high priority areas for investment, especially since the economic burden of cancer is increasing. The field of oncology encompasses a wide variety of biological and physical sciences.

You will learn from renowned basic, translational and clinical scientists at the Manchester Cancer Research Centre, the Cancer Research UK (CRUK) Manchester Institute and The Christie NHS Foundation Trust, with a focus on developing practical research skills.

Our course covers the clinical and research aspects of cancer care, and you will have access to an exceptionally wide range of research projects in basic cancer biology, translational areas and clinical cancer care and imaging.

This MRes has both taught and research components and is suitable for those with little or no previous research experience.

Aims

Our MRes course aims to provide postgraduate level training that will equip you with the specialist knowledge and research skills to pursue a research career in the fields of medical and clinical oncology.

You will gain an understanding of the scientific basis of cancer and its treatments, as well as the skills needed to evaluate the potential efficacy of new treatments.

This course also offers the potential to:

  • gain hands-on research experience;
  • work with world-renowned experts;
  • use state-of-the-art research equipment;
  • publish your work and attend national and international conferences;
  • be taught by speakers at the forefront of national and international cancer research;
  • undertake laboratory or clinical-based research projects at the Christie Hospital site, the largest cancer centre in Europe with some of the UK's leading cancer researchers;
  • enhance your research skills and gain confidence in your research abilities.

Special features

Clinical and research components

This is one of only a handful of MRes Oncology courses in the UK. Unlike many other oncology courses, ours has both clinical and research elements, making it suitable for both medical undergraduates and graduates, as well as biomedical science graduates.

Teaching and learning

Our MRes is structured around a 2:1 split between laboratory/clinical-based research projects and taught elements.

Laboratory and clinical research experience is gained through two research placements, one lasting approximately ten weeks (October to December) and the second lasting approximately 25 weeks (January to August).

You may choose to carry out one project for both placements, which most students do, or separate projects for each placement.

Most research placements are based at the Christie site, either within the hospital, the Manchester Cancer Research Centre or CRUK Manchester Institute premises. Projects are also available on the Central Manchester University Hospitals and University Hospital of South Manchester sites.

A list of available projects will be provided to offer holders in August.

Coursework and assessment

Students are assessed through oral presentations, single best answer exams, written reports and a dissertation.

Course unit details

The course features the following components:

  • Research Methods course unit - 15 credits
  • Clinical Masterclass course unit - 15 credits
  • Lecture Series course unit - 15 credits
  • Tutorial course unit - 15 credits
  • Two research placements (1 x 10 week - 30 credits; 1 x 25 week - 90 credits)

The  Research Methods  course unit covers topics relating to:

  • Critical analysis of scientific/medical research and literature
  • Information management
  • Study design
  • Basic statistical analysis
  • Ethics, fraud, plagiarism and medical and academic misconduct
  • Presentation skills
  • Scientific writing and publishing skills

The  Clinical Masterclass  course unit provides a truly multidisciplinary foundation in the key issues in oncology. Delivery is by lectures and site tours and these classes will offer the student the chance to debate with internationally recognised experts in their field. Areas covered include: 

  • Cancer epidemiology, screening and prevention
  • Diagnosis
  • Chemotherapy
  • Radiotherapy
  • Hormonal therapy
  • Surgery

Following attendance at these classes, you will be able to understand how cancer is diagnosed and the principles of cancer surgery, radiotherapy and chemotherapy.

The  Lecture Series  course unit comprises two intensive one-week courses, one in November and the other in February. The November course covers the biological basis of chemotherapy, pharmacology and cancer biology. The February course covers the biological basis of radiotherapy and translational aspects of cancer research, including biomarkers and new technologies.

The  Tutorial  course unit allows students to choose from a selection of clinical and academic oncology topics. The unit aims to improve ability to interpret and criticise literature as well as improve verbal communication skills in a small group setting. 



Read less
This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. Read more

This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. You’ll gain a thorough background in oral sciences, the investigative, cutting edge technologies that enable oral scientific discovery and the necessary training in research governance and rigour. All areas of translational research pathways will be addressed, including aspects of commercialisation which will be taught through the Leeds University Business School (LUBS). Disease focused modules provide opportunities for in-depth exploration with research experts in the fields of Cancer, Musculoskeletal and Oral and systemic disease links.

Our teaching staff includes world leading experts with track records in translating research discoveries into novel healthcare products and practices. Student integration within the wider Dental school will be facilitated by undertaking recently updated modules shared with students from other MSc programmes.

Aimed at dental and biosciences graduates, the course will facilitate a career path focussed on oral research and its translation into positive impacts on health.

Course content

The programme will:

  • provide structured individualised learning and training in a research environment of international excellence.
  • be delivered by academics at the forefront of knowledge generation ranging from molecular discovery to translational application
  • engage students in research projects using the latest technologies that generate results with scientific impact and potential for improving patient health
  • equip students for the full process of translational oral research, which will be relevant for a range of biomedical scientific careers, providing the skills and insight to excel in multidisciplinary research.

For more information on typical modules, read Translational Research in Oral Sciences MSc in the course catalogue

Learning and teaching

Teaching will be split between the Dental school on the main campus and the Wellcome Trust Brenner Building (WTBB) at the St James’s University Hospital. The WTBB is a modern purpose built research facility, housing cutting edge facilities in imaging, tissue and microbiological culture and next generation sequencing technologies. On the main campus students can benefit from all the expertise, facilities (such as the Leeds Dental Translational and Clinical Research Unit) and support provided by the Dental school.

Our course emphasises student directed and multidisciplinary learning. Teaching methods include lectures, seminars and workshops, complemented by e-learning and will be delivered by research active scientists and clinicians with additional input from industrial partners and Leeds University Business School (LUBS) academics.

Assessment

Summative assessment will provide you with on-going feedback on your depth of subject knowledge and skills. Assessment methods for formative and summative assessment will include oral and poster presentations, unseen examinations and literature reviews. Exercises to identify research questions formulate research plans and prepare mock applications for funding and ethical/ governance approvals will also contribute to assessment.

Career opportunities

You will gain insight into all stages of translational research, preparing you for a career working across multi-disciplinary teams within research and innovation management. The course aims to enhance your career prospects of securing PhD studentship positions, whether that be in pre-clinical or clinical research.

The innovation management in practice module enables you to learn about the commercial aspects of translational research. It may be that you want to go into the oral healthcare industry, so knowledge of business skills will be a useful transferable skill.

You may want to go into academic teaching positions within your own country; this MSc will provide the knowledge required to teach oral biology at undergraduate level. 



Read less
The MSc in Cancer Biology and Therapy at UCLan provides specialist theoretical and practical knowledge of basic molecular, genetic and biological processes associated with cancer; with an emphasis on the advances in pathology, diagnosis and therapy. Read more

The MSc in Cancer Biology and Therapy at UCLan provides specialist theoretical and practical knowledge of basic molecular, genetic and biological processes associated with cancer; with an emphasis on the advances in pathology, diagnosis and therapy.

This course is taught by active-researchers who have published extensively in the field of cancer biology.

Research themes include: analysis of phytochemicals for cancer treatment; development and characterization of novel drug delivery systems; potential of aspirin analogues in the treatment of glioma; use of aptamers as diagnostic and therapeutic agents for brain tumours; and synthesis of bioactive molecules with anticancer properties.

The course is offered on a one year full-time basis, taught over three semesters.

If you wish to study MRes Cancer biology and Therapy, you must initially apply for MSc Cancer Biology and Therapy and successfully complete the first semester modules.

LEARNING ENVIRONMENT AND ASSESSMENT

The MSc programme is delivered not only via the conventional means of face-to-face lectures, workshops, tutorials and seminars, but the use of online technologies such as videos and discussion forum would also help integrate students’ learning into their normal daily activities.

Practical classes, problem-based-learning exercises related to industrial challenges and reflective activities throughout the course would also help develop students’ ability to solve pharmaceutical problems practically and provide students an opportunity to apply their knowledge into practice, particularly in relation to the need for appropriate formulation design and development, and how these factors affect clinical outcomes in practice.

A variety of assessment methods will be used for this MSc course, including essays, oral presentations, posters, written examinations and laboratory reports.

OPPORTUNITIES

Graduates of UCLan's MSc in Cancer Biology and Therapy have gone on to PhD research, work in industry and other postgraduate study.

FACILITIES

The school is equipped with state-of-the-art equipment based in our Biomedical Research Facility and the Biological Sciences Laboratories (Teaching), that will enhance your research experience.

You will also be given the opportunity to discuss cancer diagnosis, treatment and general care within the NHS via sessions with COMENSUS (Community Engagement and Service User Support). This provides an avenue for students to realise the real-world applications of cancer research, giving them a better understanding of the practice behind the theory.



Read less
Our MSc in Cancer Biology and Radiotherapy Physics is ideal if you wish to pursue a career in cancer research and/or cancer therapy involving ionising radiation. Read more

Our MSc in Cancer Biology and Radiotherapy Physics is ideal if you wish to pursue a career in cancer research and/or cancer therapy involving ionising radiation.

With around 40% of all cancer cure cases involving radiotherapy and the UK soon to have a proton therapy service, the need for multidisciplinary scientists in this field has never been greater.

We aim to develop multidisciplinary scientists to create the necessary skill base that will drive radiotherapy forward in the UK.

This course will enable you to train as a multidisciplinary scientist in this area by covering a variety of subjects in content that is delivered by staff with a range of expertise, including physicists, biologists, engineers, clinicians and oncologists.

Our collaboration with The Christie will allow you to undertake unique research projects in its radiotherapy facilities that cannot be carried out anywhere else in the UK or most of Europe.

Aims

This course aims to help you develop:

  • a sound scientific knowledge of cancer biology and radiotherapy physics;
  • the confidence to apply the scientific principles of radiotherapy to practical situations;
  • the multidisciplinary skills required for world-leading cancer research and treatment delivery;
  • a knowledge of cancer biology that can form a basis for research into existing and future treatment modalities.

Teaching and learning

You will be taught by academics from the University and clinical scientists at The Christie, meaning both fundamental science and its clinical application will be covered equally.

Units are delivered in one-week blocks with a mix of face-to-face content delivery and hands-on practical sessions.

There will be a number of assessed and non-assessed activities to develop your key skills and expand your knowledge base.

There is an also online pre-course element, which will be the beginning of your multidisciplinary scientific journey.

After the taught units, there is an supervised research project that will put into practice the key skills and knowledge acquired in the taught component.

Coursework and assessment

The taught units will be assessed through multiple choice exams and practical assessments.

The research project will be assessed through the submission of a short report and oral presentation.

Course unit details

The taught component, which includes the five core and three optional units, will amount to 120 credits of the 180 credits required for an MSc qualification.

The remaining 60 credits will be obtained through a supervised research project.

Core units

  • The Physics of Radiotherapy
  • The Biology of Cancer
  • Clinical Radiotherapy
  • Radiobiology

Optional units

  • Advanced Radiotherapy
  • Imaging for Radiotherapy
  • Radiotherapy Dosimetry
  • Treatment Planning
  • Biomarkers
  • Computational Methods
  • Accelerators for Medicine

Course collaborators

Much of the course content is delivered through a collaboration with  The Christie .

Facilities

Our collaboration with  The Christie  means you will have access to an MRI image guided radiotherapy linear accelerator and a proton therapy centre incorporating a dedicated research room for your research project.

You will also be able to access a range of library and IT  facilities  throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the  Disability Advisory and Support Service .

CPD opportunities

Individual taught units from this MSc can be offered to industry and healthcare professionals as part of a career and professional development programme. Please contact us for further information.

Career opportunities

This course will help you gain the knowledge and skills to become a leading healthcare scientist in the public or private sector.

It may also be of interest if you are a healthcare worker in the field of radiotherapy who wishes to advance your career.

The master's qualification gained could act as a stepping stone to further academic qualifications or careers involving medical science research.



Read less
The use of chemotherapeutic agents to target and kill cancer cells is a central strategy in the treatment of cancers. This course describes the nature of the disease at the systems, cellular and molecular levels, and focuses on the drugs which are used to treat different cancers and on how they work. Read more
The use of chemotherapeutic agents to target and kill cancer cells is a central strategy in the treatment of cancers. This course describes the nature of the disease at the systems, cellular and molecular levels, and focuses on the drugs which are used to treat different cancers and on how they work.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of this course are to:
-Provide you with an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving;
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease;
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data;
deliver a programme of advanced study to equip you for a future career in anti-cancer drug development.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Medical Genetics (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Advanced Drug Formulation Technologies (option, 20 credits)
-Bioinformatics and Molecular Modelling (option, 20 credits)
-Drug Discovery Technology (option, 20 credits)

After the course

This course is primarily designed for those wishing to pursue a career in anti-cancer drug development, whether in academia or within the pharmaceutical industry. The programme provides an excellent basis for further research or study.

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based. Read more
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based.

Each student conducts their MPhil project under the direction of their Principal Supervisor, with additional teaching and guidance provided by a Second Supervisor and often a Practical Supervisor. The role of each Supervisor is:

- Principal Supervisor: takes responsibility for experimental oversight of the student's research project and provides day-to-day supervision.
- Second Supervisor: acts as a mentor to the student and is someone who can who can offer impartial advice. The Second Supervisor is a Group Leader or equivalent who is independent from the student's research group and is appointed by the Principal Supervisor before the student arrives.
- Practical Supervisor: provides day-to-day experimental supervision when the Principal Supervisor is unavailable, i.e. during very busy periods. The Practical Supervisor is a senior member of the student's research team and is appointed by the Principal Supervisor before the student arrives. For those Principal Supervisors who are unable to monitor their students on a daily basis, we would expect that they meet semi-formally with their student at least once a month.

The subject of the research project is determined during the application process and is influenced by the research interests of the student’s Principal Supervisor, i.e. students should apply to study with a Group Leader whose area of research most appeals to them. The Department of Oncology’s research interests focus on the prevention, diagnosis and treatments of cancer. This involves using a wide variety of research methods and techniques, encompassing basic laboratory science, translational research and clinical trials. Our students therefore have the opportunity to choose from an extensive range of cancer related research projects. In addition, being based on the Cambridge Biomedical Research Campus, our students also have access world leading scientists and state-of-the-art equipment.

To broaden their knowledge of their chosen field, students are strongly encouraged to attend relevant seminars, lectures and training courses. The Cambridge Cancer Cluster, of which we are a member department, provides the 'Lectures in Cancer Biology' seminar series, which is specifically designed to equip graduate students with a solid background in all major aspects of cancer biology. Students may also attend undergraduate lectures in their chosen field of research, if their Principal Supervisor considers this to be appropriate. We also require our students to attend their research group’s ‘research in progress/laboratory meetings’, at which they are expected to regularly present their ongoing work.

At the end of the course, examination for the MPhil degree involves submission of a written dissertation (of 20,000 words or less), followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Course objectives

The structure of the MPhil course is designed to produce graduates with rigorous research and analytical skills, who are exceptionally well-equipped to go onto doctoral research, or employment in industry and the public service.

The MPhil course provides:

- a period of sustained in-depth study of a specific topic;
- an environment that encourages the student’s originality and creativity in their research;
- skills to enable the student to critically examine the background literature relevant to their specific research area;
- the opportunity to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments;
- the opportunity to expand the student’s knowledge of their research area, including its theoretical foundations and the specific techniques used to study it;
- the opportunity to gain knowledge of the broader field of cancer research;
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvocmpmsc

Format

The MPhil course is a full time research course. Most research training provided within the structure of the student’s research group and is overseen by their Principal Supervisor. However, informal opportunities to develop research skills also exist through mentoring by fellow students and members of staff. To enhance their research, students are expected to attend seminars and graduate courses relevant to their area of interest. Students are also encouraged to undertake transferable skills training provided by the Graduate School of Life Sciences. At the end of the course, examination for the MPhil degree involves submission of a written dissertation, followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Learning Outcomes

At the end of their MPhil course, students should:

- have a thorough knowledge of the literature and a comprehensive understanding of scientific methods and techniques applicable to their own research;
- be able to demonstrate originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- the ability to critically evaluate current research and research techniques and methodologies;
- demonstrate self-direction and originality in tackling and solving problems;
- be able to act autonomously in the planning and implementation of research; and
- have developed skills in oral presentation, scientific writing and publishing the results of their research.

Assessment

Examination for the MPhil degree involves submission of a written dissertation of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography, on a subject approved by the Degree Committee for the Faculties of Clinical Medicine and Veterinary Medicine. This is followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Continuing

The MPhil Medical Sciences degree is designed to accommodate the needs of those students who have only one year available to them or, who have only managed to obtain funding for one year, i.e. it is not intended to be a probationary year for a three-year PhD degree. However, it is possible to continue from the MPhil to the PhD in Oncology (Basic Science) course via the following 2 options:

(i) Complete the MPhil then continue to the three-year PhD course:

If the student has time and funding for a further THREE years, after completion of their MPhil they may apply to be admitted to the PhD course as a continuing student. The student would be formally examined for the MPhil and if successful, they would then continue onto the three year PhD course as a probationary PhD student, i.e. the MPhil is not counted as the first year of the PhD degree; or

(ii) Transfer from the MPhil to the PhD course:

If the student has time and funding for only TWO more years, they can apply for permission to change their registration from the MPhil to probationary PhD; note, transfer must be approved before completion of the MPhil. If granted permission to change registration, the student will undergo a formal probationary PhD assessment (submission of a written report and an oral examination) towards the end of their first year and if successful, will then be registered for the PhD, i.e. the first year would count as the first year of the PhD degree.

Please note that continuation from the MPhil to the PhD, or changing registration is not automatic; all cases are judged on their own merits based on a number of factors including: evidence of progress and research potential; a sound research proposal; the availability of a suitable supervisor and of resources required for the research; acceptance by the Head of Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

The Department of Oncology does not have specific funds for MPhil courses. However, applicants are encouraged to apply to University funding competitions: http://www.graduate.study.cam.ac.uk/finance/funding and the Cambridge Cancer Centre: http://www.cambridgecancercentre.org.uk/education-and-training

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Our MSc Cancer Research and Molecular Biomedicine course will give you thorough training in this area alongside lab-based research placements. Read more

Our MSc Cancer Research and Molecular Biomedicine course will give you thorough training in this area alongside lab-based research placements.

As this is a research-focused master's course, you will take an interactive approach to learning through seminars, workshops, small group tutorials and research placements rather than traditional lectures.

You will take three transferable skills units covering topics such as experimental design and statistics and science communication, as well as two research placements in the labs of leading researchers working on various processes relating to tumourigenesis. These include:

  • understanding cell cycle control mechanisms and how they are disrupted in the formation of a tumour;
  • investigating the cell fate choices of normal cells, and how these differ in cancer cells;
  • investigating how cell signals regulate gene expression in different types of cells, and how this flow of information is compromised in cancer cells.

If you want to broaden your expertise beyond molecular cancer research, you can undertake a research placement in another area of molecular biomedicine.

We investigate the mechanisms underlying a range of diseases including hypertension, arthritis, Alzheimer's disease and diabetes, and we aim to develop ways of preventing and treating these. Ourresearch pages provide more information on our research interests.

Special features

Extensive research experience

Gain significant laboratory experience through two placements with leading cancer and molecular biomedicine researchers.

Teaching and learning

We use a range of teaching and learning methods, including tutorials, workshops, seminars and research placements.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

We will assess your progress using:

  • written reports on your research projects and tutorials
  • oral presentations
  • written assignments
  • posters
  • multiple choice exams
  • critical assessment of literature
  • online statistics exercises.

Course unit details

The course starts in September and runs for 12 months. You require 180 credits to complete the course, of which:

  • 135 credits are from research projects
  • 45 credits are from transferable skills units.

Research projects

Your projects each run for 18 weeks starting in October and April.

  • Research Placement 1 (65 credits)
  • Research Placement 2 (70 credits)

Transferable skills

45 credits are achieved through completion of activities that develop your transferable skills in essential areas such as experimental design, statistics, bioethics (included in the tutorial and workshop unit) and science communication. Experimental Design and Statistics runs at the start of the year to prepare you for your research projects. Elements of the other units run throughout the year alongside your research projects.

  • Experimental Design and Statistics (15 credits)
  • Tutorial and Workshop (15 credits)
  • Science Communication (15 credits)

Disclaimer: Our units teach the current trends in life sciences. Consequently, details of our units may vary over time. The University therefore reserves the right to make such alterations to units as are found to be necessary. Before accepting your offer of a course, it is essential that you are aware of the current terms on which the offer is based. This includes the units available to you. If in doubt, please contact us.

What our students say

"Doing my master's at Manchester has given me the opportunity to acquire extensive laboratory experience and enriched my knowledge in the field of cancer. This is also combined with a great student life!"

Elli Marinopoulou

Facilities

You will be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service

Career opportunities

The extensive laboratory experience you will gain on this course will equip you for a future career in bioscience research.

The University has a strong record of placing students in PhD programmes at Manchester and other universities, and several of our graduates have pursued research careers in industry.



Read less

Show 10 15 30 per page



Cookie Policy    X